BICYCLE FRAME IMPROVEMENTS

The accompanying illustrations show the methods used in putting together the sheet steel frame connec tions and the continuous crank shaft and cranks of the 1896 bicycle of the Barnes Cycle Company, Syracuse, N. Y. These frame connections are made by punching from a fine grade of drawing steel the neces sary blanks, and forming them with special tools in press, so they will fit inside of one tube, going through a slot in the tube, the outer end to be formed so as to it in another tube which is milled out the proper form to butt up against the first tube. These connections have pointed continuations which act as reinforcings, stopping the vibration, and lessening the chance of broken frame tubes from this cause. Besides these connections there are other pieces formed up to fit in each half of the main connection so as to give a brazing surface at the bottom, and one entire side also on the curved side, which, after being brazed up with the other pieces, form the strongest possible joint in use. All of these connections are riveted tegether and riveted to the tubes before being brazed, and are put ogether in such a manner that they would hold, if necessary, without being brazed. This pattern of connection is used in both heads, seat pillar and bottom bracket connection, as shown in Firs 2 and 4 . The rear fork connection also of this machine has an internal joint which is left smooth on the outside, and is made entirely of sheet steel formed and brazed as in one piece. The handle bar and seat post fastenings of this particular machine are made by reaming out the lower end with a taper reamer, and inserting a brass and taper nut, which, when drawn up by the long screw seen in the cuts, spreads the lower end of the tube, which is slotted, and holds it firmly in position. After a few seasons' use this has proved to be a most atisfactory wethod of fastening the handle bar and seat posts. In the lower end of the seat posts, the tube of which is lighter in gage than the handle bar post, a reinforcing tube is first brazed in, making the tube at that point of double thickness, this being reamed out with a taper reamer and not allowing any chance of spreading the seat pillar tube in the frame.
The saddle (Fig. 5) is held on the straight seat post by a hollow screw and clamp which holds the springs firmly on the upper end of the post, which is milled out the proper shape to fit the springs after the necessary reinforcings have been brazed in. The long, slim screw which tightens the brass nut at the lower end of the seat post passes through the hollow screw, which hoids the saddle in position on the post, both of these screws being operated by an ordinary monkey wrench, a flat spanner or a T-shaped socket wrench.
The crank shaft forging is nuade of a high grade crucible steel in one piece, and the bearings are all of crucible steel, hardened, tempered and ground afterward, so they are perfectly aligned. The stop cone on the crank shaft (Fig. 3) is on right-hand thread, which is self-tightening against the sprocket when machine is running forward. The adjusting cone on the opposite end is slotted, and the washer has two small projections, as shown in the cut. engaging these slots, and, in connection with the projection on the insioe of the wasker, which fits a slot milled on the crank shaft, prevents the cone from working tirht or loose, and keeps the bearings perfectly adjusted. One of these machines has been ridden for some time with the lock nut merely turned up with the fingers, which held it firm enough to not loosen, although the lock nut is intended to tighten up with a wrench perfectly solid.
The bearings case are screwed in the bottom bracket, the right one having a right-hand thread, and the left one having a
left-hand thread, so they both remain screwed up tight and are not affected by the revolving motion of the bearings. These machines are made in several patterns, including the Special, the White Flyer, the Superba, the Racer and the White Flyer Tandems.

JAPAN is going to build up her commercial navy by iving subsidies to shipbuilders for evers ton above 1,000 , and to shipowners for all ships of 1,000 tons that can make ten knots an hour, the subsidy being increased for every 500 tons additional burden or every knot additional speed.

BICYCLE FRAME IMPROVEMENTS-HANDLE BAR, SEAT POBT, CRANK AND SADDLE CONNECTIONS.
obtained with the 11 inch Draper telescope, although it was very low, faint, and near the sun. On this date, and on December 19, it was also seen by Mr. 0. C. Wendell with the 15 inch equatorial as a star of about the eleventh magnitude. An examination with a prism showed that the spectrum was monochromatic, and closely resembled that of the adjacent nebula. Although the spectrum is unlike those of the new stars in Auriga, Norma, and Carina, yet this object is like them in other respects. All were very faint or invisible for several years preceding their first known appearance. They suddenly attained their full brightness and soon began to fade. Like the new stars in Cygnus, Auriga, and Norma, this star appears to have changed into a gaseous nebula. Harvard College Observatory Circular.

New Submarine Boat

The Goubet resembles a whale in shape, being spindle shaped and measuring 26 feet in length and about 5 feet 6 inches in diameter in the middle, with a capacity of 10 tons. It is cast in three sections of gun metal, which are bolted together. The middle section is surmounted by a dome, also of guu metal, about 1 foot high, by which access is obtained to the interior. The hull is about 1 inch thick in the middle and about one-third of this only toward the ends, but this gives sufficient resistance tonavigateatany depth in the English Channel. The boat is propelled by a screw, which also serves the purpose of a rudder, the shaft being jointed to enable of its being moved right or left. The horse power is extremely small (one or two), this, it is said, being sufficient under water, where there is no wave making, to give seven or eight knots. The motive power is supplied by an electrical battery. The boat may be rowed back ward or forward by a pair of fin-like arrangements to the fore. When the boat is in harbor the dome emerges. When this isclosed, and the boat sets out on the warpath, water is let into compartments in the lower part of the boat, which gradu ally sinks. The quantity of water is regulated by very ingenious automatic apparatus, and when the Goubet is sunk to any required depth, at that depth it remains, the screw propelling it in a horizontal plane.

American Fruit Packages.

American fruit packages are becoming more and more popular in the Mediterraneantrade. It is believed that the fruit producers of Italy will adopt the more modern fruit packages used in the United States. An importer of fruit, resident in New York, has recently visited Italy, and was present at a conference held by the ministry of agriculture of Italy, and he showed them the various boxes, crates, baskets, and the like which are used in the United Stares. The Italians had never before seen such pa:'kages, and their complaint was that they bad neither the wood nor the machinery to manufacture them. 'The New York mer chant told them that, as the Uuited States produces the shooks to make boxes for their oranges and lemons, it would be an easy matter for the same country to supply the same packages, at a nominal cost. If these are generally adopted, the United States lumber inter ests will be benefited. In any event, as the Italian fruit grower becomes acquainted with our modern appliances, he will either purchase the manufactured article in this country or will buy proper machinery and wood here to develop that indus try. At all events, it means an enlarged de mand for hard wood fruit packages from the United States, either in the form of wood or the manufactured article. N. E. Lumberman.

Aluminum Coffins.
Coffins are now made of aluminum. Like the modern square buria casket, the aluminun cofin is made of uni form width, with square ends and verti
cal sides and ends. It is finished with a heavy mould ing around the bottom and at the upper edge, and with pilasters at the corners, and has a rounded moulded top. It is provided with extension bar handles. The aluminum casket is not covered, but finished with the metal surface burnished. It is lined in the usual manner. The weight of a six foot alumi num coffin is 100 pounds. A six foot oak casket weigh about 190 nounds, and a cloth casket of the same size with a metal lining about 175 pounds. Other me tallic caskets weigh from 450 to 500 pounds. The cost of aluminum coffins is from $\$ 750$ to $\$ 1,000$.

