THE TRIBUNE BICYCLE

Within the past three vears, the American bicycle industry has grown up to dimensions which fairly entitle it to be considered representative of the country and of the day. Every day sees hundreds of wheels of high and low grade made in the factories of this country for the American and foreign market. Three years ago the English bicycle was considered by many the best wheel, and the possessor of such was apt to consider himself better equipped than his friend who rode one of American manufacture. Now, all is changed. A visitor to England or to the Continent, if a cycling enthusiast, cannot fail to be impressed by the superiority of American wheels as contrasted with the foreign ones, and no wheelnuan really au fait in his subject would dream of buying his wheel abroad, so superior is the American wake. The industry has brought about an enor mous development in the manu facture of special tools and of parts of bicycles.

Many assumed bicycle manufacturers simply buy these parts and do their own assembling. But for the production of the absolutely high grade American bicycle, a factory is required which will turn out practically all the parts of the wheel manufactured, for unless such is done one concern cannot be answerable for the perfection of the whole machine.
We select as the representative of such a factory the works of the Black Manufacturing Company, of Erie, Pa., a company which pro duce the highest grade of wheel and which put it on the market purely on its merits without the
adventitious advertisement of paid riders. The wheel made by this company, the "Tribune Bicycle," embodies the best possible practice and is correspond ingly free from structural variations of unproved merit.

The tubing, whose walls are of 20 gage thickness, is of American make, the company having found that English tubing could not be obtained of sufficiently even quality. At the junctions of the tubes forged connections are employed. These are received in a solid state and are machined out, drilled and turned, until only a shell of the original ma connection and the and the whole is so accurately made that when the ends of the tubes are placed over the nipples the frame will hold itself together without further fastening. The tubes are of uniform diameter throughout and are simply cut of proper length, so that their natural strength is unaffected. The most striking instance of the preparation of the forged connections is in the crank bracket. This is received as a massive forging weighing 3 pounds $21 / 2$ ounces, in general shape a cylinder, with four solid projections. This is put into the finish. ing machine and finished. It comes out with the solid cylinder drilled out so as to present a large aperture through which the crank shaft is to go, and its ends faced off and finished for the reception of the ball races. The four projecting mpples are drilled out and are also turned down on the outside so as to fit accurately the outside of the tubing. The bracket now weighs 8 ounces; all the rest has been converted into drill chips. One of the typical connections is that used for the head of the rear forks, which forging we specially illustrate, in order to show how solid a construction is given to this vital point.
The frame has now to be brazed together. The pieces are placed in a massive iron jig or template, adapted to receive them and retain them in position, and which holds horizontally the entire frame. This template is mathe inatically accurate. While held therein, holes are drilled through the connections and tabe ends and pins are driven in, pinning all the parts together. When removed from the jig the frame is perfectly rigid. It now goes to

$$
\begin{aligned}
& \text { braziers, who, with the best quality of brass } \\
& \text { with large gas blownioes. braze all the parts. }
\end{aligned}
$$ with large kas blowpipes, braze all the parts, quid spelter penetrating all the joints and running out around the pins. The frame oes to the filers, after the borax has been off it, who, with file and emery paper. go e connections and over the tubing, polishing removing every excrescence, which, it will be gives the frame an absolute hand finish over ace.

s taper toward the ena, and to produce this
taper cold swedging is employed. The swedging ma chine carries a heavy head like a lathe head or chuck which rotates in a horizontal axis, and within which are eight hammers, which by the action of the ma chine move in and out in radial directions. A piece of cold tubing pushed into the machine and fed up by hand is subjected to a multiplicity of blows and has it diameter rapidly reduced, the workman being able to give it any desired taper. The metal thus tapered is lattened and bent to the proper curve to give one sid of the fork.
The cups and cones for the ball bearings are made on automatic turret lathes, the turret carrying in some cases as many as five tools. A bar of tool steel which may be 20 feet long is introduced into the machine and

VIEW OF EXTERIOR BUILDINOS-BLACK BICYCLE MPG. CO.

The aim of the constructor of this typical American Wheel has been to secure simplicity and produce a absolutely standard article. Its criterion is its quality pure and simple. There are, however, some noveltie ntroduced that are especially worthy of illustration One of these affects the crank and crank shaft mech anism, the crank being secured to the shaft in a new way. V-shaped teeth are formed upon the crank shaft and upon the aperture in the pedal arm. This aperture in the pedal arm is split and provided with tishteuing screw. To attach the crank arm to the haft, it is thrust over the end of the shaft and th tightening screw is turned up, when it is secured a rigidly as if all were one piece of metal. Those who have struggled with the old-fashioned cotter will rea ize the advantage of this crank, which is instantl released with two or three turns o

The handle bar is made adjust able by an arrangement of equa simplicity and efficiency. The socket in the head which receive it is threaded. On the center of the handle bar is brazed a sleeve threaded with the same pitch o screw. The socket is split and pro vided with r tightening screw The screw is loosened, the handle bar thrust through the socket and screwed into place. When at the desired angle the screw is tight ened and the whole becomes prac tically one piece of betal By re versing the handle bars, they can be used in up-turned or down turned position.
The sprocket wheels ought not to be spoken of as a novelty now They are cut to the cycloidal or
which shape and cut off from it bearing after bearing which drop from it every few seconds without any at tention from the workman. A liberal supply of oil is kept in constant circulation through the machine, fall ing upon the cutting tools. The bearings thus finished are purposely left 0.005 of an inch too large. They are then screwed on a mandrel in a special lathe and the final finish is given by hand. They are then tem pered by secret process with sperm oil and polished, coming out with a beautiful straw color, equal in finish to any steel tools made.
The standurd finish of the machine is black enamel
 theoretically correct curve, which avoids all friction of the chain against the teeth. This has long been the pecialty of the Black Manufacturing Company, but ow the systeu has spread among other conipanie ow theid apro ther first-class wheels.
We also illustrate the system of truing up the wheel Each wheel is mounted on a gaging frame, and the workman, by setting up and loosening the nipples brings the rim into an absolutely perfect plane. The steering arrangement of the tandem machine de serves attention. Spro and rear steering posts, and thes sprockets are connected by chains and rods so as to insure unity o steering action between the front and rear handle bars.

Wood Preserving in Switzerland
A simple, effective, and cheap way of preserving wood from de cay is practiced in Switzerland in the preparation of posts for the telegraph service. A square tank having a capacity of some 200 gal lons, is supported at a height of 20 feet or 25 feet above the ground by means of a light skeleton tower built of wood. A pipe drops from the bottom of the tank to within 30 inches of the ground, where it is connected with a cluster of flexible branches, each end ing with a cap having an orifice in the center Each cap is clamped on to the larger end of a pole in such a manner that no liquid can escape from the pipe except by passing into the wood. The poles are arranged parallel with one an other, sloping downward, and troughs run under both ends to catch drippings. When all is ready, a solution of sulphate of copper which has been prepared. in the tank, is allowed to descend the pipe. The pressure produced by the fall is sufficient to drive the solution, gradually, of course, right through the poles from end to end. When the operation is ended, and the posts dried, the whole of the fiber of the wood remains permeated with the preserving chemical.-Work.

Oll of Cansia as a Refractive Medinm.
Oil of cassia has a higher refractive index than cedar oil, and Dr. H. G. Piffard finds it brings objects examined in it into sharper con trast. In a paper read before the New York Acadewy of Medicine, he stated that he had worked with a sainple having a refractive index of 1.693 . Bacilli examined in this oil exhibited an unrivaled bril liance and sharpness of contour. The minuter detail los. such as pores flagella, ite, are shown with distinctness impossible in cedar oil. The oil of cassia, like the oil of cloves, tends to abstract the color from bacilli stained with some of the aniline dyes, a dis. advantage not shared by cedar oil, but it is stated that this does not take place with sufficient rapidity to interfere with the cliagnostic examination.

Ice Caves of Japan.

A correspondent to the London Field gives the following account of a wonderful cave in Japan :
Some eight or nine miles from Shoji, in the woods, is the entrance to the great ice cave we had come so far to see, a natural circular depression or basin in the ground in the middle of the forest, some thirty yards across and about forty feet deep. At the foot of one of the sides is a dark opening in the lava, a few feet down which may be seen the top of a wooden ladder. This is about twenty feet long, and at the foot of it are a heap of blocks of lava, down which wescrambled for some thirty or forty feet more, till a floor of solid ice, more or less flat, was reached. Very careful progress along this had to be made to avoid slipping down and extinguishing the torches. Forthe first fifty yards frequent blocks of lava rise through the ice of the floor, while further on there is nothing but ice. The lava roof is sometimes thirty or forty feet above one's head, sometimes only four or five feet from the floor. The light of the torches glanced continually oniciclesmany feet long pendent from the roof. Presently we passed some large blocks of ice, which had been cut by the country people for sale at Kofu, some miles off. At nearly four hundred yards from the entrance about twenty wonderful ice stalagmites, from two tofive feet in height, rose from the floor close to a lava wall forming apparently the end of thecave, to meeticicles hanging from the roof from which water at this time of the year continually drops on to them. The tops of these stalaymites form hollow bell-shaped cylinders, giving out a faint note like a gong when struck; they are partly filled with the water which drips on to them from the icicles above. Soon by the side of them, on the left, a low arch in the lava on the level of the floor, about three feet high, may be seen. Down this is a strong current of air ; there is a rapid descent for some thirty five feet, and thence the course of the cave has been followed for another two hundred yards or so, but owing to the strong current of air which constantly extinguishes the torches, and the smallness of the pas sage, which slopes down rapidly from the entrance, no detailed description of it can be given; but undoubt edly the cave runs on for some distance, perhaps to another outlet, for the current of air is very strong at the extreme point to which any one has yet penetrated.
The ice has probably remained frozen in the cave from the winter months, the action of the higher summer tewperature being insufficient to do more than affect the surface of the ice floor, form a few pools of water, and melt part of the ice stalactites and stalagmites. The temperature of the cave in summer seldom exceeds 35° Fah, and that in the declivity or basin in the ground at the entrance some 10° or 12° higher; on going up from the latter to the level of the ground in the wood. a rise of some 20° on a warm day is at once experienced

The Argentine Cru Buenos Aires.

The latest cruiser turned out by the Elswick firm for a foreign guvernment has just made her trials has just made her trials
and has made a speed and has made a speed which, if not altogether
unprecedented, is most creditable to her designers. and must be satisfactory to her owners. The length between perpendiculars of this ship is 396 feet; her beam 47 feat 2 inches; and normal draught 17 feet 7 inches; the displacement being rather over 4,500 tons. It has the usual pro tective deck and in general design resenubles all the cruisers that have been turned out by this firm. The guns, carried in protective positions fore and aft. are two of the new 8 inch quick firers while inch quick firers, while between these, in the open battery, are ten other quick firers, four of them being 6
inches and the others 4.7. inches and the others 4.7.
In addition, there are sixIn addition, there are sixfive tornedodischarge tubes. The-pounder guns, with by Humphrys \& Tennant, consists of two pairs of inverted direct acting, compound engines, steam being supplied by four double-ended and four single-ended boilers. The power used on the run was $14,000 \mathrm{H}$. the steam pressure being about $15 \cdot 5$ pounds and the vacuum 28 to 29 inches. The speed attained was $23 \cdot 2$ knots with natural draught.

RYAN'S IMPROVED MECHANISM FOR OPERATING DRAWBRIDGE GATES.
bridge engaging a pinion on a shaft which has at its other end a crank arm, a wrist pin on this crank arm engaging a rod pivotally connected with crank arms engaging a rod pivotally connected with crank arms
on the posts. This rod is made up of a number of parts, made endwise adjustable by turnbuckles, and has at its middle a loop or eye into which projects the wrist pin. The pinion shaft is carried by a pair of hangers, one of which permits partial movement to the end of the shaft carrying the pinion, enabling the latter to accowmodate itself to changes in the vertical position of the end of the bridge, the end of the shaft being normally upheld by a coiled spring. A cam on the under side of the bridge also engages an anti-fric tion roller on a bracket embracing the pinion; whereby the latter and its connected parts are depressed, when necessary, to the proper position for engagement with the rack. Provision is also made for closing the gates as desired, when the bridge is closed and at rest.

Where Pennies are Coined.

It is not generally known that all the minor coins of base metal, such as pennies and nickels, are made at the Philadelphia mint, and that nearly $100,000,000$ pen nies are coined here every year. This large number is occasioned by the fact that thousands of pennies are lost annually, and the government has some difficulty in maintaining a supply. The profit of the govern ment on their manufacture is large. The blanks fo making them are purchased for $\$ 1$ a thousand from a Cincinnati firm that produces them by contract Blanks for nickels are obtained in the same way, eosting Uncle Sam only a cent and a half apiece. Gold is coined in Philadelphia and San Francisco. Not enough of it comes into the mint at New Orleans to make the coinage of it worth while. Gold pieces are the only coins of the United States which are worth their face value intrinsically. A double eagle contains $\$ 20$ worth of gold without counting the one-tenth part copper.

Extraordinary Railroad Into the Black Hills.
A remarkable piece of engineering is to be seen on what is known as the Spearfish branch of the great Burlington Railroad svstem in the Black Hills, over which a Chicago Record reporter recently traveled. which a Chicago Record reporter recently traveled.
This branch runs from the little town of Englewood, This branch runs from the little town of Englewood,
ten miles south of Deadwood, in a northwesterly di rection, to the town of Spearfish, a distance of thirty one miles. For a greater portion of the distance afte leaving Englewood the road is steep up-grade, the grade being at several points three and four feet to the hundred, finally reaching the very summit of the Black Hills, after passing around innumerable curves of so abrupt a nature that passengers are led to won der how the train can keep the track, and through numerous cut that have been blasted out of the solid rock.
At one or two of the most dangerous places on this remarkable road safety switches are in use In descending the grade should the train get beyond contiol, these switches will carry it around the points of mountains and up a steep grade, enabling the en gineer to regain control o the train. The road is ballasted with broke rock, not even a shovelful of dirt being visible on the entire roadbed.
The cost of constructing the thirty-one miles of road was $\$ 1,750,000$. The engines in use are 100 ton engines but, owing to the steep grades, they are unable to haul more than three load ed ore cars.
At one point the road makes a curve of seven miles to reach the highe grade, and, if the track were on a level, the uppe one would be within a few hundred feet of the lower track of the "loop." Notwithstanding the
tion with a coiled spring, preventing injury to a person who may be caught between the gates as they are closing. The sidewalk gates are yieldingly held by coiled springs attached to the post and engaging opposite sides of each gate
In opening or closing the gates the posts are turned in opposite directions, each post being moved a quarter of a revolution by a toothed rack carried by the
dangers attendant upon railroading on this winding mountain road, but few accidents have occurred. At intervals trains are stopped or the purpose of testing the air brakes, and the ut most care is taken to prevent disasters. On the entire thirty-one miles of road there is not more than two or three hundred feet of continuous straight track.

The deepest artesian well is at Budapest. Depth 8,140 feet.

