# ₹rientifir Ammerian. 

ES'CARLISHED 1845.

MUNN \& CO., Editors and Proprietors. publishey weekly at
No. 361 bROADWAY, NEW YORK.

- D. munn. A. e. beach.
thims for the scientific american.

 MUNN \& Ce., 361 Broadway, corner of Frauklin Street, New Yori


Elitia of Scientific American.




Export Edition of the scientific American,

## 


 Tef The safest way to remit is by postai order express, money order,
draft or bank check. Make all remitances payable to order of MUNN
dra. ons. Readers are specialy requested to notify the

NEW YORK, SATURDAY, AUGUST 31, 1895.


TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 1026

## For the week Ending August 31, 1895.

 Price 10 cents. For sale by all newsdealers.1. CHEMISTRP.-Transferring Gaess to Vacuum Tubes.-By JAmes
II. ClVLL ENGINEERING.The New York Central and Hidson


 - GEOGARHYY-The International Geveraphical Connress--

I. MECHANICAL ENIINEERING. The Sharpening of Files by VII MISCELLANEOUS.-The Development of a Naval Militia. By

 IX. PHYSICS.-The Sympalmograph-By CBARLES E. BENEAMI-


## x.




## american association for the advancement

 of science.It is now forty-five years since this important associ ation held its first meeting, under the presidency o Professor Ed ward Hitchcock. That was in Philadel phia, where the next meeting also was held. Annual meetings have been held ever since, in Boston, New Haven, Cincinnati, Albany, Cleveland, Washington, Montreal, Indianapolis, Toronto, Rochester, New York, Brooklyn, and other cities, mostly in the Northern States, although it was originally intended to alternate between the North and the South. One reason for the preference for the cooler latitudes is that it has been found necessary to hold the meetings during the summer vacation in order to accommodate the members connected with colleges and schools.
There are now 2,000 nembers enrolled, including nearly every eminent scientist in America, besides many persons who would claim only to be friends of scientific aims and pursuits. The attendance on the annual meetings varies from 200 to 1,000 members, besides the large number of casual visitors attract. ed to the public lectures and social entertainments. It is eminently a popular organization, aiming at the "advancement of science" by influencing the minds of the multitude, and secking to stimulate scientific res
membership
It is now fifteen years since the A. A. A. S. has met in New England, although its official home is at Salem Mass., and it was incorporated by a special act of the legislature of Massachusetts. It seems appropriate, therefore, that this year its anniversary should be held in the charming city of Springfield, where it convenes
from August 28 to September 5 , with excursions to folfrom August 28 to September 5, with excursions to fol-
low and with affiliated societies meeting both before and after. At first the discussions and papers were all in general session. But as the work broadened it was found necessary to divide into nine sections, representing Mathematics and Astronomy, Physics, Chemistry, Mechanical Science and Engineering, Geology and Geography, Zoology, Botany, Anthropology, and Eco nomic Science and Statistics. Even this subdivision
was found to be insufficient, and the affiliated societies was found to be insufficient, and the affiliated societies
referred to were formed, namely, the Geological Soreferred to were formed, namely, the Geological So
ciety of America; the Society for Promotion of Agri culture; the Entomological Society ; the Society of Engineers : the American Chemical Society; the Ameri can Forestry Association; the Association of State Weather Service, and the Botanical and other clubs, all of which usually meet during the association week. Yet daily general meetings are held, for the election of officers, hearing of reports, and transaction of gene ral business. Two or more free evening lectures are also given complimentary to the citizens of the locality, and there is free admission to the public addresses made by the president and the vice presidents.
The citizens of Springfield have made ample preparations for welcoming the large body of scientific guests who are expected this week, and many plans have been laid for their entertainment. The general sessions are held in the F. M. C. A.building; the presidential ad the general reception will be in the City Hall. Th hotel headquarters are at the Worthy Hotel. Vari ous neighboring cities have extended invitations and arranged for excursions enabling the guests to visit many points of scenic, historic, or scientific interest.

THE LESSONS OF THE BATTLE OF THE YALU. The current number of the Century contains graphic account of this battle, written by an eye witness and active participant, Philo N. McGiffen, who was in command of the battle ship Chen Yuen on that memorable occasion. He disclaims all inten tion of giving a technical account of the action, and wishes his readers to regard the description as a serie of vivid impressions, received in the midst of tive hours of the most terrific artillery duel the world had ever seen. Whatever may have been the writer's intention, he has certainly given us a series of war pictures that are not merely fraught with tragic interes to the lay reader, but are also full of valuable lessons

For the past forty years, or ever since armor wa first placed upon a warship's sides, the science of war ship design has been almost entirely theoretical. The nations of the earth have poured their wealth like water into the naval treasury, and the naval boards have spent it faster than it came to hand. Huge and just how far these theories were correct and just what was the relative value of the many and diversi fied types of ships, gun

It is true there had been a naval fight at Lissa, in which the ram, that classic weapon of Greece and Rome, had demonstrated its deadly power; it is true that the Chile-Peru war has produced one memorable
sea fight in which gun contended with armor; and again, in the sinking of the Blanco Encalada, the torpedo, under modifying circumstances, showed that
theory had proceeded along the right lines and had produce a weapon of appalling destructive power but yet, taken for all in all, the experience gained had been very meager, in comparison to the thousand and one questions that were a waiting solution
This solution was expected to come in the breaking out of the long-expected European war. To the surprise of every one, it was in the East, and not in the West, that the test was made. It was the semicivilized races of the East that taught the Western nations the true value of their modern guns, ships and armor.
It has been contended that the test is not concluive; that on the part oif one, at least, of the com batants there was too much cowardice, irresolution and general incompetency, to render the results of much technical value. But we think that any one who reads this account by an eye-witness of the cool, dogged bravery of the Chinese gunners above deck and the Chinese engineers below deck; the one decimated by a murderous tempest of quick-fire shell, and the other slowly roasted in an engine room tempera ture of $200^{\circ}$ (see description), we think that any reader must admit that the two Chinese ironclads were fought for all there was in them, and that the results of the fight furnish us with reliable data for future designs. The chief interest of the battle centers in the two Chinese ironclads and the principal squadron of the Japanese. They fought out the fight all to themselves; the flying squadron of the Japanese, consisting of the lighter and swifter cruisers, directing their attention to the lighter armed Chinese ships. It was just such a test as the naval world had been lookine for-swift, unarmored or lightly armored ships against slower but heavily armored battle ships. The four ships constituting the principal squadron were armed with one $121 / 2$ inch gun placed forward, amidships, in an armored barbette, and a secondary battery of lighter quick-fire guns. This $121 / 2$ inch gun is, in some respects, the most formidable gun afloat. Built by Canet, in France, it has extreme length, great velocity, and has a theoretical penetration at the muzzle of 50 inches of iron! Theoretically, the shot from this gun should haveripped the Chinese ships from end to end, and have pierced their 10 inch and 14 inch armor like so much cardboard. What are the facts? Says Commander McGiffen: "We were struck both on the 14 inch belt and 10 inch conning tower by the $121 / 2$ inch shells," but " no shot penetrated more than four inches." So that, if this be true (and the authority, surely, places it beyond question), the comparatively light and somewhat out of date armor of the Chel Yuen had about 70 per cent of resisting power to spare against the most powerful penetration of modern ordnance!
This proves to us what the writer has long believed, viz., that penetration as shown at the proving grounds will al ways be vastly in excess of the actual penetration in time of battle. The test shot is always tired normal to the plate, but in action not one shot in one hundred will strike normal to the plates on the curved, oblique, or spherical armored portions of a battle ship. With every degree of deviation from the normal at the point of impact, the shot has to travel that much further to pass in a diagonal line through the plate; and there is an extreme angle at which it will refuse to "bite" at all, and will glance away, in flicting comparatively little damage. Unquestionably this is what happened in the majority of cases where the shots struck the armored portions of the Chinese ships.
Another lesson of the fight is that a heavily armored barbette, placed high above the water line, and resting upon a light unarmored substructure, is a m is take. The opponents of this system of construction, which is to be found in the Admiral class of Great Britain's navy, and in the turrets of the 8 inch guns in our own battle ships Indiana and Oregon, have claimed that a well-directed shell, placed beneath the floor of these barbettes, would wreck the whole gun and mountings, and disable the gunners. This is precisely what happened when the Chinese Chen Yuen, by a well-directed shot at 1,700 meters from her 12 inch gun, killed 49 and wounded 50 men on the Japanese Matsushima, and totally disabled her $121 / 2$ inch gun, which was mounted as above described.

Though the heavy guns fell so far below their theo etical effectiveness, the larger class of quick-fire guns, the 4.7 inch and 6 inch, proved to be fully as terrible in their destructive effect as was anticipated. At dis tances varying from 1.000 to 3,000 meters they poured in a perfect tempest of armor-piercing shells, agains which the light 1 inch and 2 inch shields of the Chinese were worse than useless. It seems that these light shields are a positive source of danger to the gun crews they are supposed to protect. Too weak to keep out the quick-fire shells, they are yet stout enough to give the percussion necessary to explode the shells that pass through them. These shields thus became, in the words of Commander McGiffen, "veritable man traps." They simply inclosed the flying fragments of the bursting shells, and concentrated their destructive effect. So fully alive to this danger were the Chinese
commanders, that they actually removed the 30 foot
circular one inch shields that covered the barbettes; circular one inch shields that covered the barbettes;
claiming that they would only serve to intercept and explode shells which otherwise would pass harmlessly overhead. These shields were designed to keep out the smaller machine gun shot; but as the fight was carried out at long range, "the value of shot smaller than $3 \mathrm{lb} . "$ was "questionable" at least under such conditions. The value of superior speed was clearly established. The Ja panese ships, with their $17 \frac{1}{2}$ knots speed, simply played with their slower antagonists, and appeared to have followed out their own plan of tactics at will. They came down diagonally on the Chinese fleet, in line ahead, at 12 knots speed; the forward half circling round the right flank of the Chinese line and returning along their rear. of the Chinese line and returning along their rear. Thus they had the long-drawn-out Chinese line of
battle between two fires. Their formation was soon broken; and the two Chinese ironclads, like lions at bay, were the center round which the Japanese principal squadron circled, sweeping them with a murderous fire at long range.
Superior speed is to the modern warship what the weather gage was to the frigate in the days of saildriven ships-it gives the power of accepting or refusing battle. The faster ship can choose her position, and place herself at what range she pleases. The Jap-
anese ships fought at long range, and thus neutralized anese ships fought at long range, and thus neutralized
the superior advantage afforded by the heavy armor the superior advantage afforded by the heavy armor
of the enemy as compared with their own lighter pro. tection.
It was also clearly shown in this engagement that the use of wood, or any combustible material, in the construction of a fighting ship, should be kept down to the lowest possible limit. Time and again the Cbinese ships were set on fire by the quick-fire shells that came aboard; and the crews had to leave their guns and fight the flames that broke out continually from the wooden partitions and deck houses. Decks, cabins and passageways will in future be built of light plating-or at least such parts of them as lie above the water line. In the meetings of the Naval Institute of Great Britain it has often been urged that the first naval battle would show that the fight would be won by destroying the crew and not the ship. The event has proved the surmise to be nearly correct. Much of the so-called gun protection was no protection at all ; and gun positions were rendered untenable by the fearful hail of fifty pound and ninety pound quick-fire shells that swept them. Much of the weight that is now devoted to guns might with advantage be devoted to the encircling of fewer guns with heavy sixinch shields and casements. Five guns with effective protection are better than ten with none, or next to none.
There was one cause of fatalities on the Chinese ships that was certainly unexpected and unprovided for. It appears that the conning tower was situated high up and between the barbettes. Many of the shot that rebounded from this tower fell into the barbettes; and more of the crew were disabled in this way than by the direct fire of the enemy.
In conclusion, summing up, we may say that the nodifications to be looked for in future designs are : 1.-A more extended use of stout side armor, with a tendency to carry water line armor completely fore and aft; as in the French and Russian ships.
2.-In the case of armored barbettes or turrets, the extending of the armor down to a connection with the water line belt; so that the protection from axis of gun down to water line may be complete
3.-Fewer guns with heavier shields.
4.-The elimination of all wood or combustible mate rial from the construction.
5.-As far as compatible with the above desiderata,
an increase in the speed.
J. B. W.

While the American manufacturers contemplate increasing the size of bicycle tires on the ' 96 models, the English firms intend to adopt the reverse style. An English manufacturer in speaking of the tire question says: "If anything, we shall reduce the size of our tires, and with very good reason, I think. On theory
the larger sized tires ought to be more comfortable, but in practice $I$ do not think they will generally be found so. Large tires mean added weight, and that, too, just where it will detract most from speed. For general road work during the past season we have used $13 / 4$ inch tires mostly, and for light wheels $15 / 8$ inch. The indications are that next season will see $15 / 8$ inch tires used very freely and $11 / 2$ inch used for the light wheels."
In a Wisconsin village a funeral procession was very largely made up of men and women on bicycles, thedeceased having been a member of the bicycle club.

The two advantages claimed for tandem bicycles are the absence of vibration when riding over a rough road and the ease with which two riders can propel the machine against a head wind.
The various trade papers devoted to cycling have a total circulation of over 100.000 . Among them
W. Bulletin, and the Referee; these are all published in Chicago. In New York City we have the Bowling and Cycling Gazette, the Wheel and Cycling Trade Review, and the American Wheelman and Cycle Trade Gazette. The Wheeling American is published at Nunda, N. Y. In Philadelphia are published American Cycling and the Cycle Guide. The Bi cycling World is published in Boston, and the American Cycle in Hartford, Conn. The Wheelmen's Gazette is published in Indianapolis, Ind. The Michi igan Cycie at Grand Rapids, Michigan. The Western Sportsinan and Bicycle Reporter, Kansas City, Loose Spokes is published at Moorestown, N. J. The Pueumatic is published at Milwaukee, Wis., and the L. A. W. Pointer at Oshkosh. Farther West we have the Cycling and Sportsman, which is published at Dallas, Tex., the Cycling West, Denver, Col., and the Northwest Sportsman and Cyclist. Portland, Ore. In Canada there is the Canadian Wheelman, published at Simcoe, Ont., and Cycling, which is published at Toronto, Canada. The Wheelwoman, which is conducted by Mary Sargent Hopkins, is published at Boston, Mass.,
and is one of the latest additions to cycling periodical and is one of the latest additions to cycling periodical Belgium wheelmen are not only taxed, but they must at all times carry with them their tax receipt, so that they may be able to show the same to any inquir ing official.

A new tire has been invented, called the ball-bearing bicycle tire. The objection to the ordinary tube tires is that a punctire in one place destroys the usefulness of the whole tire until the puncture is repaired. The new tire consists of a closed rubber tube, filled with hollow elastic balls of the same diameter as the internal diameter of the tube. These balls ar process of manufacture. The tube may first be vul canized, however, and the balls inserted through an opening which is afterward closed. It is said that additional elasticity and rigidity is
imparted to the tire by the insertion of these hermetiimparted to the tire by the insertion of these hermeti-
cally sealed elastic balls, and, as each ball is an independent cushion, it would require puncture of sev eral balls to make the tire useless. Another curious substituting for the continuous tubular tire a series of rubber balls, set in cups at the outer end of the spokes; the balls are so arranged that they may be simultaneously inflated. Several advantages are claimed for this device, one of them being that no serious incon venience will follow the puncturing of one or two of the balls. It is also claimed that there is a great saving of ground cohesion, and this will increase the ease and speed of propulsion.

## Atlanta Exposition Notes.

The electric fountain will compare with that of the Chicago Exposition. The water will rise 180 feet and will flow at the rate of 150,000 gallons a minute
The forestry exhibit promises to be the most com plete and instructive ever made by the government, exceeding in excellence, though not in size, the exhibit at Chicago in 1893. The wide range in the use of wood in all phases of human life will be shown. Large panels are already hung on the pillars of the building, each representing one particular line of use; as, for instance, wood in the kitchen, wood in the laundry, in ports, in the garden, in tools, etc.
The lumber exhibit will be so complete that any one may trace the growth of the tree through various stages, learn its adaptability to various commercial uses, its value, durability, comparative worth fo special uses, etc.

Remarkable Railway speed in Great Eritain. London, August 23.-The London and Northwest ern Railway Company's new fast train between Lon don and Aberdeen, which left London at 8 o'clock p. m., August 22, arrived at Aberdeen at 4:32 o'clock a. m. August 23. Part of the journey of 540 miles was cover ed at the rate of seventy-five miles an hour.
This eclipses anything before recorded. To make this time, the average speed maintained must have been 63.47 miles an hour, including all stops.

No American railroad can show anything like this for long runs, although on short runs better time has been made.
On the New York Central the best time has been $4361 / 2$ miles in $4391 / 2$ minutes, including stops.

## St. Louis' Speed Test.

The speed made by the St. Louis, August 20, on her official speed trial in the English Channel for acceptance as an auxiliary cruiser in the United States
navy resulted in her showing a sustained speed of $22 \cdot 3$ knots per hour.
When she went into the dock at Southampton, prior to this trial, it was found that the bottom was in a long. The St. Louis by her present performance wins a mail carrying contract for ten years, at the rate of $\$ 4$ per mile of a weekly service between New York and Southame of a weekly service between New York and

## Fascination by Snakes by farold s. ferguson, f.L.s.

No error is apparently more rooted in the human mind than that which attributes to snakes a peculiar power called "fascination," which they are believed to be capable of voluntarily exercising. By this power they are said to be able so to paralyze their victims that they are rendered utteriy incapable of movement, and wait for the attack of a snake, or even go forward to meet it, in fear and trembling, but without any power of retaliation. Now any one who watches the behavior of small animals placed alive as food in the cages in which snakes are kept in captivity, in the hope of seeing this marvelous power in operation, will be grievously disappointed; chickens, rats, guinea pigs, rabbits, all move about with an utter absence of fear of the snakes. It may be said that all these are more or less domesticated animals, and have no hereditary dread of their natural enemy; but wild rats, placed in the cage of their particular pursuer, the rat snake of India (Zamenis mucosus), exhibit an absence of fear.

How, then, is it possible to account for the existence of belief in the possession by snakes of the so-called power of fascination? It may have arisen from several causes. An observer may come on the scene and find a number of birds mobbing a snake just as they will mob an owl or kite. The dashes of the birds toward the snake and their fluttering round it may easily be put down to the effect of the snake's glance, while they are, in reality, merely the attempts of the birds to drive off the intruder. A mother bird whose young are attacked will almost certainly behave in this way, and may herself fall a victim, not to the power of fascination in the snake, but to the force of her maternal feelings. Then again it has been noticed that a hen placed in a snake's cage will often go toward it and make a determined peck at the snake's tongue. Dr. Stradling has also seen a frog doing the same thing. Were this seen to occur in a wild bird, it might easily be put down to fascination. With regard to snakes that kill their prey by the injection of poison, it is even more easy to account for the appearance of the power, for they bite once and once only. The poison does not kill at once; the victim flutters on to a branch, it may be, or runs a short distance and stops, the snake watches it, the poison does its deadly work, and the bird falls. Any one who comes up not having seen the attack might in this way be readily deceived into im agining that it was the glance of the snake and not the poison that caused the victim to fall. It may be then the approach of an insectivorous bird or mammal who taking the movements of the snake's tongue for thos of a worm or insect, hopes to secure a meal. It may be the mobbing of the snake by the companions of a vic tim that has been seized, or of a mother whose nest has been robbed; it may be simply the effect of poison already injected before the observer has come upon the scene, or it may be simple curiosity.
These explanations should suffice to satisfy all those whose minds are not so filled with the love of mys tery as to make them prefer to believe in the possession of this power, simply because it is mysteri ous, and, therefore, to refuse a common sense expla nation.
In ninety-nine cases out of a hundred one or other of the above causes has been at work. What, then, of the hundredth case, and what about the fascination exercised on man, cases of which have undoubt ly been recorded? The explanation lies in the prob ability that it is a case of hypnotism; it may be said, however, this is giving up the whole argument and admitting that a snake can fascinate, only it is calling the power by another name and saying that it can hypnotize. But this is not so. The snake does not hypnotize, the person is self-mesmerized; the action is purely subjective. Every one knows the school boy trick of holding a cock with its beak pressed against a table and drawing a chalk line from the tip of the beak along the table. The bird will remain in the po sition it has been placed in, though perfectly free to move. Now the snake no more exercises the powe voluntarily than does the chalk line; position and tac tile impression here produce hypnotism, and visua impression can produce it likewise. It is an error to suppose will power has anything to do with the effect The matter has been taken up scientifically by the medical profession, especially in France, and it has been found that the hypnotic state of sleep or trance, or whatever it may be termed, can be produced by looking fixedly at the operator or at a coin or at the tip of one's own nose; it is notnecessary to go into the question of how the result is brought about, but ther is a physiological explanation. What happens then in the hundredth caseis that the man or the animal may be self-hypnotized by gazing fixedly at the snake the subject, being thus thrown into a sort of a trance making no attempt to move out of danger, unless

We may conclude, then, that the attribution to nakes of the power of fascination is due to faulty ob servation and the drawing of conclusions from incor rect premises.-Science-Gossip.

