THE RAWHIDE CANNON.

A curious weapon, nothing more nor less than a cannon chiefly made of rawhide, was subjected to official tests on July 23 by the Ordnance Board of the United States Army, at the proving grounds, Sandy Hook.
The gun consists of an inner tube of steel, around which is wound strips of rawhide to a combined thick ness proportionate to the intended charge which the gun is to carry. The exterior of the raw hide is terior of the raw hide is
then inclosed in a shell of then inclosed in a shell of
metal. The weapon when metal. The weapon when
finished has the general finished has the general
appearance of an ordinary cannon, but is rather more bulky.

The inventor of this curious piece of artillery is Mr. Frederici Latulip, of Syracuse, N. Y., and he obtained a patent for the invention June 26, 1894, invention June 26 , 1894 ,
from which we take the from which we take th
following description: following description:
"The principal object of the invention are to cheapen and lighten the construction of guns and gun barrels, and, at the same time, to sostrengthen the same that they will withstand the explosive wtrain of not only the usual strain of not only the usual
charge, but an unusual one.

A indicates a core of steel or other suitable metal, properly bored, and provided with exterior collars or bands, a, arranged at intervals thereon. These collars or bands are cast integral with the core and serve to prevent core and serve to prevent
end wise movement of the end wise movement of the
rawhide casing during firrawhide casing during fir-
ing. The breech portion of the core is provided with ing. The breech portion of the co
a series of step-like depressions, a.
B indicates a casing of rawhide surrounding the core, and before being applied is treated as follows, viz.: I take the ordinary dried commercial rawhides and soak in water sufficiently to soften the hides and remove the lime therefrom. The hides are then well fleshed and split into thin layers in any well known manner. These layers are then soaked in a bath of liquid ammonia for from ten to fifteen minutes, after which they are thoroughly dried and cut into strips of the width desired for winding. The strips are then subjected to a bath consisting of a solution of sulphuric acid and water, in about the proportion of one part of acid to thirty-two of water, for about ten minutes. A bath of pure naphtha might be substituted for the sulphuric acid one above mentioned with equally good results. The effect of either of these baths is to cause a drawing or exudation of the oil or grease contained in the rawhide strips. The result of this treatment leaves the strips, when they are dried, hard and tough like horn and possessing great strength.

loading the rawhide cannon.

pression, and, when filled even with the second step or depression, the winding is continued until both of aid steps or depressions are filled flush with the third step or depression, and so the winding continues until the breech is incased flush with top of the first collar or band, a. After all of the spaces or seats and depressions are filled with the spirally wound overlapping layers of
core breech solid, as shown, I may make it with a screw -threaded opening closed by screw-threaded breech block.
In constructing gun barrels I provide the core with the collars or bands as in the larger gun, and wind the awhide strips around the said core in the same manner, filling the spaces or seats first, and then continu ing the winding until the desired thickness is reached. After being turned down a shell is forced over the rawhide casing until its inner end abuts against the abutment, to which it is brazed or soldered.
By constructing guns and gun barrels as hereinbefore described, the tendency to transverse and ongitudinal rupture is reduced to a minimum, as the rawhide gives the necessary tension to withstand the explosive strain of the charge.
The principal claim is for a gun having a metallic core provided with retaining collars or bands an intermediate casing of rawhide and a metallic covering for said casing."
We give herewith two photographic illustrations of the new gun specially taken for the Scientific American. One repre sents the loading of the gun, in the other its ap pearance at the moment of firing. The New York Sun gives an excellent account of the proceedings, from which we abstract the following :
The cannon held its own against very severe tests It successfully withstood a pressure of 30.369 pounds to length of the gun until the required thickness is ob- \mid the square inch, but the recoil after this shot broke tained, after which the gun is placed in a suitable lathe the trail of the gun carriage, and further tests were and the rawhide casing is turned down to the desired impossible, no other carriages being available at the shape. When turned down to the required shape a time. The War Department ordered the Ordnance steel cap, C, having a groove or rabbet, c, is fitted Board to test the cannon carefully. In Syracuse they tightly over the breech portion of the thus far con- have been firing the gun privately in an armory for a structed gun, and a steel shell, D, conforming to the

taper of the forward portion of the gun is forced over the rawhide until its inner end fits snugly within the roove or rabbet, c, of the cap, where they are secure ogeth.
In place of the shell, D, I may provide the rawhide month past.
The principal clains made for the gun are that it is only about half the weight of an ordinary steel gun that it is just as durable and much stronger than a steel gun, and that any number of shots can be fired from it in rapid succession without heating it.
The rawhide gun used July 23 was not a very formidable affair. It was 5 feet 8 inches long and was of $21 / 2$ inches caliber. It was mounted on a most elaborate gun carriage, which Mr. Link, the assignee, in formed the board was made by the finest wagon maker in Syracuse. The gun weighs 456 pounds, and according to the diagram, is made up of layers of steel, rawhide, and copper wire. The bore is of steel, $3 / 4$ of an inch thick at the muzzle and $11 / 2$ inches thick at the breech. The rawhide is 1 inch in thickness at the muzzle and 3 inches in thickness at the breech

In winding the strips around the core, cement casing with a wire jacket, and instead of making the and is cut in 4 inch strands. Around the whole is is first applied to both surfaces to cause the successive overlapping layers to adhere, and this application of the cement also serves to soften the rawhide sufficiently to permit of easy and perfect winding : and in winding, the spaces or seats between the collars or bands are first filled. The strips are wound tightly around the core between said points in spiral overlapping layers until the spaces or seats are filled flush with the tops of the collars or bands, the cement, pressure and strain causing the layers to adhere firmly. After the spaces or seats have been filled with the rawhide layers, the breech is then wound in a like manner. In winding the breech I commence at the outer end and wind the strip around the core, tilling the first step or de-

FIRING THE RAWHIDE CANNON. wrapped two layers of heavy copper wire. The gun looked strong enough to stand an ordinary charge, but not an officer present believed that there would be much more than a few bits of the carriage left after the first of the heavy tests had been made. Mr. Link thought otherwise. He walked proudly around his cannon, giving it affectionate pats every now and then, and invit ing the officers to blaze away and "bust her if you can."
The officers smiled significantly at each other, and Lieut. Ruggles was ordered to go ahead with the tests. Those who had attended gun tests at the proving ground before noticed that this test was not to be made at the usual place. The gun had been hauled some distance inland, where there is a large
number of earth works, and had been placed about fifty yards in front of one of these huge piles of sand and earth, for reasons which became apparent later.
The workmen at the proving ground didn't seem to like the work of loading the gun, because. since it, was
built on the old-fashioned plan, they had to insert built on the old-fashioned plan, they had to insert powder and balls in the muzzle and then drive them home with a ramrod. All the modern guns are breech loaders, and the men at the proving ground don't loaders, and the men at he proving gro
know much about any other kind of guns.
There was considerable discussion as to the amount of powder to be used in the first test. Some of the of powder to be used in the first test. Some of the
officers wanted a heavy test for a starter, their idea officers wanted a heavy test for a starter, their idea
evidently being to settle matters quickly. It was finally decided to put a pound of ordinary powder in for a start, and when all was in readiness three lanyards were tied together so as to give the gunner plenty of opportunity to escape flying debris in the event of an accident. Then the whole force retreated behind t bank of sand so as to give the gun plenty of room.
The gunner concluded that he'd better get behind the hill, too, and so he secured another lanyard to the already long line and joined the rest of the company. At the word he fired, and although everything seemed to have gone all right, the officers didn't come out from behind the hill until the smoke had cleared.
They seemed surprised to see the gun intact. Mr. Link smiled while the Ordnance Board held a consultation with Lieut. Ruggles, after which a pound and a half of musket powder was placed in the gun. The gage showed after the first shot that the pressure had been 5,471 pounds to the square inch, while after the second shot it registered 16,840 pounds. The third shot, it was thought, would settle the cannon, and two pounds of powder were used, but it didn't, though the gage showed a pressure of 26,708 pounds to the square inch. The officers looked surprised, while Mr. Liuk in his joy got out his nerve tonic, took a drink, and then murmured to the Sun reporter :
"Ain't she a peach?"
There was nothing for the board to do but to go on with the tests, and they ordered Lieut. Ruggles to go on up to a pressure of 35.000 pounds. In order to obtain this pressure it was decided to use two balls, and while preparations for the shot were going on the members of the Ordnance Board slowly withdrew from the scene. Capt. Crozier found that he had some busi ness at headquarters, and Capt. Heath went up to
givesome instructions to a gang of men who were getting a 500 pounder ready for a test about half a mile away, while Major Phipps was suddenly overcome with thirst and started for the pump to get a drink. There was a rush for the sand bank when the gun was loaded, and when all hands were safely ensconced be hind it, the charge was fired. It didn't phase the cannon a bit, and it wasstill intact when the officers crept out from behind the sand bank again. The gage showed that the pressure with two balls had been only 26,345 pounds, and so it was decided to use three balls and two pounds of quick rifle powder.
Mr. Link looked a little bit anxious when this was an nounced, but told the officers to go ahead. The pres sure from this lastshot was 30,360 pounds to the square inch, and, though the carriage gave way, the gun stood it nobly. Mr. Link went into ecstasies over it, while the officers looked a little disappointed. The members of the Ordnance Board came around after the last shot, and seemed very much surprised to find the cannon intact. They said there would have to be some more tests, and there were wicked gleams in their eyes as they said it, but all Mr. Link did was to chuckle and say: "Blaze away all you like. That's what she's here for."
The cannon was perfectly cool after every shot. The average recoil was about six feet. Major Phipps said after the test that the gun to be of any use would have to be a breech loader. Mr. Link said that he could build a breech loader just as easily as a muzzle loader, and that it would be just as good. The tests will be resumed in a few days.

The Encyclopedic Dictionary.

The cheapening of books and all kinds of reading matter is one of the most distinctive features of the age, and as a consequence of the vastly increased range of subjects brought to the attention of the general reader, the ordinary dictionary does not nearly as well meet the wants of the public as it did a generation or two ago. It seems to be demanded that the
dictionary shall be also encyclopedic in its character dictionary shall be also encyclopedic in its character,
affording as concisely as possible a compendium of the world's knowledge, but without occupsing as wuch space or costing as much as would a large library. A dictionary of this class, recently brought out by the Syndicate Publishing Company, of No. 237 South Eighth Street, Philadelphia, Pa., is more fully described in our advertising pages. The work is con tained in four quarto volumes of 5,357 pages and over 3,000 illustrations, having over 250,000 words and treat ing of more than 50,000 subjects. It forms in itself a library for the busy man of affairs, the mechanic am bitious to advance himself in his line. or the student o apprentice just making a beginning; and, for the
purpose of iasuring for it a wide circulation among those of limited means, the publishers agree to send the whole four volumes to any subscriber on receipt of $\$ 2$ and an agreement to pay $\$ 2$ additional monthly until the sum of $\$ 16$, the price of the work, is paid. The work is a valuable one, and by this method of sale it is would otherwise be unable to become its possessors.

Natural History Notes.

Feeding Habits of Certain Birds.- Some interesting bservations have recently been made by the chief of the Division of Ornithology of the Agricultural Department concerning the habits of birds that are supposed to be enemies of the farmer. It is said to have been proved conclusively that 95 per cent of the food of hawks, owls, crows, and blackbirds consists of animals and insects that are far more dangerous to against crows is that they eat corn and destroy eggs, poultry and wild birds. Examination shows that they poultry and wild birds. Examination shows that they although 25 per cent of their food is corn, it is mostly waste corn picked up in the fall and winter. With regard to eggs, it was found that the shells were eaten to a very limited extent for the lime. Crows also eat ants, beetles, caterpillars, bugs, flies, and grubs, which do much damage. The cuckoos also are found to be very useful birds.
The Upas Tree.-During his recent stay in Java, Professor Wiesner ascertained some interesting par ticulars with reference to the celebrated Upas tree, Antiaris toxicaria. Contrary to the general impression that this tree is not uncommon in Java and the Sunda Islands, an impression manifested by the state ments in the leading text books, Professor Wiesne learned that the original specimen described by Leschenhault, has been felled, and in the whole of Java there were but three individual trees belonging to the genus and closely allied to A. toxicaria. O innocuous, and was therefore A. innoxia, Blume, a species supposed by many botanists to be only a variety of A. toxicaria. The second tree proved to be poisonous, one drop of the latex being sufficient to kill dog; the third has not been examined.
The tree has, however, been cultivated in the botanical garden, and there are now in the plantation at Tjikomoh about seventy specimens. Neither in the botanical garden nor in the plantation could any ill effects be observed, even after a person having bee
for some time in the neighborhood of the trees; so th accounts of the poisonous nature of the exhalations from it are much exaggerated. Dr. Burck has shown that the plant gives off no injurious vapors, and that the latex is poisonous only when it passes through a wound into the blood.

Sensitive Movements of Plants.-Dr. J. M. Macfar lane publishes the results of a series of experiments on the effect of colored screens on the sensitive move ments of leaves (Oxalis stricta and several species of
Cassia). He finds the exciting agents of the move ments to be certain of the light rays. When sensitiv plants are placed behind colored screens, the leaflets fold up as in the nyctitropic state, most strongly under red, less so under yellow, only feebly or not at al under green light; while under blue screens the leaflets remain open as in ordinary daylight. In all cases nyc titropic movements are accelerated behind a red screen,
not quite so strongly behind a yellow screen, while behind a green screen the movements practically coincide in time with those of exposed plants, and are beautifully regular in sequence; under blue light there is a distinct retardation of the normal nyctitropic period. Up to 38° C., or even 43° in some species, heat rays appear to fail in stimulating the tissues. The general result of these experiments is that the heat rays, the less refrangible rays, and the more refrangible rays, are all efficient up to a certain point in inciting nyctitropic movements. Orange, yellow, and green screens to the protoplasm, whether in the form of pigmented walls, pigmented cell sap, or chlorophyl, are of a protective character, and permit the normal functions to be carried on unimpeded by the injurious action of

Poisonous Property of the Shrew Mouse.-Both in England and in Germany, popular tradition in rural districts attributes poisonons effects to the bite of the ommon shrew mouse. Scientific naturalists have discredited this belief, but the recent observations of Remy St. Loup, published in the Revue des Sciences Naturelles, tend to show that this popular reputation
for toxicity may not be groundless. He observed that cats were afraid of the animal, and having captured a specimen placed it in a cage with a common mouse The latter, although twice the size of the shrew, fled from its companion in iright, but ne vertheless was bitten in the leg by its fellow prisoner. The bitten mouse spcedily developed abnormal symptoms, and on releasing it, its hind legs were found to be perfectly par lyzed. It was enveloped in cotton wool, but the nex morning was found dead without having moved from
where it was placed. Considering that the wound
caused by the bite of the shrew was very small, it would appear that the old tradition as to the poisonous properties of its bite, at least as regards the domestic mouse, is well founded.
Fecundation of Flowers by Insects.-Mr. H. G. Hubbard describes in Insect Life a new case of fecundation of flowers by insects. It concerns a species of Philodendron, of the family of the Aroids, which is found in the Antilles. By its structure, the flower would seem especially adapted for direct fecundation were not the male organs tightly inclosed in the folds of the spathe. The fecundation is effected by coleoptera of the genus and species Macrostola lutea, which in pairs perforate the spathe, wherein the female deposits her eggs at the apex of the spadix. The young soon hatch, and detaching the spathe from the spadix, allow the pollen to fall upon the female organs situated beneath. The entire interior of the flower is very humid, so that all the young are soon covered with a paste of pollen which they carry to the neighboring flowers after the flower has opened. Such opening is due to the parent insects. The spores of fungi enter through the very small aperture made by the insects, and, developing, eat into the spathe, which is also soon attacked by the larva of a fly and by many other insects.
Amount of Light Favorable to Plants.-Herr J. Wiesner has come to the following conclusions on this subject: Those plants which, like Lemna, receive an unlimited amount of light on all sides, do not produce a maximum of organic substances. In by far the greater number of plants the amount of light absorbed is diminished by the form and position of the organs. In trees this amount is reduced, in the peripheral portion of the foliage, to one-half or one-third, in the central portion to as little as one-eightieth of the possible amount, of light. All luxuriant vegetation is produced under conditions of comparatively feeble, and espe cially of diffused, daylight. Intense light is of no ad vantage to a plant growing in unfavorable conditions, especially in poor dry soil. Although the actual a mount of light enjoyed by trees and shrubs is greater in tropical than in temperate regions, yet in the latter the leaves of deciduous woody plants receive a nore intense light than those of the former at one particula period of the year, namely, at the commencement of the period of vegetation.

The Color of Flowers.-Schubler has found that, out of a thousand flowers, 284 are white, 226 are yellow. 220 are red, 141 are blue, 75 are violet, 36 are green, 12 are range, 4 are browi, and 2 are black.
White flowers pecome proportionally more numer ous in measure as one advances toward the north.
Distribution of Marine Fishes.-Mr. Browne Goode in a paper recently read before the Society of Biology shows that the ideas admitted in regard to the distri bution of deep water fishes are erroneous. Contrary to the opinion usually held, no separation in the horizontal strata is possible. Nor is it any more accurat to say that the marine fauna of great depths is the same for all parts of the world.
The application of the method of percentages leads Mr. Goode to distinguish 11 characteristic regions and 2 subregions. These are as follows: (1) Northern Atantic; (2) Eastern Atlantic with Mediterranean sub region; (3) Virginian Northwestern Atlantic with Mexican subregion ; (4) Sonthwestern Atlantic or Bra zilian region; (5) Northern Pacific ; (6) Eastern Pacific (7) Northwestern Pacific; (8) Polynesian ; (9) Zeland ian; (10) Antarctic region; (11) Indian region.

Royalties.

One of the incentives for inventors to secure patent neir inventions is the possibility that a handsome ncome may be derived therefrom in the shape of roy alties. In the art of photography, where the manu acture of sensitized dry plates on a large scale has come to be an extensive industry, successful plate-coat ing machines command a good royalty. An item in the English journal Optician states that Mr. B. J Edwards rents out on royalty twenty of his patented plate-coating machines at a yearly rent of $\$ 500$ per ma chine. One company uses five of them. Mr. Edward was a photographer, knew the needs, and applied his inventive ingenuity, finally accomplishing a successfu result. How many thousands there must be, having inventive talent, who could improve the machinery in the lines of industry they are familiar with, to the bet erment of mankind generally and themselves indi vidually.
The example of Mr . Edwards is only one of many where success is attained in the invention of practica and needful improvements, and should inspire other to make use of their inventive talents.

A New Anthracite Vein

Anthracite coal in a vein four feet thick has been discovered on the Line Mountain, which bounds Schuylkill and Northumberland Counties. The vein is on he south side of the mountain, near Pitman, in the former county. This is a surprise to coal experts, for t is five miles south of the Shamokin coal basin, and it is five miles south of the Shamokin coal
was believed to $\mathfrak{l e}$ outside the coal district.

