A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Srientifir smmerian.

ESTAABLISHED 1845.
MUNN \& CO.. Editors and Proprietors. PUBLISHED weEkly at

No. 361 BIROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year. for the U. S. Canada or Mexico.
One copy, pix moths for the U. San Conada or Mexio Remit ty postal or ex press money order or by bank draft or check The scientific American supplement

uuilding Edition of scientific American.

Export Edition of the Scientific American,

 tit Tre safest may to remit is by postal order. express. money order
dratt or bank cbeck. Make all remittances payable to order of MUNN (TV. Readers are specially requested to notify the p
any failure. delay, or irregalarity in receipt of papers.

NEW YORK. SATURDAY, DECEMBER 28, 1895.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT

No. 1043.
For the Week Ending December 28, 1895.
I. Blograph P-Calvert Vaux.-Life of the great landscape archi-

 v. Horticulture.-Nef York Cut Flower Company.-Curinus
 VIH. NAVAL ENGINEERING-Small-SpanIsh Gunboats,-Gun-

VIII. PHotograph P.-Develioptng Tables.-A contribution from
 expenses of the war now in progress

 XII. TECHNOLOGY - Bronze PrIntinn Colors - By A.MM.GARANCE

THE CRISIS.

andic anerican occupies a unique posito whe press of the United States. It is devoted peace. It presents a view of the world of science and of practical achievement to its readers, the creative side of mankind having it as an exponent. In political economy sound doctrine regards destruction of life and of property as a world's loss, not as the loss only of the persou or persons directly affected. The war bet ween the States, now that thirty years have elapsed since its conclusion, still plays its baleful part in impoverishing the nation. Duriug a part of its continuance its expense was put at one million of dollars per dien. Now it costs nearly one half of that in one single item of revenue expenditure.
The blue and the gray are again united; the evil passions a wakened by war have sunk to rest ; but the financial effects are still felt and will be felt for years to come uniess they are overwhelmed by the weight of new misfortunes which may be brought upon us by another war. For, like a lightning stroke out of a clear sky, an issue is suddenly created between the United States and England, which, incredible as it would have seemed a week ago, may lead to war. I it does, the conflicts of past generations will sink into insignificance colupared with the new one, and ever quarter of the globe will be involved in a struggle which will put back the cause of civilization and of independent government to an extent which can be measurable only hy centuries.
Out of the overgoverned nations have emerged two powers which represent the greatest freedom of gov ernment. These two nations are objects of jealousy and dislike to the rulers of almost despotic type which are over the older countries. In England. as in the United States, there is true representative government The maintenance oi the royal family is merely the figurehead of a monarchy and need rank as little wore than as a harmless extravagance. The real government is as free and as representative as ours. If the two great powers which are representative of the highest degree of freedom in governmental affairs undertake an internecine war, it means the relegation of mankind to a still firmer grasp of despotic or imperial rule.
England in the past has been very aggressive. Șhe has acquired great colonies by methods which her own iistorians and moralists condemn. Recently she seems to feel that she has enough, aud her methods have changed, for the England of to-day is far different from the England of fifty years ago. Any accessions of territory she may contend for are sought by far more moderate methods than of old.
Some seventy years ago the Monroe doctrine was enunciated by the United States. This doctrine, op posing the increase of the territory of any European government on the western hemisphere, seems to have been justified at the time by the events in Europe. To-day, pushed to its utmost development, it would make us the guardian of almost all the western hemisphere. We should logically feel that we are at the beck and call of every neighboring South American republic to fight its battles against European powers. This is a pretty serious burden. It may lead to congratulatory messages from the countries whose cause we espouse, but it will act as a constant menace to our peace
But the Monroe doctrine never will or can lead us into a more fatal consequence than a war with Eng land. Our every iuterest is so tied up with her that whatever our animus may be, the contest would have the aspect of a civil war. The similarity of natures, the identity of language, the ties of blood relationship between the two countries, the friendship engendered by the great amount of intercourse which has of late years obtained bet ween the two lands, are elements which would give to any contest the nature of fraternal strife. The business aspects of the case are no less serious. Our vast exports are sold to Eng.
land and are carried in English ships. She is our great customer for cereals and cotton and other products in which we act as almost the world's purveyor. If a war occurs between us and our best customer, every blow we strike at her prosperity is a blow at our own The first week of the war would do incalculable mil lions of damage; the succeeding weeks would see re publican and representative government made contemptible in the eyes of the world, while lives and property would be annihilated in battles of unimagined destructiveness.
The simple message of the President, which message seemed to threaten war; has already had far-reaching consequences. The fall in prices of securities and in produce represents an enormous aggregate. This would tend to bring people to their senses, unless by the perversity of human nature the misfortune be seized upon as an excuse or a reason for incurring others-a species of desperation which may find a pre cedent easily enough in the workings of human nature The finances of the United States, under what seemed to be conservative treatment, were progressing satis
the issue of bonds, and new issues were contemplated. All this went on smootbly because of the high credit of the country. Now, a week has changed it all. The further issue of bonds, in proportion as it becomes more difficult, appears more necessary: The very hopes of the Administration are defeated by its own act. The Christmas season of 1895 will be long remembered by those ruined in the crisis brought about by needless precipitancy. Already in the impairment of the value of securities and in the injury to the country's credit our standing, in a possible war, has been impaired.

the naval resources of the united states

and the british empire-a comparison.

Captain A. Mahan, of the United States navy, has pointed out in his celebrated work on the influence of sea power in history, that a preponderance of naval power has been the controlling element which has ul timately brought victory to the nation that possessed it. His conclusions are largely based upon the Euro pean wars of the time of N elson, and the late civi war in America.
In view of recent startling and ominous develop ments in the diplomatic relations of this country and Great Britain, it will be, we think, timely and inter esting to inquire into the present status of the navies of the two countries, and also to inquire as to what are the battleship-building resources possessed by each. It should be noted that in the subjoined tables no account is taken of ships that possess a speed of less than $71 / 2$ knots per hour. or that are armed with obsolete smooth bore guns. Ships that are building, but within measurable distance of completion-such, for instance. as the Iowa-are included in the follow ing tabulation:

irst-class battleships of the line.
 Total number.
 Average dis- Average placem nt
 United States 4 ship
 10,563 tons. 16.42 knots.
 Great Britain. 29
 econd-class battleships.
 $\begin{array}{llllllllll}\text { United States } & 3 \text { ships. } & 5,703 \text { tons. } & 16 \cdot 7 & \text { knots. } & 12 \text { in. } & , 17,110 \text { tons. } \\ \text { Great Britain. } 12 & \text { ". } & 9,502 & \text { ". } & 13 \cdot 63 & \text { " } & 14 \text { to } 24 \text { "" } & 114,030 \text { " }\end{array}$ United States 5 ships third-Class battleships.
 United States-The 6 knot boats ar med with smooth bore guns are reckoned Great Britain. 13 ships. absolete.
 Total battleseips of all clasers. United States......... 12 shipss, with a total displacement of 81,404 tons

In estimating the relative strength of the two navies from the above table. it must be borne in mind that the basis for comparison should be the total displace ment, rather than the total number of ships. Displacement is the capital which the naval designer has to go upon; and if he make a judicious distribution o weights, he will always produce the more effective fighting machine out of the bigger ship. If a 10,000 ton and a 15,000 ton ship carry the same armament the larger vessel will carry that armament more steadily, more speedily, with greater command, and, owing to the wider separation of the individual gun stations, with less exposure to disablement of guns and crew. Estimated on this basis, Great Britain possesse a superiority of fighting power in first-class ships-of the line of 9 to 1 . In battleships of all classes the superiority is $71 / 2$ to 1 .
pirst-CLASS ARMORED AND PROTECTED CRUIRERS
(Of 20 knots speed and apward.)

United States.......... 31 ships, with a total displacement of 99,421 tons
Estimated, as before, on the basis of displace ment, this table shows a preponderance for Great Britain in cruisers of $51 / 2$ to 1 .
Of merchant steamers which are built to meet the quirements for conversion into cruisers, the United States have 4 and Great Britain 26.

By displacement, the preponderance in torpedo

Summing up the totals for battleships and cruisers combined, we get :
United States......... 43 ships, with a total displacement of 180,825 tons.
Great Britain $208{ }^{4}$ "
Which shows Great Britain to possess a superiority in fighting ships of all descriptions of $6_{1}^{\frac{4}{15}}$ to 1 .
In the event of a war with that country, these are the odds against which we should have to contend at the outset.
As against this unpromising opening it will be urged that we are a resourceful and energetic people, and that we should quickly create a navy. To this it must be answered that modern navies are of slow growththey are not created. The modern battleship, costly and intricate, puts a heavy discount upon mere resourcefulness and energy, of which we have abundance, and a heavy premium upon gun, ship, and armor building plant, of which, for the magnitude of the task in hand, we should find that we possessed an altogether inadequate supply. With every factory, mill and shipyard working at full blast, it would take from seven to ten years to cancel that preponderance of $6{ }_{1}^{4} \frac{4}{0}$ to 1.
There is no sentiment in statistics.
It is certain, moreover, that Great Britain would steadily add to her fleets as the war progressed; and with her great shipbuilding facilities she could float six ships to our one, as the following facts will show : In reply to inquiries instituted by the British Admiralty last year to ascertain the extreme warship building capacity of the private yards, it was found that, in these firms were given a free hand as to the details if these firms were given a free hand as to the details
of the designs, they could build another navy, equal in fighting strength to the whole existing British navy, in from t wo to three years! To this must be added the building capacity of the government dockyards and shops. The astounding resources revealed by this investigation call for no elaboration on our part to show that Great Britain could rapidly increase her preponderance of naval strength, if challenged to do so.
The fact that European diplomats seem disposed to take the British view of the question at issue makes it highly probable that, in the event of hostilities, we
should have to engage this colossal navy, with the power of reduplication which lies behind it, unaided.
Incidentally, in closing, we would remark that the ink is scarce dry upon the paper in which our general in chief, Neison Miles, has just told us that the very opening of hostilities with a great naval power would see every sea-coast city, on the Atlantic and Pacific, subject either to the humiliation of an indemnity or to the horrors of bombardment.
In making the foregoing comparison it is assumed that the United States would not submit to a conflict merely defensive-that her enterprise would soon cause the field of naval operation to become conterminous with the shore lines of both hemispheres. The estimate consequently assumes that the total force of both fleets would be available.

THE UNITED STATES BUREAU OF STEAM

Engineer-in chief Geo. W. Melville, in his annual re port for 1895, recommends that the sum of $\$ 300,000$ be spent in providing the cruiser Atlanta with new machinery and altering her from a single to a twin-screw ship.
According to Brassey's Naval Annual, the Atlanta is a steel cruiser of 3,189 tons displacement and 16.33 knots speed. She carries two 8 inch guns, six 6 inch, two 6 pounder quick-fire guns, two 3 pounder quick fire guns, and eight smaller quick-fire guns.

It seems that, though her present engines are of an obsolete type, the hull is "an excellent one, and well worth new machinery." With machinery of 5,400 horse power (her present horse power is 3,511), of the same type as that in the newly constructed Marblehead, the report states that we should "then possess a cruiser equal to any of her class afloat." The new machinery would weigh 142 tons less than the old; it would enable the ship to carry more coal ; and it would give her 2 knots higher speed, equivalent to between 18 and 19 knots an hour.

The same changes are recommended for the Boston, a sister ship. The Chicago is at present being re engined.

In these days of high speed cruisers, the above addition of 2 knots to the speed of these boats will prac tically add two new ships to our navy.
The value of liquid fuel for marine purposes is being determined by a series of tests on one of the torpedo boats of the Maine. It is recommended that one of the gunboats building at Newport News be made use of to carry out these experiments on a larger scale. Naval designers the world over have for some time past recognized the fact that if the use of liquid fuel can be rendered practicable in the navy, it will largely
increase the radius of action of seagoing ships. To the United States the question of the use of petroleum fuel is of double importance, both on account of the abundance of our supply of this combustible and even

The range of action of the modern warship is limited by her coal capacity and the distance of her field of operations from the nearest coaling station.
A nation which possesses few of these must provide its ships with specially large bunker space, as in the case of the cruiser Columbia. Any device which will enlarge the fuel endurance of warships will be specially valuable to the United States; and there is nothing in sight to-day which would so effectually do this as the substitution of oil for coal in marine boilers.
Speaking of the use of water tube boilers in the navy, Mr. Melville recognizes the necessity for a boiler lighter than the well known Scotch boiler; and while admit ting that many types of the water tube system have proved successful on shore, he is of the opinion that "no single type has yet made its appearance which can be regarded as an altogether satisfactory substitute for the Scotch pattern."
In view of the fact that the two cruisers Powerful and Terrible, of 14,000 tons displacement, now building for the English navy, are to be furnished with boilers of this type, the above statement by so distinguished an authority issignificant. Mr. Melville evidently considers that for use in large ships the water tube boiler is yet in the experimental stage; and his opinion is shared by many naval experts on the other side, who strenuously opposed their adoption in these two costly ships.

THE JANUARY SKY.

Jupiter is still the only planet conveniently situated or observation. He rises now about 7 o'clock in the evening, so that by 10 o'clock he is well above the roofs and trees. The position of this planet among the stars is very interesting just now. On the first of January he is quite close to the fourth magnitude star δ Cancri, and a little south of the Beehive cluster in Cancer. Not only is a means thus offered by which those unacquainted with the stars may, with certainty, recognize this curious stellar region, but the picturesqueness of the view is increased, and a more striking idea of the profundity of space may be formed when one sees the united light of hundreds of distant suns outshone by the reflected rays from a comtant suns outshone by the reflected rays fr

Yet, although Jupiter may be called insignificant when compared. with a sun, he is anything butinsig nificant when studied in his own character of a giant planet. It is an impressive thing, to any thoughtful person, to look upon a globe 1,300 times as large as the earth, and contemplate the bare possibility of its being inhabited, either now or at some future time. If I were asked, "What is the wost instructive sight that the telescope reveals in the heavens?" I should be
strongly tempted to reply, "The planet Jupiter, with his circling moons." There-and it is a spectacle not reserved for the possessors of the largest telescopesone perceives the law of gravitation operating visibly on an enormous scale; one sees globes larger than the moon tracing out elliptical orbits so swiftly that a
single evening's observation plainly reveals their change of place; one beholds eclipses with their mechanism displayed as the finest model could not do it ; and the play of shadows on the face of another planet; and the movement of clouds; and the alignment of zones, shading off from a brilliant equator to
dusky poles; and the rapid turning of a vast world upon its axis of rotation.

In reference to this rotation, I may remark that now, when the planet is visible the entire night, an excel lent opportunity is presented to see one complete turn of Jupiter on his axis. Let the observation begin at 8 P. M. and end at 6 A. M. Between those hours the observer will have seen all sides of the giant planet in succession, and when he leaves the telescope the face of Jupiter will have resumed the appearance it had at
the time his eye was first applied to the tube. And in the meantime he will have beheld many a scene that has puzzled the astronomers, for the surface of Jupiter is strangely and wonderfully variegated.
Venus is in Libra near Scorpio, and rises on the 1st of the month about 4 o'clock in the morning. At the end of January she will be in Sagittarius, rising about 5:30 A. M. Her reign is passing and will not be reumed until she reappears in the sunset next autumn. Mercury is in Sagittarius at the opening of the month, too close to the sun to be observed, but about the 23d when he is in the eastern part of Capricorn, he will be visible in the evening, more tban 18 degrees east of the sun.

Mars is in Ophiuchus, moving toward Sagittarius and on the 1st rises about $6 \mathrm{~A} . \mathrm{M}$.
Saturn remains a few degrees east of α Libræ, rising on the 1st about $3 \mathrm{~A} . \mathrm{M}$. and on the 31st about 1 A . M. But there are few who will care to break their rest ven for the sake of beholding that most singular of elestial objects, a planet with rings, especially since n the spring, Saturn will rise early in the evening.
Uranus is in Libra, not very far east of Saturn, and Neptune is in Taurus, well situated, but too faint for satisfactory observation, even with a telescope of coniderable power.
The moon is wauing when Jancury opens, although
but just past the full by a few hours. New moon occurs late in the afternoon of the 14 th ; first quarter on the evening of the 22 d in Aries; full on the morning of the $30 t \mathrm{t}$ in Cancer.
Perigee occurs an hour before midnight on the 3d, and apogee about the same hour of the night on the 19th. The moon is in perigee for a second time this month on the evening of the 31st.
The lunar conjunctions witb the planets occur as follows: Jupiter on the 2d justbefore midnight (the planet will be less than 2° south of the moon, a pretty sight); Saturn on the evening of the 9th, invisible; Uranus on the worning of the 10th; Venus on the morning of the 11th; Mars on the morning of the 12th; Mercury on the morning of the 16th, invisible; Neptune on the morning of the 26 th , invisible; Jupiter (second time), before sunset on the 29th.
The wonderful variable star Algol, in Caput Medusæ, is now well situated for observation. It will be at a minimum on the 9 th, half an hour after midnight. The observer should begin to watch it, using either the naked eye or an opera glass, early in the evening, noting the gradual diminution of its light as compared with the small stars near it. It remains at minimum but a few minutes, although tyree or four bours are required for it to regain its full brilliance. Another minimum occurs on the 11th, at 9:23 P. M.
The star Myra, in Cetus, which is as remarkable among long-period variables as Algol is among short period ones, is now brightening. It began to be visible with a field glass about the middle of December, and it will probably increase in brilliance for about two months. When brightest, it is sometimes of the third magnitude.
An occultation of the first magnitude star Regulus, or α Leonis, by the moon, will occur about ten minutes before 11 o'clock P. M. on the 3d.
The earth arrives at that point in its orbit which is nearest the sun at 1 o'clock on the afternoon of the 1 st Garrett P. Serviss.

TO READERS AND SUBSCRIBERS.

The present number of the Scientific American brings to a close the labors of the year, and the next issue opens a new volume, a fresh page in the history of our work. To our many readers and friends, in all parts of the world, we offer hearty thanks for their generous support in the past, and we hope to merit the continuance thereof by faithful endeavors in the future.
The commencement of the year is the time when nearly all subscriptions fall due, and we trust our subscribers will be prompt in forwarding their remit tances, thus avoiding the loss of numbers by the crossing off of their names. We earnestly hope they will send us, along with their own dues, the additional subscription of some friend or neighbor.
For this festive season it would be difficult to select more desirable or appropriate gift than a year's subscription to the Scientific American publications. In the office, the shop, the library, the household, the Scientific American is always a welcome visitor, at ractive, instructive and useful for every one.
The terms for the Scientific American remain as heretofore- $\$ 3$ a year, postage paid by us. Scientific American Supplement $\$ 5$ a year. Both papers combined, $\$ 7$ a year. Building Edition, $\$ 2.50$ a year. All three publications $\$ 9$ a year. Address Munn \& Com pany, publishers, 361 Broadway, New York.

Cycle Notes.

Two bicyclists, Theodore and Eddie Kraguess, ar rived in San Francisco a week ago, having ridden on their machines all the way from Minneapolis. The route they traveled was 2,856 miles long, and they rode it in thirty-eight days, an average rate of seventy-five miles a day. Some days they rode more and some less, and occasionally they rode until nearly midnight in order to keep up the average. They did not make the trip for money or glory, but for pleasure. They had very trying times on the windy prairies, the sandy deserts, and the snow-covered mountains, and will not try to ride back again. They carried a tent, blankets, cooking utensils, and also food on the long desert stretches, although in the main they re ied for shelter and food on the farmers.
It is said the Bavarian Minister of War has authorized the purchase of 9,000 cycles which are to be used for the infantry and sharpshooters.
A proposition has been made recently by bicycle riders to several agents and manufacturers of bicycles that the manufacturers get together in a convention and agree to reduce numerous parts of their different machines to standard proportions.
In some respects the makers have been obliged already to agree upon standard sizes or parts, such as rims and tires. There is no reason why a similar agree ment should not be reached regarding the fittings of alwost every part, so that any repair shop, supplied with a reasonable quantity of standard repair parts should be able to put any make of machine in order at short notice.-N. Y. Sun.

A STEAM OMNIBUS IN LONDON, 1833.

The accompanying illustration, for which we are indebted to the St. James's Budget, represents the steam omnibus Enterprise, built for the London and Paddington Steam Carriage Company in 1833. This horseless carriage, suggestive as it is of many of the recent ttempts to attain a practical moto attempts to attain a pract
the various efforts made the various efforts made
to utilize the steam engine to utilize the steam engine
in its early days, before the development of the rail way system had been marked out on compara tively fixed lines.

THE ELECTRIC SELF PLAYING PIANO.

We illustrate in the pres ent issue an electric apparatus for attachment to any ordinary piano, ena bling it to be played by electricity without the in termediation of any per former. The characteris tic features of the appli ance are found in its sim plicity, its capability of attachment to any piano without injury to the same, and its use of stan dard perforated music thus placing at the disposal of its possessor a practi cally unlimited and thor oughly up to date musical library.
Directly under the key board is attached the music holder, consisting of the rolls upon and from which the perforated mu sic sheets are fed. Electric contacts are provided for each note. which con-

A STEAM OMNIBUS IN LONDON, 1833.
can be played again. This ordinarily, in the past type of automatic instruments, has been effected by hand, but this apparatus does that work also automatically. When the end of the piece is reached, the detent seen at the back of the music is caused to release the end of thecarrier, which drops, caused to release the end of thecarrier, which drops, verse motion, and in les than a minute the piece of music is rolled back on its original roller, ready to be put away in its case or to be played again.
The tempo of a piece is fixed by shifting a belt which works on two cone pulleys. In this way the speed can be regulated with the utmost delicacy, the coning of the pulleys preventing all sudden change of time. The motor is seen in the base of the piano. It consumes from five to ten amperes at a pressure of four volts, ten amperes being required when several notes at once are sounded, as in chords The apparatus can be put in any piano without moving from the house, and the motor can be op erated directly from the electric house supply or from a primary or second ary battery.
This wonderful piano is manufactured and sold by the Electric Self-playing Piano Company, 333 West 36th Street, New York.

The London Police.

The report of the Com tacts operate through the perforations in the music \mid holder can oe seen, and one of the electrical contacts \mid missioner of Police of the Metropolis for 1894 shows sheet, so that each perforation closes an electric circuit. From the electric contact wires run to a series of electric magnets placed below and spaced from each other exactly as are the keys of the instrument, one magnet corresponding to each key. When the current passes corresponding to each key. When the current passes a magnet attracts its armature, this occurring of course when one of the
closes the circuit. A small sectional drawing shows in section the apparatus by which the work is done. At the bottom of the sec tion is seen the end of a long brass drum which runs across the bottom of the apparatus and which is kept in constant rota tion by an electric motor; this drum is also shown clearly in the perspective view. Extending from the end of the armature of each magnet is a metal friction shoe, the lower end of which forms a segment of a circle and is arranged to be brought in contact with the brass roller. A piece of rawhide is stretched over and cemented to the outside of the segment. When the armature is depressed, no direct effect is produced upon the action of the piano. All the depression of the armature does is to bring the rawhide-covered face of the circular segment into contact with the rapidly rotating drum. At once the fricion throws the are forward. From the upper end of the metal shoe a short arm projects at right angles, like the arm of a bell crank. From this a vertical striker arm rises and presses against the inner end of the key. It is evident that as the shoe is thrown forward the striker rod is forced upward; this raises the inner end of the key, depressing the outer end exactly as a performer would do, and

ELECTRIC SELF-PLAYING PIANO.

that the authorized strength at the end of last yea \begin{tabular}{l|l|l}
mall central contact roller. Within the short width of \& was 15,216 . The number available for service, exclusive

he sheet of music are contained all the electric con- \& of those specially employed, whose services were paid

acts, of which only one is shown in the sectional \& for, was 13,497 . The Metropolitan Police district enn-

fiew. In operation, the music is wound off of one \& braces over 688 square miles. The mean ratable value

oller and on another. When the roll of music \& of this area was $£ 37,913,956$; but of the enormous

mall central contact roller. Within the short width of \& was 15,216 . The number available for service, exclusive

he sheet of music are contained all the electric con- \& of those specially employed, whose services were paid

acts, of which only one is shown in the sectional \& for, was 13,497 . The Metropolitan Police district en-

fiew. In operation, the music is wound off of one \& braces over 688 square miles. The mean ratable value

oller and on another. When the roll of music \& of this area was $£ 37,913,956$; but of the enormous

mall central contact roller. Within the short width of \& was 15,216 . The number available for service, exclusive

he sheet of music are contained all the electric con- \& of those specially employed, whose services were paid

acts, of which only one is shown in the sectional \& for, was 13,497 . The Metropolitan Police district en-

fiew. In operation, the music is wound off of one \& braces over 688 square miles. The mean ratable value

oller and on another. When the roll of music \& of this area was $£ 37,913,956$; but of the enormous

mall central contact roller. Within the short width of \& was 15,216 . The number available for service, exclusive

he sheet of music are contained all the electric con- \& of those specially employed, whose services were paid

acts, of which only one is shown in the sectional \& for, was 13,497 . The Metropolitan Police district en-

fiew. In operation, the music is wound off of one \& braces over 688 square miles. The mean ratable value

oller and on another. When the roll of music \& of this area was $£ 37,913,956$; but of the enormous

mall central contact roller. Within the short width of \& was 15,216 . The number available for service, exclusive

he sheet of music are contained all the electric con- \& of those specially employed, whose services were paid

acts, of which only one is shown in the sectional \& for, was 13,497 . The Metropolitan Police district en-

fiew. In operation, the music is wound off of one \& braces over 688 square miles. The mean ratable value

oller and on another. When the roll of music \& of this area was $£ 37,913,956$; but of the enormous
\end{tabular} iew. In operation, the music is wound off of one \quad of this area was $£ 37,913,956$; but of the enormous is exhausted, it has to be rerolled before the piece lactual value of the property in charge of the police it is impossible to form any estimate. The report re fers to the steady decrease in the number of felonies. While the population ex ceeded $6,000,000$, the pro portion of crimes agains property per 1,000 of the population was but $3 \cdot 106$ The cases of murder wer but 13 , which is considera bly below the average; and of these, 7 were due to in sanity.

The cases of attempt to murder, wounding etc., rose to 243 , which is unusually high. The total number of crimina offenses of all kinds re ported to the police was 20,970-a decrease of 497 The apprehensions num bered 14,902. As regard police work generally, in cluding crime, the numbe of persons apprehended was considerably in exces of any previous year, and as compared with 1893 there was an increase of 3,346 . The summary con victions showed an increase of 1,948 , and were more numerous than eve before.

The Brooklyn Inatitute

 Museum.The corner stone of the great museum building of the Brooklyn Institute of Arts and Sciences, on the Eastern Boulevard, Brooklyn, N. Y., facing Prospect Park, was laid on December 14 by the mayor of the city with appropriate ceremonies.

BICYCLE POWER AIR PUMP.

The illustration represents a highly efficient apparatus more especially designed to serve the convenience of bicycle manufacturers for inflating pneumatic tires, and for which a patent has recently been granted to Frank N. Stevens, of the Davis \& Stevens Manufacturing Company, Seneca Falls, N. Y. The pump is double acting and has two oscillating brass cylinders, each two by eight and one-half inches and each screwing at its lower end into a head with trunnions turning in bearings on the base, there being in the bottom of each head a packing ring which makes a very tight joint to prevent leakage. The piston rods, extending through the open ends of each cylinder, connect with

THE STEVENS POWER "CYCLONE" PUMP.
crank disks on a driving shaft on which are tight and loose pulleys eighteen inches in diameter, the disks having their wrist pins set opposite each other, so that the pistons compress the air alternately to insure a continuous operation of the pump, which is aiso adapted to be operated by hand power. Each piston is formed with a cup of leather or rubber, into which fits an expansible disk or spreader with slotted flaring sides, in which washers are held by a nut screwing on the lower threaded end of the piston rod, so that the sides of the cup are made to form a close contact with the inner surface of the cylinder. The valve casing at the bottom of each tube has an outlet valve communicating with a tube which is connected near its middle with a tank or reservoir in which the compressed air is stored, this tank being made of different capacities and being provided with pressure gage, safety valve and stop cock. The construction of the pump is such that any part may be readily repaired in case of wear or injury.

AN AUTOMATIC BELT SHIFTER.

The illustration represents an improvement in beltshifting devices where the operating shaft has a central fixed or drive pulley, a pair of loose pulleys at each end, and a straight and a crossed belt, the shifting bar being automatically moved by the running machine. The improvement has been patented by George \mathbf{A}. Smith, and is being introduced by Cohoke Woodenware Manufacturing Company, Cohoke, Va. With the ordinary belt shifting devices the throw is frequently insufficient, and sometimes, when shifting the crossed belt from the loose to the fixed pulley, both belts will be left upon the loose pulleys, and the improvement provides a shifting mechanism which, when

SMITH'S AUTOMATIC BELT SHIFTING MECHANISM. operating rod or bar on the machine, stores up power sufficient to cause the shifting bar to move continuvibrating member, which has on its outer end a correcoil spring with the operating rod or bar on the frame by the carriage at the end of each reciprocal move ment. Eyes at the ends of the coil spring afford means for adjusting the tension of this yielding connection, by which power is stored up to continue or complete the shifting action of the shifting bar, and make positive the shifting of the belts. The smaller bar in full lines, the dotted lines indicating the posiped, the fast pulley having been freed of either of the belts.

Fire Lalls at Sea.

One of the most remarkable electrical storms at sean fact that a cargo of Spanish iron ore passed through it, was experienced by the British steamship Mercedes, which arrivMercedes, which arriv-
ed at this port recently ed at this port recently
from Bilbao. On the from Bilbao. On the Grand Banks of Newfoundland during the nights of December 3 and 4 the ocean appeared like a mighty mass of flames or an endless stretch of prairie fires. Balls of electric fire hissed and exploded in all directions and dart ed among the vessel's masts and rigging.
The Mercedes' escape from going down on December 1 seemed little short of a miracle. She was struck by a south - south west gale, which was accompanied by seas rolling fearfully high. During the height of the storm a huge deck derrick, weighing many tons, was torn loose from its fastenings and swept overboard, leaving a hole in the cargo. In its course it carried away the maintopbridge, the after winch, and part of the deck fittings. quarters.
Soon afterward the storm partially subsided, when the electrical fire appeared in all directions. It hung in big balls for two nights from the masts and fore and aft stays, and practically turned night into day. As
acted upon by the first part of the movement of the ously to the completion of its stroke. The larger view shows the improved device applied to a grinding machine, where the front end of the shifting bar is pivotally connected to the inner crank end of a rocker or sponding crank arm adjustably connected by a stout of the machine, stops on the latter bar being engaged figure shows the position of the belts and the shifting tion to which they are brought by the yielding connection, such position being attained instantly after nection, such position being attained instantly after
the carriage and operating shaft is momentarily stopwhich probably seemed intensified by reason of the vessel's deck through which the water ran into the mast, which was also of iron; part of the flying The decks were flooded with tons of water, the ship rolled at an angle of seventy degrees, and the sea broke in all directions, filling the cabin and the officers' the big. fire balls came together they would burst with a loud report upon the vessel and disappear. Unier this light at night such temporary repairs were made as were deemed necessary to reach port.
Captain Tait of the Mercedes stated that the passage was one of the most trying experiences of h is life. The rolling and lurching of the vessel in the storm and the fury of the gales were terrific in the vicinity of 25° longitude. Only the heroic work of the officers and crew saved the vessel. Phila. Record.

Aluminum is being used in making the bodies of cabs.

A BICYCLE ADAPTED TO CARRY TWO PERSONS. Tofacilitate carrying on the ordinary wheel a pas seuger in addition to the one who is propelling the machine, and to hold a lady's skirts out of contact and entanglement with the wheels, the improvement shown in the accompanying illustration has been patented by Harry J. Getman, and is being introduced by Henry A. Lederle, of Traverse City, Mich. It consists of an elongated clip frame attachment, shown separately in the small view, and composed of two par-

DERLE'S BICYCLE ATTACHMENT.
allel rods joined at the front by a block, and connected to the rear upright by a bolt, the front portions of the frame resting on the collar of the bicycle frame. Securely attached to the front of the clip frame is a transversely bent rod extending to one side, on which is a seat, while bolted rigidly to the opposite side of the ciip frame is a skirt or leg support, com posed of a framework of metallic rods, over which is secured wire gauze or netting. This support extends rearwardly and outwardly from the left hand side of the machine, and curves downwardly from the clip frame, to conveniently support the limbs and skirts of the person on the forward seat and afford such a balancing of the weight as will prevent undue torsional strain of the parts, and avoid liability of breaking or bending.

Force of the Human Jaws.
Experiments are reported to have been made by Dr. Black, a dentist of Jacksonville, Fla, to determine the force exerted by the human jaws in chewing food, and also the greatest force which the jaws are capable of exerting. By means of a spring instrument provided with a registering device he took-according to the account given-records of about one hundred and fifty bites of different persons, fifty of these being preserved as characteristic of the ordinary man, woman, and child. The smallest pressure recorded was 30 pounds, by a little girl seven years old, with the incisors, but, using her molars, the same child exerted a force of 65 pounds. The highest record was made by a physician of thirty-five, the instrument used registering only 270 pounds, and he simply closed it together without any apparent effort, there being also no method of determining how far above that figure he could have gone, and the test was made with the molars. Several persons exceeded a force of 100 pounds with the incisors and 200 with the molars. Dr. Black states that the physical condition of the persons experimented upon seemed to but slightly influence the result, and he is of the opinion that the condition of the peridental membranes is the controlling factor, rather than muscular strength ; and further, that in the chewing of food much more force is habitually exerted than is necessary.

The Chiffounters of Paris. Ragpickers' Town reminded me of some ancient, tumbledown fishing village, and certainly it was hard to realize that this was positively the city of Paris a the end of the nineteenth century. Space, it would seeu, was at a premium in the Cite Dore, for utensils of different kinds ornamented the outside walls, and here and there a cradle swung lightly from its rusty nail. Many of the houses boasted of but one room in which were, often, neither furniture nor bedding a bundle of rags did duty for the latter, and in truth it was a case of rags, rags, raggedest of rags every where. The ragpickers were seated on their thres holds, or as near the door or apology for a window as it was possible to get. Here and there an ancient chiffonniere was patching together old remnants, but most of the men were classifying their merchandise spread upon the floor. These were the trieurs or sorters, whose business lay in dividing the odds and ends into their various classes before reselling them to the merchants en gros. The white rags had to be sorted from the colored, and the silk from the cotton or woolen. The woolen ones, I found, were prized the most, as they brought in nearly thirty francs the 100 kilos, while the silk were worth only seven. The chiffonniers collect over 50,000 francs' worth of pick ings in one day (statistics of 1889), and nothing comes amiss to them.
I begged permission of an old chiffonniere to sketch her as she sat at her mending, and then the motley crowd, which had all the time followed closely at my heels, promptly surrounded me. The elders did not appear to view my movements with much favor at first, but their scowls were soon turned into broad grins by a general distribution of the cigarettes. The packet could not go all round, it is true, but it wen far enough, at least, to make the inhabitants of the Cite my friends. They were a tough enough looking set, on the whole, but most of the older women ap peared to suffer with inflammation of the eyes, and many of the children also-a thing easily to be accounted for by a glance at their grimy hands. Still the eye trouble was the only one which affected them very much apparently. Though irredeemably dirty, the children looked bright, happy, and healthful. And they had reason to, living as they were in an open quarter of low houses, where the sun could stream down on them and the air play around them-a sensa tion rarely to be experienced in the narrower Paris streets, where the immense height of the apartmen houses keeps off, for the greater part, these two most important health factors. The young girls, too, had evidently their share of hardiness, and, with it, a sturdy independence of manner, not unbecoming the daughters of this liberty-loving race, and there were several quite pretty enough to warrant the existence of that romantic play of Bourgeois and Emery's, La fille du Chiffonnier, which created so much interest on the boards of the Ambigu a little while ago.
When I had made the round of the Cite, Iattempted one or two sketches, and wherever I stopped, every window within sight would immediately become alive with heads partially obscured by the flapping rags which hung before most of the houses. I caught one old chiffonniere watching me complacently as she ate her supper, and called up to her to tell me, if she would, which was her quarter for collecting. She answered proudly, "The Opera," much to my surprise, for tha part of Paris is five or six miles away. But I learnt that this neigh borhood and the Chaussee d'Antin were the fat livings of the chiffonniers, and that a placeur will sell his right to empty the rubbish boxes of a few houses there for as much as 150 francs; for, although a coureur or roving chiffonnier's daily collection is seldom worth more than 1 franc 50 cents, that of the placeur, or chiffonnier with a regular situation, often amounts to seven or eight times that sum, and necessitates his bringing a hand or even a donkey cart.
It is chiefly in suburbs such as Malakoff, Ivry, and Gennevilliers that the chiffonniers now congregate though formerly they were to be found in Le Petit Mazas, Le Passage du Soleil, La Cite Maupy, and La Cite de la Fermme en Culotte, which last, though now destroyed, once brought its eccentric landlady, Mademoiselle Foucault, 12,000 franes per annum. But it is the Cite Dore as the home of the chiffonniers which is of special interest, partly on account of the historic records in connection with it in the reports of "Commission des Logements insalubres" (1853), on account of the many controversies over it, notably in the Revue Municipale (1859-60) and because of the personal supervision still exercised over it by Monsieur Dore's daughter from her manor overlooking it. This was once the Château of Bellevue, which up till 1848 was surrounded by its park of 10,000 square meters. After that date, Monsieur Dore cut the ground up into little lots, and let it out to horticultural-loving Parisians at fd. the meter per annum.
An enterprising ehiffonnier not only rented one of these, but with the aid of sardine boxes filled with clay, bits of old building material and tin, built himself a hut. He was the envied of all the crowd of chiffonnier friends who came to wonder and admire, and
who were not long in following suit. They formed themselves into an independent republic to the number of 400 , which by 1860 had increased to between two and three thousand. Until the speculators appeared upon the scene, the chiffonniers were thus their own landlords, which fact created in them that self-respect and independence which is not often found in others of a like class. Drink is their besetting sin, and it would seem that the fascinations of their special liquors, such as camphre, petit noir, fil en quatre, casse-poitrine, are not to be withstood. But though a liberty-loving race these wild men and women of the outskirts are a peace loving one too, and they are seldom in prison; yet from the beginning of their history they have been sub jected to every kind of persecution. As early as 1698 they were forbidden by law to walk the streets before daybreak, and it is only since the Republic that the chiffonniers have been allowed to ply their trade with out the once necessary adjuncts of government copper medal, certificate, basket, crochet (pronged stick), and lantern.-Englishwoman.

an improved reel.

The reel shown in the illustration is adapted to facili ate quickly throwing the gearing in or out of action, o retard the revolution of the pulley. It forms the sub ject of a patent issued to Thomas J. Halleck, of No 506 West Thirty-ninth Street, New York City. From the plate fastened to the rod projects a pivot on which evolves the metallic hub of the pulley on which the line reeled, the pulley having in its front face a reces closed by a disk on the forward end of the pivot, and the driving gear being located in the recess. On the

hallecks fishing reel.

hub, in the recess, is a pinion engaged by a large gea wheel, whose shaft rotates in bearings on an arm that is adjustable on the front face of the disk. there being handle on the outer end of the shaft, and the arm which extends across the outer face of the disk, having at its center a larger recess for the outer end of the cen tral pivot. On the opposite end of the arm is a knob and caich, the knob being connected with a spring disk, and, on lifting the knob, the arm may be pushed o move the bearing of the larger gear wheel, so that its gear will be out of mesh with the pinion on the pulley, the spring disk holding the arm in either position, as it may be placed. When the larger gear wheel is out of mesh with the pinion, the pulley is free to rotate oosely, permitting the line to unreel quickly for cast ing purposes, but such free rotation may be more or less checked, as desired, by a spring-pressed pawl, which also clicks on the pinion to give an alarm in case of a bite, or to prevent accidental un winding. There is
also a spring brake on the back side of the reel casing, also a spring brake on the back side of the reel casing, to brake the pulley when casting.

Notable Engineering Achievements in the Great by joun birkinbine.
After exhibiting on the screen a map showing the proportions of the lakes as compared with Eastern States, and reference to the fact that three thousand vessels of total capacity of one and a quarter million tons float at elevations practically equivalent to the height of the statue of William Penn on the city hall tower in Philadelphia, the various methods of mining pursued in the region of Lake Superior were discussed. Starting with the preliminary log cabin, the first winch was illustrated, then the shaft, and finally the operating mine. Similarly, instances of the steam shovel and milling system of mining on the Mesabi Range of Minnesota; the deep underground exploitations of the hard iron ore mines of Michigan, and of the copper mines were referred to. A diagram mining operations have been carried on, and the re-

* Abstracts from a paper read recently before the Engineers' Clab of

Phnudelphia.
ation of these to ocean level and to that of Lake Superior. Views of hoisting and pumping maehinery, methods of timbering, a timber squeeze, man engine ore pockets at the mine, etc., were illustrated and referred to, a number of flash light views taken under round by Prof. Denton, of the University of Minnesota, being part of the display. The docks from which ore is shipped, consisting of several hundred pockets with adjustable spouts, were described, and instances given where 2,500 tons of iron ore were de posited in a boat within fortv-five minutes.
The "whale-backs," the steel canal boats, and other forms of vessels in use on the great lakes were discussed, and the facilities which they offer as means of transporting heavy freight referred to. The ore receiving docks on the lower lakes were then decribed. At these ore is handled from a vessel's hold after the buckets are loaded by stevedores, and conveyed several hundred feet back from the water for a cent or less per ton. The coal docks, both for hipping and receiving coal, and some of the specia ppliances were noticed
In the matter of harbor improvements, special at ention was given to the artificial entry to the har bor of Duluth and of the new breakwater at Mar quette. The latter is a series of "beton" blocks, each about 100 tons in weight, formed in place, but leaving alternate spaces of 10 feet between each block, which was subsequently filled in by similar blocks, this being done to prevent any local settle ment disturbing more than one 10 foot section. The enoriuous shipment through St. Mary ship canal was said to have been $13,000,000$ tons in the eight months in which navigation was open in 1894, and it will probably approximate $17,000,000$ tons the present year. The statement was also made that the average distance the freight was carried by water was over 800 miles, and the cost slightly less than 1 mill per tonmile. The growth of this canal was demonstrated by the fact that although in 1856 a lock 350 feet long, 60 feet wide and 12 feet deep was considered ample for a century, by persons then well versed in local progress, in 1880 a new lock, 515 feet long by 80 feet wide and 16 feet deep, was opened, and the congestion was so great in 1894 with this canal that the average detention of vessels was over seven hours. A new lock, 800 by 100 feet and 20 feet deep, is now practically ready for service on the American side, while a nother lock on the Canadian side, 900 by 60 feet, will help relieve the congestion. These locks are to overcome the difference of level between Lake Superior and Lakes Michigan and Huron.
The Chicago drainage canal was then liberally illustrated, and facts concerning the $40,000,000$ cubic yards of material handled were given. Among these was the average cost of rock excavation at 76 cents and dirt 22 to 28 cents per cubic yard. The material was largely handled, after the top lift had been removed, by means of cantilevers, cable-ways or swing derricks, which met with favor in the order named-a cantilever costing, however, about $\$ 28,000$, while a cable-way cost but about $\$ 12,000$. Few of the contracting firms owned their conveying apparatus, most of the work being sublet to conveyor companies. Drills which have bored from 90 to 130 feet per day in the limestone rock through which the canal is cut could penetrate but from 6 to 20 feet in the harder Lake Superior iron
The propeller pump used at Milwankee to flush the river by delivering about 40,000 cubic feet of water per minute was illustrated. The improved methods of constructing vessels for the lake traffic and the unique way of launching them sideways also received attention and illustration.
The railroad tunnel under the St. Clair River was shown in section and the statement made that during the season of navigation a greater tonnage passed through the St. Clair River than elsewhere in this continent.
The paper closed with a reference to the improvements at Niagara, and a statement that the engineering features of Lake Ontario and the canal between Lake Erie and Lake Ontario had necessarily been omitted to make the description complete so far as the upper lakes were concerned, although it was not claimed that all of the remarkableachievements of the engineer had been mentioned.
At the close of Mr. Birkinbine's remarks there was some discussion on the temperature of deep mines, and in answer to a question the statement was made that with fair ventilation it need not be uncomfortably warm. In some mines water found at a depth of about 1,500 feet is quite salt, and at a greater depth becomes acrid. Large masses of pure copper are often mined, sometimes with pure silver attached to them. The Quincy mine was cited as having yielded masses that were cut down to pieces weighing 10 tons so as to be put into the furnace.

Sixteen new steamers of the largest class for pas senger and freight business have been contracted for by the owners of the principal lines of steamers plying between New York and European ports.

The Detroit Boller Explosion.

Without a doubt the most disastrous boiler explosion which has occurred in this country, that is, so far as loss of life is concerned, was that in the Detroit Journal building, on Larned Street, Detroit, Mich., Wednesday, November 6, which reduced the four story building to kindling wood and resulted in the death of thirty-seven people, while many more were badly injured. The following account is given in Lord's Magajured.
The day force had just gone to work at nine o'clock in the worning when the building was seen to swerve and shake, the front and back walls fell outward, and in a few moments what had once been a handsowe building was a mass of ruins.
Cries for help and shrieks from the wounded went up from the wreck. The general fire alarm was turned in and ambulances and engines hurried to the scene.
The concussion caused by the explosion was so ter-
rific as to shake every building within several blocks rific as to shake ever
of the Journal office.
Windows were broken and many persons were inWindows were broken and many persons were in-
jured by falling glass. The Calvert building across Shelby Street from the Journal shook like a reed. Nearly every window on the Shelby Street side was blown in, including two heavy plate windows on the second floor.
The building directly opposite the Journal structure on Larned Street, occupied by the Free Press Printing Company, had scarcely a whole light of glass left intact, while the Arcade building, adjoining the Free Press, had the appearance of having gone through a wreck of its own.
The cause of the explosion at this date yet remains a mystery.
After part of the wreckage had been cleared away the rear end of the fatal boiler was found lying near the Larned Street wall. The sheet was torn straight across, just back of the steam dome, three-eighths inch of iron having parted like cardboard and heavy rivets broken as if they were matches. This piece of iron was spread out until almost flat, and was hurled with such force against the cylinder head of the engine that it was crushed and battered as if it were made of glass.
The east boiler did not come out, but was carried off
its foundation and through the solid stone wall into its foundation and through the solid stone wall into
the Davis cellar. The force of this blow bent the boiler near the steam dome, parted the seams, and bent the tubes. The crashing of this boiler through the foundation caused the collapse of the two buildings.
The safety valve of the low pressure boiler was found, but so badly broken that the inspectors were unable to tell whether it was in good condition when the explosion occurred or not
The steam gage was found so badly damaged that no one could tell what pressure was registered at the time of the explosion.
There was not a solid joint left in the building, the west wall being driven out several inches and the east wall badly cracked and thrown several inches out of plumb. In fact, the entire building was moved on its foundation.
The boilers were in charge of Engineer Thomas M. Thompson, who was painfully but not fatally injured. His statement concerning the accident was as follows He was in the mailing room when the explosion oc curred, having left the boiler room ten minutes before. At the time the west boiler showed 65 pounds pressure on the gage and the glass tube indicated two gages of water. There was a low fire under the east boiler, the gages showing 15 pounds pressure and three gages water.

The boilers were licensed to carry 90 pounds of steam, the safety valves being set at 80 . The boilers were plain tubular. 5 feet in diameter, 14 feet long, with 3 inch flues, and built by Stephen Pratt in 1884.

They were connected by a 5 inch main, from which ran the main steam pipe to the engine, with $31 / 2$ inch branch to the elevator pump. Swaller pipe connections conveyed steam to the heaters in the various rooms in the building.
The boilers were fired by oil, the supply being carried in two tanks with a joint capacity of 55 barrels. They were coupled with a T, from which $21 / 2$ inch pipes veyed the oil to the burners beneath the boilers
Mr. Thompson states that about two weeks before the explosion the blowing out of a manhole gasket caused him to place the east boiler in service until repairs on the west could be made. The west boiler was fired up the day before the accident and found all right, the engineer noting that the safety valve blew at the stated pressure.
He further said that one of the blow-off valves leaked, and Tuesday evening, when he shut down, he started the injectors and gave the boilers over three gages of water in order to have enough to start with in the morning.
On coming down the morning of the explosion the glass showed that about one inch of water had leaked out during the night. In this connection the engineer states a fact that may be an explanation of the cause of the accident.

There had been such a demand for steam that one oiler was not sufficient, and after he had thrown the west boiler into service, he fired the second furnace, with the intention of coupling them as soon as the gage on the east boiler should show 60 pounds of steam. As stated before, this boiler only showed 15 pounds when he left the room, and had not been coupled.
There is a possibility that the leaking valve had allowed nearly all the water from this boiler to escape during the night.
Mr. Thompson had just entered the mailing room when the accident occurred. He was hurled against a wall surrounded by clouds of steam. Near him was a chute leading down to the press room, down which he slid. Here he was found later by the nembers of the fire department and taken out through a window.
Mr. Thompson says that it has been his custom to blow off steam through his glass gages once a week in order to be sure they are not clogged. He is positive that he tried the water cocks the morning of the accident. He further stated that the oil gage showed about twenty-five barrels in the tank.
W. H. Wells, of the firm of Wells, Angell \& Boynton, attorneys for the Newbury estate, which owned the building, says that Engineer Thompson was a thoroughly competent engineer and machinist, strictly temperate, and an associate nember of the Y. M.C.A.
In October, he entered the classes in algebra and mechanical drawing at the night school of the association, and it is hardly likely that a man who at his age has strong character enough to study nights would become careless at his work
As is usually the case, the engineer comes in for a large share of the blame for the casualty, and the grand jury have indicted him for manslaughter.
Tests of the boiler plate which are in progress may throw new light upon the case, but should the decision show that the cause was from low water, it, of course, will have to be laid at Engineer Thompson's door.
The public at large fails to realize how little stands between safety and danger in a boiler plant. The apparatus which has furnished heat and power for years without an accident is never noted, and the engineer is considered as an unskilled laborer to a great extent, or one whose duties consist of starting and stopping an
engine or shoveling coal into a furnace; but, let an accident occur, and all this is changed. The engineer always comes in for censure until he is proved not guilty, and, as in the present case, is indicted for manslaughter. His character and habits are closely inquired into, and his ability-the first time that has been considered-is investigated.
In fact, then, and not till then, do the public for a moment think that the engineer should have been pos sessed of anything like ability which would carry him above the plane of an unskilled laborer.
It is to be hoped that some developments may come out of the investigations which will prove that the responsibility for the terrible catastrophe does not rest upon Engineer Thompson, and that all judgment wil be suspended until the thorough investigation which is in progress shall have been completed.

Accident on the st. Paul.

A serious accident took place on the American line teamer St. Paul, at her pier in New York, on Decem ber 18, in which nine men lost their lives and several others were severely injured. The fatality was caused by the fracturing of the main starboard supply pipe just as the machinery was being started to test it be fore sailing. No definite statement of the cause of the accident will be made until a thorough investigation, which the company is now conducting, is completed The explosion occurred about seven in the morning The noise brought the officers and crew to the engine room. The steam was at once shut off and the work of rescue began. All of the men in the engine room were killed and all except two of the fifteen men in the boiler room and electrical compartment were
badly injured. The pipe, which was 15 inches in diameter, snapped off at the elbow. The steam pressur was less than usually carried, being only 130 pounds.
Similar accidents have occurred on vessels of both the English and American navies. Two accidents of the same kind have occurred in stationary plants in New York City within a month. On November 26 the elbow in a pipe which supplied steam to the en-
gine which runs a lighting dynamo in Hammer stein's new music hall, called the Olympia, blew out, resulting in the death of two wen and the injury of several others. The main steam pipe is 10 inches in diameter. From this a 6 inch feeder runs to the engine, and fastened to this 6 inch pipe was the elbow which blew out
It is suggested that the accident may have been due to a too rigid connection, causing the elbow to burs by the expansion of steam, or to the presence of cold water in the pipe, or to a defect in the elbow. which it is said, appeared to be about one-sixteenth of an
inch less in thickness in one place than in another. On December 19 a steam pipe leading into the gen erator of a stationary engine in the Consolidated Gas

Company's works at the foot of East Twenty-Second Street exploded, killing one man and injuring several

These sad examples show that steam supply pipes, as at present constructed, need improvement, and we trust that the subject will be carefully studied by in ventors.

To Make Cloth Waterproof, but not Airproof.
To the query how can I waterproof a cloth without making it airproof at the same time? the following reply is given :
'ro make a cloth waterproof, but not airproof, is a demand that is difficult, if not impossible, to comply with. Let us simply imagine what is necessary, and we have: 1. The spaces between the threads must be filled; and 2. The sponge like condition of the textile fibers, by the force of which they absorb both air and water, uust be neutralized. It is evident that the inlets for water cannot be closed without at the same time affecting in like manner the passage of air. It is true that air is finer than water, and the question could doubtless be answered, if figuratively speaking, such a treatment of the cloth were possible that the doors were barred against the entrance of the coarser fluid and the finer element were allowed to squeeze through
By studying this auestion. we would come to the conclusion that such a thing might be possible, if we understood how to neutralize the spongy condition of the textile fibers referred to without having recourse to filling the interstices between the threads. As water passes through a cloth essentially because of the absorptive capacity of the latter, it would be necessary to annihilate this property of the fibers in order to effect the desired purpose. The way to do this is plain, and that is to impregnate the threads be fore weaving, but as this cannot be done for a number of reasons, the treatment of the ready cloth is the next recourse.
Several formulas for effecting this have recently been patented, and in one of them James G. Smith dissolves gutta percha and India rubber in paraffin. The latter melts between 122° and 165° Fan, and when heated to 212° or 230° Fah., it dissolves 100 per cent of its weight of gutta percha or India rubber. Upon this fact is based its adaptability for waterproofing cloths, but not airproofing them ; 15 parts gutta percha or India rubber are to be dissolved in 100 parts paraffin and the solution, at a temperature of 158° Fah., is ap plied direct to the cloth to be impregnated, or what is still better, the solution is dissolved either with benzine or benzol, and the cloth is then drawn cold through this diluted solution until thoroughly saturated. any excess being removed with a current of air or else in a suitable manner by steaming.

Similar to the above method is one of Napoleon Lefebvre and Edmond Aron, who propose a fluid 1,000 parts of which contain 987 benzine or sulphide o carbon, 3 parts India rubber, and 10 parts paraffin.
Frangois Joseph Pescuard and A. P. E. Tardien make a cloth waterproof without at the same time excluding air, which is necessary to carry off the perspiration from the body, by the use of the following fluid : 55 grammes India rubber, 2 grammes gutta percha, 300 grammes benzine, 25 grammes sulphide of carbon, 10 grammes essence of turpentine (terrebinthe), 200 grammes ordinary linseed oil, 70 grammes boiled lin seed oil, and, according to circumstances, a little black or white (charcoal or zinc white).
It is said that the first formula is adapted in every respect for the object in view.-Industrial Record.

New Varlable star of the Algol Type.
Dr. Edward C. Pickering reports in Harvard College Observatory Circular No. 3 that the star B. D. $+17^{\circ}$ 4367, magn. 9 1, whose approximate position for 1900 is in R. A. $20 \mathrm{~h} .33 \cdot 1 \mathrm{~m}$. Dec. $+17^{\circ} 56^{\prime}$ appears to be a variable star of the Algol type. On July 18, 1895, Miss Louisa D. Wells found that no trace of this star ap peared on the photograph I 4359, taken with the 8 inch Draper telescope on September 26, 1891, exposure 16 m . On 71 other plates taken from June 30, 1890, to October 5. 1895, the star appears of its normal bright ness. On December 12, 1895, at 10h. 42m., Greenwich mean time, Prof. Arthur Searle, who had watched this star on several nights, found it more than a magnitude fainter than usual. During the next half hour it diminished about half a magnitude more. Meanwhile, a photograph taken with the 8 -inch Draper telescope, I 14036, contirmed the diminution in light.

Gas Engine Economy.

It is stated that the electric railroad at Lausanne is operated from a power house in which the dynamos are driven by two gas engines of 130 horse power each, built by Crossley Brothers, in England. They use a gas which is made in producers in the power house. The dynamos are run by belt. The working is said to be very economical, and the best result obtained has been an expenditure of 550 grammes of anthracite coal per horse power hour in ordinary service. The engines are run on an average 18 to 20 hours per day. A care fuil calculation has shown that the amount of fuel used is 1,300 grammes of anthracite per car kilometer.

CLOSE OF THE ATLANTA EXPOSHTION.

At the extreme left, in our illustration, is shown the New York State building, to the right of which is the Fine Arts building, with a frontage of 245 feet, and exterior of classical design. Still furthe: to the right is the 150 foot, high tower, with its chime of large bells, which has formed a notable feature, while at the extreme right of the picture, partially hidden by the foliage, is the United States Government building.

During the fourteen weeks of its continuance, the great Cotton States and International Exposition, which closes officially on December 31, has afforded a luminous record of the versatile industrial and educational advancement of the South during the past quarter of a century, and constitutes a fitting memorial of the energy, enterprise and liberality which now dominate throughout the entire cotton belt, no less than in other sections of the country.
That it has, in its wide scope, attracted such large numbers of exhibitors in all departments of art and manufacture, and such crowds of visitors from all sections of the country, are but evidences of the general

Increase of Naval Engineering Efficiency.
Senator Watson C. Squire has introduced a bill (S. 735) to reorganize and increase the efficiency of the personnel of the navy, to increase the usefulness and numbers of the corps of naval engineers, to induce the scientific institutions to provide a naval engineering reserve for time of war, to establish a naval engineering experimental station and to encourage the study of the mechanic arts and sciences, and particularly that of naval engineering, in the technological col leges of the country.
In the course of his remarks he said :
"I recently visited the flagship Philadelphia, and had great satisfaction in examining that splendid cruiser. Going through the vessel below the water line, I observed the vast amount of machinery, the complicated elements that enter into its construction, making the care of a modern vessel of war very important as regards the feature of steam engineering. One passes through compartment after compart ment, and is almost lost in bewilderment in the mazes of the complicated machinery around
"It is evident, too, that there is great danger of the breaking down of those officers. They are employed in very difficult work. To take care of all this valua ble property requires a high degree of skill, and causes an immense strain upon the officers. It is well known that our battle ships cost about $\$ 4,000,000$ apiece, and they are liable to have something out of order all the time. In fact, one of the officers of this corpstold me that there is usually something out of order on a war vessel all the time requiring the atten tion of an expert. Oftentimes those officers have to submit to very severe physical strains. They have to go down and work in the hold of the ship, where the temperature ranges from 150 degrees to 170 degrees Fahrenheit, and this causes great physical exhaustion. I believe that the number of engineer officers should be increased so as to make provision for these break downs, and to enable a sufficient number of officers to be employed on vessels to allow for necessary changes in the supervisory watch. This branch of the service of the navy should be encouraged and dignified and rendered more attractive and popu

the atlanta exposition-VIEW looking north from the plaza.
recognition of the great importance of that new and \mid him. It occurred to me that not enough attention has vigorous industrial life which has but recently brought been paid to the personnel of the navy as respects portions of the South into competition with New England and Pennsylvania. The work of the Exposition, in part educational and in part to promote commercia intercourse and enlarged exchanges of commodities, has been well done. It was conceived on a broad and generous plan, in which expense was not spared, and the experiences of previous expositions were wisely utilized. The Exposition park comprised a tract of 189 acres, the \asymp round being most picturesquely located within two miles of the center of the city of at lanta.

During the continuance of the fair the various rail roads centering in Atlanta, well representing the entire railway systems of the country, made great reduc tions in their rates, with the result that the attend ance was liberal from remote as well as from near-by points. This was particularly the case on the days especially devoted to different cities, representative delegations from Chicago, Philadelphia, New York, Brook lyn, Boston and many other cities making the days set apart for such local commemoration memorable as among the most interesting and exciting in the history of the fair.
steam engineering. Truly the propelling power is the soul of the ship. Without it the ship cannot be handled and is totally useless. This power is under the supervision of the engineer officers. Therefore it is needfuil to have a high order of personnel, a larger number of officers, and those of great attainments and proficiency.
"We are building in this country vessels that were unknown to former times, and we need adepts in the art of engineering and marine architecture. There is no way to obtain a suitable class of men except by preparing them in the various educational schools Ships can be built, but men cannot be built. When war comes, if it should come, unhappily, we will need proper men to handle these great engines of war. The only way to have such men is to educate them in advance. I believe the provisions of the law of 1870 should be carried out, and that the schools and colleges of the land which apply for professors of steam engineering and naval architecture should be accommodated by the detail of officers for such purpose. But that is only one of the features which contribute to the practical merit of this measure.
lar to the cadets and those naturally fitted to become engineers, and for this and other reasons, that the officers should be given positive rank and title, so that a mere officer of the deck, perhaps an ensign, cannot control a commodore in the Bureau of Engineering, unless such officer shall be in command of the ship. I think, too, that the manner of selecting cadets and filling vacancies in the Engineer Corps should be changed so that Senators shall have the appointment of such cadets. Something must be done or the perof such cadets. Something must ine done or the pare fall far below the proper standard. In fact, it may be far below the proper standard. In fact, it may be
considered relatively below it to-day, as shown by th report of the naval committee in 1892.
"We have in commission in the navy at this time forty-two vessels, with nineteen more vessels building, making in all sixty-one. It is useless to undertake to manage this vast interest without having competent men, thoroughly educated and prepared, and a sufficient number of them to provide for the necessary changes."

AN inch of rain falling upon an area of one square mile is equivalent to nearly $17,500,000$ gallons, weighing $145,250,000$ pounds, or 64,844 tons.

THE CABLT REPAIR STEAMER MACKAY-BENNETT.
The present is peculiarly a scientific age, rife with great enterprises which have originated within the memory of most people. It is not a great many years ago when the completion of the first ocean telegraph was celebrated with great pomp and enthusiasm. Transoceanic telegraphy is distinctively a modern institution; as such it is necessarily controlled by modern methods.
One of the great companies, One of the great companies,
the Commercial Cable Company, owns and operates three complete submarine lines between Europe and the United States. To keep these cables in order this enterprising company has a fine steamer, the Mackay-Bennett, which was built especially for the purpose by John Elder \& Company, at Govan-
on-the.Clyde, at a cost of on-the.Clyde, at a cost of
$\$ 320,000$. She is 260 feet long, 40 feet beam, and 22 feet deep, and is propelled by twin screws driven by independent fective section being removed
screws driven by independent
compound engines, each having a high pressure cylinder of cable paid out or taken in. On the deck of the \mid and replaced by a perfect piece of cable. The manner ing tock at the bow and stern are electrical tom. The electrical testing room has a very com signals, by means of which the engineer in charge of plete electrical equipment, and the electrician is althe ship's engine and also the engineer in charge of the cable handling engines may be notified to stop, start, or go ahead or astern, fast or slow, as circumstances may require. Attached to the shait of the drum is an indicator which shows the number of miles

To one not familiar with the characteristics of the electric current, it seems a difficult matter to locate a fault in an ocean cable hundreds of miles at sea, but a competent electrician can generally locate the fault within a few miles. The insulation of the conductor must be maintained in a very perfect condition; otherwise the cable is rendered useless. A puncture in the insulation of the diameter of a hair is sufficient to interfere with the proper working of the cable, and to necessitate the journey of the repair steamer to the point where such an apparently insignificant thing exists. On reaching the vicinity of the fault the grapnels are thrown out and the cable are thrown out and the cable
lifted to the steamer, when it is taken on board and dissected and repaired, the de-

15 inches in diameter and a low pressure cylinder 25 steamer are guides which lead to the different tanks. in which the cable is spliced is illustrated in Fig. 2. inches in diameter, the stroke being 3 feet. The combined horse power of the engines is 1,500 . The gross tonnage of the vessel is 1,700 and the coal capacity is 750 tons. Her speed is 12 knots per hour.
The Mackay-Bennett is provided with three cable holding tanks with a total capacity of 385 nautical miles; tank 1 hold ing 60 miles; 2,195 miles; and 3. 130 miles. The central cores around which the cable is coiled are utilized as fresh water tanks. The steamer is fitted up with all the modern machinery for grappling, picking up chinery for grappling, picking up
and paying out cable. It is lighted and paying out cable. It is lighted furnished with electric search furnished with electric search
lights, so that work can be carried lights, so that work can be carried
on during the night. The steering is done by steam, and the necessary steadiness is secured by bilge keels. The vessel is provided with a bow rudder, so that it can steam astern. The maneuvering qualities are excellent. A staunch steam launch is provided, which is much used in provided, which
work near the shore.
On the the
On the deck are placed two powerful engines for heaving in and paying out the cable. At the bow and stern are placed immense
 the three tanks by either of the cable handling engines. Upon the by either of the cable handing engines. Upon the deck are carried buoys, which are launched and to which the cable is secured when it is desired to detach
the cable from the steamer, and leave it to be subseheaves, as shown in cables pass when delivered or received. The the quently picked up and extended. The cable tanks placed on the joint, as shown at 6 in Fig. 4 , this part for handling the cable are geared to drums 6 fines are watertight, and the cable is kept in water, and of the work being done with the greatest of care to diameter, 2 feet in width, each being mounted on shaft 11 inches in diameter. The cable, which is shat 11 inches in diameter. wound severai times around this drum, passes over reaches its final resting place upon the ocean bot quadrants or guides at the hatches. If it is being taken up, it is coiled around the core in the tank below, as shown in the large engraving. Inthis case it requires a powerful engine powerful engine to bring it up from the depths of the ocean, but
where the cable is where the cable is
paid out, it simply paid out, it simply
passes over the drum, which is then detached from the engines, and the paying out is controlled by a brake operated by the man on the platform. The cabie in its passage to the bow or stern of the steamer goes under the sheave of the dynamometer, which indicates the amount of tension on the cable. The strain on the cable usually ranges from two to three tons.

Fig. 7.-THE COMMERCIAL CABLE COMPANY'S REPAIRING STEAMER THE WACKAY-BENNETT. red by soft solder, after which a spiral wrapping of fine copper wire is laid over the joint, as shown at 3 in Fig. 3, four or five fine wires being laid on parallel with each other, forming a spiral wrapping of considerable pitch. Upon the first layer of fine wires another layer is placed which is wound in the opposite direction, thereby causing the wires to cross each other. These wires are sol dered snoothly, the interstices be ing completely filled with the solder, and while the conductor still retains the heat acquired in soldering the gutta percha covering is worked over the joint, as shown at 4 in Fig. 3, the splice having been previously coated with a cement to insure the perfect adhesion of the gutta percha to the metal. The appearance of the cable core afte the completion of this step in the process is shown at 5 in Fig. 3. A t, as shown at 6 in Fig. 4, this par placed on the joint, as sho with the greatest of care to of the work being done with the greatest of care to
avoid the slightest possible air space communicating with the conductor. The gutta percha covered conductor is served w. h marline (7 , Fig. 4), and this wrapped with fion. 4), and this last of all the wire last of all the wire
armor is replaced. armor is replaced. The total length
of the splice is from 40 to 80 feet. The operation of splicing the armor is practically the same as that of splicing any wire cable. The splice thus made is thus made is
stronger than the stronger than the
cable and its eleccable and its elec-
trical conductivity is also greater than that of the other parts of the cable. The Mackay-Bennett can lay cable at the rate of 6 to 8 miles per hour.

It is obvious that in laying cable it is neces sary to know something of the character of the ocean bottom. It is especially desir able to avoid shallow places. The steamer is providsteamer is prorid-
ed with the ed with the
James ". sentry and sounding ma chine," which
gives notice on board of the approach to shoal waters. A device called a ${ }^{6}$ kite," shown in Fig. 6, is trailed behind the steamer, as shown in Fig. 5, being attached to the end of a piano wire wound upon the drum of the sounding machine. The kite is attached to the wire in such a manner that it dives under the stern of the boat to the minimum depth.

Fig. 5.-James sentry and sounding machine.

Should the steamer enter shallow water, the lever at the lower end of the kite strikes the bottom and releases the front end of the kite so that it trails behind the steamer at or near the surface and offers less resistance at the machine. The diminished pull causes a bell to ring on the sounding machine and another on the bridge. The sounding machine is adjustable for different depths. On the deck at suitable places are placed electric signaling machines, made by Eliott Brothers, of London, for communicating with the engineer of the paying-out machines and with the ship's engineer.
The Mackay-Bennett came on from Halifax in September last to lay cable for reporting the yacht race. The shore end of the cable was dropped at Coney Island at a point east of the Oriental Hotel. From this point it was laid out to the lightship, and an extra mile was run out in great coils to enable the ship to change her position if necessary. By the use of this cable, reports of the movements of the yachts were instantly transmitted to New York City, so that the progress of the race was better known to observer of the bulletins than to most of the actual spectators. Through the courtesy of Captain E. G Schenk, Chief Officer W. F Linton, Enyineer J. W. Burn, and Electrician C. Priest, we were enabled to thoroughly inspect everything on board the steamer.

THE LOVELL ADJUSTABLE HAN DLE BAR FOR BICYCLES.
The subject of adjustable handle bars for bicycles has received wuch attention during the past season. We illustrate in our present issue a new sys. tem of adjustment, which seems to possess all the desirable reyuisites while avoiding the difficulties which have been encountered in other ones put upon the tered in other ones put upon the
market. In the upper part of market. In the upper part of the tube or handle bar stem is a double swivel joint, which receives the ends of the two handle bars, they being secured by bolts passing through them. The handle bars terminate in lugs, which fit within the swivel joints and which lugs are joints and which lugs are on their inner periphery provided with teeth. When
the handle bars are in position, these teeth the handle bars are in position, these teeth mesh into each other. This makes the wovements of the bars interdependent. If one bar is raised, the other one rises with it, if depressed, the other one is depressed ; hence the handles are always on the same level. Another feature about the baris. that the inclination of the handles is invariable. In the usual type of han-
le bar when swung up or down the inclination of the handles varies so that in the upperand lower positions hey are very uncomfortable, the inclination being only correct in one position. In the Lovell bar the in clination is always correct-one of the minor ad vantages of this bar applied in the storage of a bicycle when it is kept in the hallway of a house or other restricted space. This especially applies to shipment on trains, and when crated they can be shipped with bars in place, but dropped, there being no loose and attached handle bars to be tied on or otherwise disposed of.
The cuts show the bar in detail. Fig. 1 shows the handle bar when not in use or when ready for ship ping on the wheel. Fig. 2 shows the mode of adjust ment. Fig. 3 shows the bar inverted to its full height. Fig. 4 shows the bar about where it would be used by the average rider. Fig. 5 shows it as in use by a fast rider or racer.
As can be seen from Figs. 1 and 2, the handle bar (an be adjusted to any position desired, so that the rider can have his handle bar adjusted to where it suits him best. This adjustment does not in any way change the position of the grips, and is the only one o its kind on the market which gives any adjustment and at the sawe time leaves the grips in a comfortable or natural position.
The manufacturers are the J. P. Lovell Arms Company, Boston, Mass.

Exploring the Colorado River.

The San Francisco Call says: 2d Lieut. F. M. Davis, 4th Cavalry, who accompanied 1st Lieut. C. L. Potter, of the Engineers, in his late expedition down the Colorado River, is busily engaged on his official report of the undertaking. Although the report is primarily prepared for official eyes, it will be no ordinars com pilation of techrical information and forbidding sta tistics. On the contrary, the report will record one of the most thrilling experiences which human beings ever survived. Speaking of their adventures, Lieut. Davis said recently: "Some time near the 1st of October Lieut. Potter received orders to proceed to in vestigate the possibilities of the Colorado River for navigation purposes, from the mouth of the Virgin River to Yuma. The understanding was that he was o proceed to the Needles and from there be towed up he river, a distance of 250 miles, by Indians."
The adventures of the party, as described in the Call, were very thrilling. As Indian boatmen refused to brave the oruel rapids of the treacherous river, two old trappers were hired, who, for $\$ 5$ a day, were willing to undertake the risk. Thev were experienced water men and cool headed. They had bow and stern lines each 200 feet long, and at one point had to send the men up on cliffs 100 feet high. from which, by the aid of the lines, they would "snub" the boat around the ledges of the canyon walls. In one day, within six and one-half miles, they shot fifteen dangerous rapids.
which we might climb and draw the boat. It was useless, and to attempt to run that frightful fplace would have been madness. It was at this point that Major Powell's men abandoned him. We searched for the trail by which they escaped from the prison-like nclosure, but in vain. In our explorations I had sprained my ankle, and we were compelled to lie over couple of days until I could walk. In the meantim Lieut. Potter investigated several branch canyons in the hope of finding a means of egress. On the Arizon side he followed a canyon for eight miles, to where it abruptly ended in a perpendicular wall 4,000 feet high.

Fig. 6.-THE KITE.

He followed a canyon on the Colorado side fifteen niles with a similar result. At last we determined to take desperate chances. Taking all our provisions and outfit from the boat, we prepared to attempt to ollow a faint bighorn trail for a few miles. Lieut. Potter and the rest of the party went on ahead, while I stayed with the boat. The plan was to turn the boat loose and let it shoot the rapids empty and unguided. Lieut. Potter and his party would attempt to catch it as it went by. I waited half a day, and in that time the lieutenant bad reached the river three miles further on. Then I turned the boat loose, and in ten minutes it shot by them like a race horse. That left us but one alternative, to follow the bighorn trail. Taking provisions, a blanket each, and our firearms, we started on this perilous journey. Sometimes our path was 100 feet wide, sometimes for 100 feet we had scarcely six inches to cling to. In the latter situation our sensations were horrible. Over 1.000 feet below us yawned the black chasm; beneath us the rock was treacherous and slippery. It was always level, always the same dizzy height from the white, brawling stream below. For twenty-two miles we followed this dangerous trail. Then, with feelings of joy, we emerged upon the Hualapais Desert. We were three days in crossing this. We had plenty of water and provisions, but the men's shoes had given out and they suffered greatly from the hot sand and the cacti. On the third day we reached the Union Pacific Railroad and were taken up. We then proceeded to the Needles and completed the trip as originally contemplated without incident. We found that the river could not be navigated advantageously by any vessel drawing more than two or three feet of water without the expenditure of an iumense sum of money."

The Under-running Trolley

 Patent.Judge Townsend, of the United States Circuit Court at New Haven, Conn., on the 7th inst., rendered a decision in the suit of the Thomson-Houston Electric Company vs. the Winchester Avenue Railroad Company, declaring one of the Van Depoele under-running trolley patents in suit to be invalid and sustaining the other. These patents are controlled by the General Electric Company.
The patents upon which suit was brought are Nos. 495,383 and 495,443 , both bearing date of April 11, 1893. The broad character of the patent No. 495,443 is illustrated by the 6 th claim, which is as follows:
6. In an electric railway, the

THE LOVELL ADJUSTABLE HANDLE BAR FOR BICYCLES. Before them seemed almost certain destruction, and to combination with a suitable track and a supply con-
turn back was impossible. The further they went the deeper and blacker became the canyon. Concerning rapid No. 26, Lieut. Smith says:
"Here on both sides towered the steep black walls, 1,000 feet high. Between these walls for a mile there was nothing but angry, hissiug foam. We examined first one side and then the other for ledges along
combination with a suitable track and a supply con-
ductor suspended above the track of a car provided with a swinging arm carrying a contact device in its outer extremity and means for imparting upward pressure to the outer portion of the arm and contact, to hold the latter in continuous working relation with the under side of the supply conductor, substantially as described.

recently patented inventions.

 Engineering.Steam Engine.-William F. and Eugene W. Cleveland, Rounthwaite, Manitoba, Canada. This is an engine of simple construction, designed to afford a bigher than usual degree of efficiency by reducing
to a minimum back pressure in the cylinder. It bas a nain and a supplementary exhaust pipe, the ends of the pipes being alcnggide each other, and the upper end of the main pipe extending above the upper end end of the main pipe extending above the upper end
of the supplementary pipe, and creating suction over the
latter, removing atmospheric pressure and securing a latter, removing atmospheric pres
more prompt and perfect exhaust.
Constructing Sewers, Subways, etc.-Harry P. McDonald, Louisville, Ky. This inventor provides an apparatus comprising a pair of telescopic shells, the rear one having an annular shoulder pressing against the line of the conduit, the sections being posite directions. Means are provided for temporarily sheathing and applying a permanent cement lining, peculiarly arranged plunger or feed devices setting the sheathing and compressing the concrete as the sheathing and cutter carrying means are forced forward. A carryng mechanism is provided for removing the loose ea lining
Generating and applying Vapors. -Oreon S. Rhodes, East Stroudsburg, Pa. This improvement is for the generation of vapors of volatile liquids
and driving motors thereby, the boiler fluid being preferand driving motors thereby, the boiler fluid being preferably a fixed oil boiling at a high temperature, giving great enerated from a volatile liquid combin the vapor being as, a volatile liquid, or a liquefied gas. The boiler and engine form but one machine, both making use of the same boiler fluid, the construction being such that the uel is utilized to the greatest advantage and the danger rom explosion is reduced to a minimum.

Electrical.

Antisparkle Commutator Com-pound.-John R. Davis, New Iberia, La. To prevent provides, for application on the commutator, a compound containing a fatty substance mixed with a good conductor of electricity, the mixture being hardened by chalk. The compound is designed to reduce the wear of both the ommutator and the brushes, while preserving a uniform ly goo
tricity

Mechanical.

Wrench.-Matthew C. Gay and Joseph Heard, Arcadia, Fla. According to this improve-
ment a fixed head and hinged jaw are detachably connected, so jaws for pipes or for nuts may be interchang portions of the hinged jaw are guided and slip longitudinally into their seats, moving with such seats in the tilting movements of the jaw. In one tool 18 thus afforded a pipe wrench and a nut wrench, the device being also
Tack Machine.-Russell Hathaway, Elbridge G. Paull, and Cyrus D. Hunt, Fairhaven, Mass This machine has two cams operating two levers carry ing the leader and lazy knives, the cams actuatıng the eader knife and maintaining the lazy knife up and stil ments consiting principally in the form of the lazy cam, the form of the gripping cam, and the centering of the gripping lever. The machine is designed to be run at a its cam wy the gripping lever, and ditaninution of the of its cam by the grippin
wear of the leader knife.

Agricultural.

Sickle Bar.-James Smith, Granite Canon, Wyoming. This invention provides for a con rruction of the cutter or sickle bar to materially lighten he draught in mowing grass and harvesting grain, edges as well as for cutting grass, The bar has a series overlapping disk cutters and means for rotating adjaent cutters in opposite directions and reversing the diection of rotation, each of the alternate cutters being adapted to co-operate with either of the cutters betwee hich it is located
Planter.-John W. Shore, Angola Ind. This machine is adapted to plant two kinds of see alternately if desired, the seed being delivered to a chute oonduct it to the ground, and the planting being un orm as to distances apart and the number of seeds o rains delivered at a time. The shoe carrying the chut for the vertical adjustment of the chute, springs holding the shoe in yielding contact with the ground.
Stakf for Plants, Flowers or Trees.-Theron N. Parker, Quick, Iowa. This is an imrovement in devices for tagging plants, trees, etc., b ber of wire legs whose upper ends sie twisted togethe ne of the lengths of wire extending up above the othe and being bent at its upper end to encircle the stalk he plant. A sheet metal tag is attached by wire to the iop bend.

Miscellaneous.

Рhoto-Mechanical Printing.-Ed ouard G. D. Deville, Ottawa. Canada. To change the
continuous tones of an original into tones f rmed of lack and white dots by a screen placed in fro t of th photographic plate, this inventor has devised a new kin rent squares, disposed like the squares of a chess board.
Adjusting Beat of Clock Pendu lums.-Fred. F. Richey, Topeka, Kansas. This is
leveling attachment for a clock mechaniem controlling the pendulum and verge to such an extent that it will act properly even though the clock should be considerably
out of plumb. The device consists of a weighted swing
ing frame of a novel character arranged to carry the
verge, and is applicable to any form of clock mechanism. It is simple, durable, and inexpensive.
Vacuum Pan.-Alphouse F. Gaiemnie, La Fourche, La. This invention provides an improved separator for use on evaporators to save liquid carried by exhaust steam for use in separating oil and grease from in the placing of one or more cone-shaped plates in the path of the vapors. within a suitable casing, there being a receiving receptacle at the lower edge of each plate into the plates, such liquids being returned to the mass boiling in the evaporator.
Chocolate Dippers-Cyprien Grouset, New York City. Two patents have been granted this stick chocolate and other elongated forms of candy. It comprises a frame with cross wires formed into loops and transverse brace wires, forming a simple and inesensive device which may be made to fit odd shapes and hocolate solution the may be readily dipped into a arge quantity of candy. In the other diper comprively frame with cross wires and series of rings, provision is a a time, the creand dipping a large quantity of crea entire surface is exposed while being dipped.
Clamp Filing Device.-Edward W. arnham, Chicago, Ill. (C., B. \& Q. R.R.) This is a file tray provided with cord clamping devices, there being an independent cover with cord for winding around the holder. and one of the ends of the cord being removably secured in the clamping devices, which, with the cord,
furnish a guide to retain the files in place. The device is very simple and inexpensive one to facilitate compact and secure filing, and large orders for
placed by the railroad offices in Cbicago
Mattress Holder for Beds -Eliza th Calkins, St. Joseph, Mo. For holding the bedding etc., in place, in folding beds when they are turned up, struction, applicable to beds of all kinds and readily ad justable for different thicknesses of bedding. The holder is attached to the bed rail, and has jaws whic
engage the upper and lower sides of the bedding. The holder consists of two sections, one having a leg engaged by a pivoted notched locking plate on
section, to hold the sections adjustably locked.

SULENTIFIC AMERICAN

BUILDINGEDITION

DECEMBER, 1895.-(N... 122

TABLE OF CONTENTS.

1. Elegant plate in colors showing a residence in the colonial style recently erected at East Orange, N . J., at a cost complete of $\$ 1,000$. Three perspec-
tive elevations and floor plans, also an interior tive elevations and floor plane. also an interior
view. An excellent design well treated. S. W. Whittemore, architect, East Orange, N. J.
A Colonial house at Madison, N. J. Perspective ele vation and floor plans. Cost complete $\$ 5,500$.
Architects, Messrs. Child \& De Goll, New York Arch.
City.
2. A Colonial dwelling at Montclair, N. J. Two perspective elevations and floor plans. Architect,
W. E. Bloodgood, New York City. A unique design.
recently erected at Brick Church, N. J., at a cost of $\$ 2,700$ complete. A pleasing design. Architect, T. R. Cib Hall Phil
3. View of the new City Hall, Philadelphia, which has been erected at a cost of over $\$ 20,000,000$. The
building is of white marble and covers four and a half acres. Is absolutely fireproof. The height of this building is 547 feet $31 / 3$ inches, being, with two exceptions, the highest building on the earth. The exceptions being the Washington Monument and the Eiffel Tower. The next highest building on view of the facade of the magnificent new Bosto Public Library Be Bosto McKim, Mead \& White. New York City
4. Residence at Bensonhurst-by-the-Sea, L. I. Two per$\$ 8,500$. Architect, S. S. Covert, New York City.
5. Persective elevations and floor plans of a Oakwood, S. I., recently erected at a cost of $\$ 2,800$ complete. An attractive design.
6. Miscellaneous Contents: Testing house pipes and drains.-A combination bathtub and washstand lustrated.-The permanence of modern dwellinge and pabic works.-An improved steam and hot
water heater, illustrated.- Moving a large factory. -How to fix paper on drawing boards--A quick water heater, illustrated.-Improved toilet room
fixtures, illustrated.-A single track parlor door fixtures, illustrated.-A single track parlor door
hanger, illustrated.-An improved furnace grate, illustrated.-Cements in mason work.-An improved furnace, illustrated-A regenerative gas
heater, illustrated.-Improved woodworking maheater, illustrated.-Improved woodworking m
Scientific American Building Edition is issued onthly. $\$ 2.50$ a year. Single copies, 25 cents. Thirt wo large quarto pages, forming a large and splendia Magazine of Abchitectire. richly adorned with elegant plates and fine engravings, illustrating the most teresung example on and alled
of this work have won for it the any Architectural Publication in the world. Sold by $\begin{array}{ll}\text { all newsdealers. } \quad \text { MUNN } \& \text { CO., Publigirbs, } \\ & 301 \text { Broadway, New York. }\end{array}$

PBusiness and Personal.

ne charge for Insertion under this head is One Dollar a line
or each insertion : aiomut eipht words to a line. divertsements must te received at pubitication office as eariv

arine Iron Works. Chicago. Catalogue fre

C. S." metal polish. Indianapolis. Samples free Presses \& Dles. Ferracute Mach. Co., Bridgeton. N. Dynamo castugs. The E. M. Wks., Ronceverte, W. Handle \& Spoke Mchy. Ober Lathe Co.,Cbagrin Falls, The Garvin Mach. Co., Vaight and Canal Sts., New York. Use the Houzh Secu ity Casb Recorder. Entirely difrent from a Cash
outh Butler, N. Y.
The best book for electricians and beginners in elec
ticity is "Fixperimental Science," by feo. M. Hople mail su; Jiunn \& Co sublience, by feo. M. Hopkins. Q*-Send for new and complete catalogue or Scientific and other Books for sale by Mlunn \& Co., 361 Broadway
New York. Free on application.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
or no attention will be paid thereto. This is for our
information and not for publication.
eferences to former articles or answers shoul
Secrences to former articles or answers should
give date of paper and page or number of question.
Inquirien not answered ${ }^{n}$ reasonable time should

 Ulincrals sent for examination should be distinctly
marked or labeled.
(6682) I. J. C. asks for a formula for giving a platinum finieh on copper. A. The appearance bath composed of $13 / 4$ pinte hydrochloric acid, $71 / 2$ ounce arsenic acid, and $11 / 4$ ounces acetate of copper. The
article must be cleaned before immersion, and left in the arth till it has the color of platinum
(6683) A. W. F. asks how to make lye on a small scale. A. Hickory ashes are the best for mak-
ing common washing soft soap (when it is not desirable ing common washing soft soap (when it is not desirable
to use the potash lye), but those from sound beceh, maple, or almost any kind of hard wood except oak, will answer well. A common barrel set upon an inclined platform
makes a very good leach, but one made of boards set in a trough in V shape is to be preferred, for the strength of the ashes is better obtained, and it may be taken to pieces when not in use and laid up. First, in the bottom of the leach put a few sticks; over them spread a piece of carpet or woolen cloth, which is much better than straw, with ashes, moistened and and from 4 to 8 gt. lime; fill frmest in the center. It is difficult to obtain the full atrength of ashes in a barrel without removing them after day's leaching, and mixing them up and replacing. The top should be first thrown off and new ashes added o make up the proper quantity. Use boiling water for second leaching. This lye should be sufficiently strong
(6684) T. O'B. says: Can you give ine a quick process for making vinegar? A. In this process
dilute alcoholic liquor, to which one thousandth part of honey or extract of malt has been added, is caused to rickle down through a mass of beechwood sha vings prea vinegar generator. It may consist of a large oak hogshead or barrel furnished with a loose lid or cover, a few inches below which is fitted a perforated shelf, having a number of small holes loosely filled with packthread about six inches long, knotted at the upper end to prevent their falling through. Several small glass tubes, long also fitted in perforations in the shelf to serve as air vents. The vessel at the lower part is pierced with eight or ten holes equally distributed around the sides at about 6 inches above the bottom to admit of the entrance of air. A small siphon tube, the upper curve of
which is an inch below the air holes, serves to carry off he liquid as fast as it accumulates at the bottom. The acoholic liquid, at a temperature of 75 degrees to 83 de grees Fah., is run in on the sheif and slowly trickles
down through the holes by means of the packthread, difuses itself over the shavings, slowly collects at the botom, and runs off by the siphon exit. The air enters by the lowerholes, passes freely through the shavings, and escapes by the glass tubes. The temperature within the mains manns stationary at this point, while the action goes on three or four times through the cask before its n is complete.
(6685) J. B. asks: How much more power, if any, would be reqnired to propel a bicycle inches in diameter, 18 teeth, and with a rear sprocket wheel of $21 / 2$ inches in diameter, 9 teeth, than one having both the front and rear sprocket wheels $5 \% / 2 \mathrm{inch}$ es in diameter, with 18 teeth each; large wheels, 28 inches in diameter, equal conditions prevailing. excepting as to time required? A. As power is derived from both press ize and velocity, the condition named in the relative power required to drive the bicycle. The large whee sprocket must run faster, and with it the feet must make more treads with lighter pressure for a given distance,
than in the ordinary form as first named. The only value than in the ordinary form as first named. The only value

TO INVENTORS.
A more tban one nundred thousand and the preparation of more tban one bundred thousand applications for da-
tents at bome and abroad, enable us to understand the tenws at bome and abroad, enable us to understand the equaled facilities for procuring patentsevery where. A synopsis of the patent laws of the United States and all
foreign countries may be had on application and roreign countries may be had on application, and persons
contemplating the securing of patents, eitber at homeor abroad. are invited to write to this office for prices, which are low, in accordance with the times and our extensive facillies for conducting the business. Address way, New York.

INDEX OF INVENTIONS

or which Letters Patent of the

December 17, 1895,

anid EACH BEARING THAT DATE.

E: iie wite

> Am, ifinh ind
dian 10 moding:

Ited, new...	
ctory, large. moving a	
steners adjustable.	
Fender, the perfect	
Alor. Adansonia for paper. ..:	
Fire escape, Painter's	
Fires in sky scra	
Fish hatchery, New Y ork.	
$\begin{aligned} & \text { bibs } \\ & \text { has } \end{aligned}$	
age eletric amain	
Flowers, color of.	
od for	
Fruit in glas	
Fruit market New Mörk...	
nuel.artiticial	
blast. for mola	

Galton. Douglas. Galvanizing tank Gambier.	
rawbridg	
	s engines,
Gas matural, Kansas	
Geographical Congress........... ${ }_{\text {Gilhe }}{ }^{83}$	
3s. inkentionsin ancient	
167	
Glass, porosity of................. ${ }^{\text {Glis }}$	
Glasg, silvering: ${ }^{\text {Glowworm }}$	
Glucinium carbide................. ${ }^{345}$	
Glue and sizing manuracture.. . 11	
Gold mining, improvement....... 314	
Goid saving apparatus*181	
Gold and silv	
dyear ${ }^{\text {in }}$	
Greek lankuage................: ${ }^{380}$	
Grubs, rat tailed	
Grover, William O. Guard, life, for cars	

N

Founded by Mathew Carev, 1785.	
HENRY CAREY BAIRD \& CO	
indestrial Publishers, Bouksellers \& importers S10 Walnut St. Philadelphia, Pa.. C.S.A.	
Scientific Books, 90 pages, 8 vo, and our other Catalogues Scientific Books 90 pages, svo, and our other Cataloguesand Circulars, the wbole covering every branch of Scice applied to the Arts. sent free and free of postag	
BARNES	
20 New Friction Disk Drill.	
The speed can be instantly changed from 0 to 1600 wathout stopping or shiftung belts. powerapplied smanalestor largest drills within its range-a wor- derful economy in time and great saving in dril derful economy in time and gr breakage. Send for catal W. F. \& JNO. ARRNES CO. 1999 Ruby $\mathbf{~ S t . ,}$ Rockforả, 11 .	

THE SUBMERGED PIPE LINE ACROSS

 in SCIENTIFIC AMERICAN SUPPLEMENT, Nos. 1019
and 1, Price 10 cents each. To be had at this
office and from all newsdealers.

Bauer's Economical Flue Scrapers
 E. RAYFIELD, 371 Dentborn St. CHICAEO

 2d Floor. Wilshire. Cleveland, 0.
Valuable Holiday Gift! A copr of Experimental Science

Seventeenth Eaition.

1:20 Puges and 110 Superb Cuts added.
Just the thing for a holiday present for any man
womar, stadent, teacher, or anyone
In the

 MUNN \& CO., Publishers. Office of the SCIENTIFIC AMERICAN
 VFICOX PAPER soo When exposed to the same light, GLOSSY Or MATT. No duu or rainy weather to interfere with your wor

 Nepera Chemical Co.

Genuine Hard Porcelain ELECTRICAĹR PURPOSES. Prices and Estimates on Special
Work Given on Application. BRUNT \& THOMPSON, Successors to HENRY BRUNT \& SON, Manufacturers.
East Liverpool, Ohio.
 NICKEL ELECTRO-PLATING Apparatus and Material. Hanson \& $\begin{array}{r}\mathrm{THE} \\ \text { VanWinkle } \\ \text { Co } \\ \text {. }\end{array}$

 BICYCLE APPARATUS CO., 201 Clark St., Chicago, III. ANDERSON AUTOMATIC LETTER COPIER.

THE SIMPLON TUNNEL.-DESCRIP

 Wilson's Common Sense Ear Drums.
New scientific invention, entirely differen
 Louisville Trust Co. Building, Lousville, Ky, Ment

THE "ROUND BOX TYPEWRITER RIBBONS M. \& M. CARBON PAPERS.

Give perfect satisfaction When
others fail Used byy nearla bul Unite
States Government Department.

Cor. Park \& B.R. Aves., Park Ridge, N.
 24.26Wdaxeesf: CHICAGO

Gearhart's Family Knitter.

STORAGE BATTERIES ${ }^{\text {tor All furpoese }}$

American Battery Co.
Best Battery for Gas

PROPOSALS

 Inventive Problems Solved Ideas dedevel
 Shorthand by Mail Thorouphy tayme bin ree SCROLL SAWS Foot Powin Machinef. Toolt MACIGLANTERNS WAHTED ADO Fop Sill ICE PTy BI-SULPHIDE for nise in, tharts, Rilling ingoats

AARBORUNDUNO

FUZZLE PENKNIFE, 10 c . Whern

INCUBATOR:
 book isworth dollars toyou. Address
A. F. Williams, 61 Race St., Bristol, Coon.

F. C. AUSTIN MFG. CO.,

ZENTMAYER'S \quad MICROSCOPES Used and indorsed by the leading Professors
and coileges os throughout the work.
 ZENTMAYER, 211 So. 11 th St., Phila., Pa.
The Scientific American
PUBLICATIONS FOR 1896.
The prices of the diferent pubin ations in the United
States, Canada, and Mexico are as follows:
$\begin{gathered}\text { The Scientific American (weekly). one year } \\ \text { RATE }\end{gathered}, \$ 3.00$ The Scientiffc American Supplement (weekly), one
year.
.
.00 The Scientific American. Export Edition in which
isincoror
one e ent
 COMBINED RATES.
The Scientific American and Supplement -- The Scientific American and Architects and Build:
ers Edition,
5.00 The sctentinc Cuilders Edition, - - - - . 9.00
tects and Build d Builders Edition,
 MUNN © CO., 361 Brondwas, New York.

Any Boy

"Rugby" Watch

CATALOGUE, No. 61, will know mor WATCHES
than they would learn
pase of adverisements.

The Waterbury Watch
 Enjolior C. the tin plate industry in the =. .

The

American
Bell Telephone
Company,
125 Milk Street, Boston, Mass.

This Company owns Letters Patent No. 463,569 , granted to Emile Berliner Norember 17, 1891, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Telephones.

DAIMLER MOTOR COMPANY, Highest Grade Single and Twin Screw Launches.

Safest, cleanest and speediest power boat built No smoke or smokestack, no boiler, no elecRun on one pint of gasoline per horse powe per hour, and are under way in less than one minute. No licensed engineer or pilot. Also Stationary Motors.

OFFICE AND WORKS, "STEINWAY," LONG ISLAND CITY, N. Y. THE BICYCLE: ITS INFLUENCE IN

DOES

 ANY- THING PHOTOGRAPHICThe Pocket Kodak.
 EASTMAN KODAK CO. Sample photo.and tooklet
for two $2-$ ent stamps. ROCHESTER, N. Y. THE FADING OF PIGMENTS.-A PA
 Price 10 cent
hewsdealers.

円PGF TOOIE are otton nearly ruined by using a gr
stone not adapted to to the work. Our quarries yroduce a large the variety of grits
 Three New Model Smith

PremierTypewriters
Have rou Examined Them. 2, 3 and 4 Y I EXAMINED THEM?

Address THE SMITH PREMIER TYPEWRITER COMPANY, Syracuse, N. Y., U. S. A.

WE ARE bUILDINa
 The Celebrated "HORNSBY-AKROYD"

The De La Vergne Refrigerating Machine $\mathbf{C O}$.

"OTTO"
ENGINES.
cities 0 op. Can be used in

$\substack{\text { or gas machines. } \\ \text { No } \\ \text { Boiler, } \\ \text { No Eusiue. Danger }}$

The Otto Gas Engine Wks., Inoerp'd, Philadelphia
Bristol's Patent Steel Belt Lacing

The Bristol Co.
Waterbury. Conu
HALF A CENTURY OF CYCLES.-AN interestiny hist
interent thime,
prosene-shaker,
bone

Hellay
Do You Play Cards?

Elegant in Design,

Superb Send two-cent stamp and we Superb in Finish. ${ }^{\text {win mail }}$ FREE the acme of perfection in cycle construction. Our souvenir game counter INDIANA BICYCLE CO.,

ENGINES, Boilersand Nachine foonity Nown

At $\frac{1}{4}$ Prich =asezswaz

Marine Vapor Engine Co., Jersey City, N. J - THE

Surnid Thinew
ESTABLISHED 1845 .
The Most Popular Scientific Paper in the World Only 83.00 a Year, Including Postage. Weekly--52 Numbers a Year. This widely circulated and splendidyy illustrated teen pages of usefal information and a large number original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery New Inventions, Noveltes in Mechanics, Manufactures,
Chemistry, Flectricity.Telearapby, Photography, Archi Chemistry,
tectilectricity. Telegrapby, Aghotography, Archi etc. Complete list of Patents each week.
Termin of Sillscription.-One copy of the Scien TIFIC AMERTCAN will be sent for one year - 52 numbers
postage prepaid, to any subscriber in the United State Canada, or Mexico, on receipt of Thiree Dollars by the publishers; six months, 81.50 ; three months, $\$ 1.00$. Clubs.- Special rates for several names, and to Post-
magters. Write for particulars. whe ers. Write for particulars.
The safest way to remit is by Postal Order, Draft Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed seldom goes astray, but is at the sender's risk. Address
all letters and make all orders, drafts, etc., payable to MUNN \& CO.., $\mathbf{3 6 1}$ Bromivay. New Yorks

Sicunitic Gumrtican \$upplement This is a separate and distinct publication from TH SCIENTIFIC Ambricas, but is uniform therewith
size, every number containing sixteen large pages ful of engravings, wany of wnich are taken from foreign papers and accompanied with translated descriptions The SCiENTIFIC American Supplementis publishe preserts the nost recent papers by eminent writers in
all the principal departments of Science and the Usefu Arts, embracing Biology, Geology, Mineralogy, Vatura
History, Geography Archæology, Astronomy, Chemi History, Geography Archæology, Astronomy, Chemis-
try, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Eneineering, Mining, Ship Building, Marine Engineering, Photogray, hy, Technology. ManuHorticulture, Domestic Economy, Riography. Medicine etc. A vastamount of freshand valuable information The most important Engineering Works, Mechanisms and Manufactures at bome and abroad are illustrate
and described in the STPPIEMENT. Price for the SUPLLEMENT. for the United States,
anala, and Mexico, $\$ 5.00$ a year; or one copy of the SCIEATIFIC AMERICAN and one copy of the SUPPLIE MENT, both mailed for one year to one address for $\$ 7.00$.
Single copies, 10 cents. Address and remit by postal

guilding Follition.
The Scievtific american buniding edition i
issued monthly. $\$ 2.50$ a year. Single copies, 25 cent Thirty-two large quarto pages. forming a large and
splendid Mazazine of Architecture. richly adorned with elegant piates 'nd other fine engravings; illustrating th most interesting examples of modern Architectur A special feature is the presentation in each number a variety of the latest and best plans for private res erate cost as well as the more expensive. Drawings in
perspective and in color are given, together with Floo Plans. Descriptions, Locati,ns, Estimated Cost, etc. have won for it the Larwest circulation of any Arcbitectural publication in the world. Sold by al

Export Tidition of the Scientific American, with which is incoror Spanish edition of the SCIENTIFIC AMERICAN is published monthly, and is uniform in size and typography
with the Scientific American. Every number col tains about 50 pages, profusely illustrated. It is the finest scientific, industrial export paper published. It circuthes thronghout Cuba, the West Indies, Mexico, Cen -wherever the Spanish language is spoken. entific american export Edition has a larg uaranteed circulation in all commercial places through orld. Single. 3.00 a year, postpaid, to any part of the (1) Manufacturers and others who desire to secure foreign trade may have large and handscmely displayed nnouncements published in this editi
oderate cost. Rates upon application.

MUNN \& CO., Publishers.
PRINTIING INKS

