Srientific smerian.

ESTABLISHED 184E.
MUNN \& CO.. Editors and Proprietors. published weekly at
No. 361 LROADVAI, NEW YORK.
o. D. MUNN.
. E. BEACH.

TERMS FOR THE MCIENTIFIC AMELICAN. Remit ty potal or express money order., or by bank daraft or ceneck. MUNN: CU., 361 Rroadway, corner of Frauklin Street, New York.
 CW The safest was to remit is by postal order express money order, draft or wank chects. Make all remitances payabe to order of MUNN $\&$. pow Readers are specially requ-sted to notify the

NEW YORK. SATURDAY, DECEMBER 7, 1895.

TABLE OF CONTENTS OF
SCIENIIFIC AMERICAN SUPPLEMENT
No. 1040 .
For the week Ending December 7, 1895.
I. ASTRQNQMY.-Tbe Star Sbowers of November.-An article on
tbis interesting phenomenon. -By W. H . DENNING.-

X. PENQLOGY. English Prisons

XIII. PSYCHOLOGY Y.-How to Make the Rrains Grow.-A lecture

IMPROVEMENT OF BOSTON HARBOR.

A movement is on foot to procure from Congress the channels at Boston, so as to admit vessels of the larg est class. A depth of 30 feet is necessary, while at present only from 23 to 27 feet at mean low water are available. Boston is now one of our most important shipping ports and enjoys a great and growing commerce. There should be no delay in granting the most liberal appropriations for a work at once so necessary and advantageous to the whole country

THE UTILIZATION OF WIND AS A MOTIVE FORCE
For many centuries wind has been used in the countries of the old world as a motive power. In some of the low lying lands of Central Europe the lumbering old windmill is still one of the characteristic features of the landscape.
In this country the windmill has of late years been greatly improved and brought extensively into use It is estimated theredare over half a million windmills now running, and the annual increase in sales is esti mated to be upward of 50,000 . They are mainly used for pumping the domestic water supply; in many of the Western States a farm is scarcely considered to In some cases the mills are put to such work cutting feed for stock, grinding corn, and the various lighter mechanical work of a farm. The success of the improved windmill in America has encouraged the manufacturers to push the trade in European countries and there is to-day a growing demand in the old world for these very useful and economical machines. The chief drawback to the use of wind-driven motors is that the power is intermittent and uncertain. It has often been proposed to store up this power, so This ean unly storage can be accomplished with economical result is open to question.
Water might be raised a certain height and stored in tanks prepared for the purpose. But on the basis that one horse power would require the lifting of 33,000
pounds one foot in one minute, it is evident that it would require large storage tanks and much time to lift enough water to provide a supply of any practical value. To this must be added the cost and care of a calculation shows that to furnish a constant supply of one horse power for a day of ten hours would require the daily storage of 47,000 gallons of water at a height of 50 feet. To accommodate this would require a tank 20 feet square and 16 feet high. 'fothe expense of such a tank must be added the cost of the strong tower
which would have to be built to carry at sucio a height this load of nearly 200 tons. The cost of receivers and motors for the utilization and storage of compressed air would in like manner largely neutralize any appar ent utility of such device.
To store up sufficient electrical energy to run a on horse power motor for a day of ten hours would require pounds. They would would be from 1,600 to 1,700 space; and with the motor, belting, shafting and general fittings complete, the plant would cost abou $\$ 500$.

There would be a certain amount of drawback to the use of this system in the fact that the handling of a battery necessitates some technical knowledge and
skill; a consideration that must necessarily limit the range of its application. Of the three systems of storage, the last mentioned would seem to be the best; and with further improvements in the way of automatic devices for regulating the charging and discharge of the batteries, we may look for a mor extended use of this system in the future.

THE CHICAGO TIMES-HERALD MOTOR RACE.

It was extremely unfortunate that the weather shouid have interfered so seriously with the Chicago Times-Herald motocycle contest, which came off at that city on Thanksgiving Day. The recent storm had left the roads heavy with snow and mud. We are told that "for miles on the west side the boulevards were unbroken fields of snowbanks and slush." Six machines lined up for the start: The Duryea, of Spring field, Mass.; the Morris \& Salom electrobat, of Phila delphia; the H. Mueller motocycle, of Decatur, Ill.; the R. H. Macy, of New York; the De la Vergne. of New York; and the Sturges electric motocycle, of Chicago. The Roger motocycle, with a view to giving it a long distance test, was started from New York to Chicago by road on November 15; but it was stalled by snow when it reached Schenectady

Two of the machines covered the distance fixed for the race ; the first being the design of an American inventor, Charles E. Duryea, of Springfield, Mass. His vehicle, a gasoline motocycle, covered the fifty-four miles in 10 hours and 23 minutes; a really creditable feat, when we consider the wretched state of the roads. The H. Mueller, also an American machine, was second, making the journey in 1 hour 35 minutes longer time.

Sturges electrical machine made no effort to cover any reat part of the course.
The R. H. Macy had to retire after covering half the isrance on account of broken running gear.
Although it is to be regretted that the recent storm should have spoiled this most interesting contest a regards the number of contestants and the rapidity with which the course was covered, we must bear in mind that the great severity of the test speaksall the more favorably for the excellence of the vehicles which completed the journey
The storm of a day or two previous had completely paralyzed vehiculal transportation in the very distric where the Duryea motocycle completed a fifty four mile journey at a five mile gait, and came in to the winning post none the worse for the trying ordeal No better proof could be given of the all round excellence of this vehicle. The greatest care must have been exercised in the proportioning of parts, and the general setting up, both of the motor and carriage, to enable it to battle for ten hours against the combined obstacles of mud and snow.
It is, moreover, greatly to the credit of the manu facturers that all this strength should have been ob tained without the sacrifice of general appearance. As shown in the illustration, the Duryea motocycle is certainly an eiegant "turnout," and for looksit could hold its own with the average horse carriage of to day.

Undoubtedly the motocycle has come to stay. For private use, as compared with the horse carriage, it has many points in its favor. The space required for tabling would be merely that occupied by its own bulk; and its running expenses would be limited to the fuel consumed and such repairs as might occasion ally be required.

We think that this new means of transportation is destined to play an important part in the question of city traffic. In the main thoroughfares of the large cities traffic is badly congested. The adoption of the motocycle will largely relieve this, for the reason that it occupies only about one-half the space of the horse carriage; moreover, it turns in a much smalle circle, and is in every way more flexible in a crowd thoroughfare
The metaphorical allusion to a flow of water in speaking of city trafticis well chosen. The "stream of traffic" is su bject to the same laws as any fluid moving in a fixed channel. The more easily the particles ad just themselves to each other, the more rapid will be the flow, other things being equal. Nothing hinder the flow of traffic so much as a line of vehicles mov ing on a fixed track and having the right of way over other traffic. If such a thoroughf are as Broad way, in New York City, were asphalted from end to end, and its vehicular traffic carried on by various forms of the motocycle, its capacity would be largely increased.
The force of this statement will be realized by any one who has watche the ease with which the bicycle can thread its way through a crowded thoruughfare Making allo wance for its larger bulk, the motocycle hows an equal facility of control.
The general adoption of this vehicle, and the conse quent removal of many thousands of horses from the streets of our cities, would result in greatly improved sanitary conditions. The introduction of the trolley and the cable car removed the nuisance in part, it is true, but it still exists. A gusty wind will raise at any time in dry weather a cloud of dust, which is com posed more than anything else of pulverized manure. The gravity of this nuisance, viewed from a sanitary standpoint, is not generally appreciated. The adop tion of any device, such as the motocycle, which wil abolish the horse from a city's streets, would be wel comed by its sanitary officers as largely conducive to public health.

Wire Flywheel.

Among the most recent and novel applications of wire, attention is drawn in Hardware to the wire fly wheel lately erected at the Mannesmann Tube Company's works, Germany, and especially notable, in view of tine well known fact that heavy flywheels, driven at high velocities, piesent such dangers of breaking asunder from the great centrif ugal force de veloped. The wheel at the factory mentioned is de scribed as a cast iron hub or boss, to which are attach ed two steel plate disks or cheeks, about 20 feet in diameter. The peripheral space between the disks is filled in with some seventy tons of No. 5 steel wire, completely wound around the hub, the tensile resistance thus obtained being found to be far superior to hat of any casting.
This huge flywheel is driven at a speed of about 240 revolutions per minute, or a peripheral velocity of 2.8 miles per minute, or approximately 250 f eet per second, which is said to be nearly three times the average speed of any express train in the world. For such a constructed flywheel the length of wire is estimated at about 250 miles. The use of paper is also regarded with favor for large flywheels, the tensile strength of paper being enormous, and it is quite possible that some of the new big wheels will be built up with a paper rim.

A writer in Longman's Magazine says: The Mississippi has in the course of ages transported from the mountains and high land within its drainage area sufficient material to make 400,000 square miles of new land by filling up an estuary which extended from its original outfall to the Gulf of Mexico for a length of 500 miles and in width from 30 to 40 miles. This river is still pouring solid matter into the Gulf, where it is spread out in a fan-like shape over an extended coast line, depositing $362,000,000$ tons a year, or six times as much soil as was removed in the construction oí the Manchester ship canal, and sufficient to make a square mile of new land, allowing for its having to fill up the Gulf to a depth of eighty yards. Some idea of the vastness of this operation may be conceived when the fact is considered that some of this soil has to be transported more than 3,000 miles ; and that if the whole of it had to be carried in boats at the lowest rate at which heavy material is carried on the inland waters of America, or say for one-tenth of a penny per ton per mile over an average of half the total distance, the cost would be no less a sum than $\$ 1.190,000,000$ a year. Through the vast delta thus formed the river winds its way, twisting and turning by innumerable bends until it extends its length to nearly 1,200 miles, or more than double the point to point length of the delta, continually eroding the banks in one place and building up in another.

Paper Pulp Shoe Heels.

One of the latest features of wood pulb industry is the manufacture in Haverhill, Mass., of shoe heels from that material, white pine and other kinds being used for the purpose. In carrying out this art the plan as described consists in reducing the wood in the usual way in digesters, after which the pulp is put into a tank and mixed with the substances necessary for imparting to heel stock the necessary requirements such as alcohol, litharge, tar, degras and fish glue, a thorough mixing of these with the pulp being followed by soaking the same a day or two, so that the fiber may be penetrated, when another application of materials occurs. The object at this stage is to harden the pulp somewhat, so that it can be rolled into thick sheets and handled, shellac and borax accomplishing this, the pulp thus having the consistency of cement. At this point slakened lime is put in, and as this hardens when dry, the pulp must be rolled into sheets and cut into heels before the hardening takes place. With needed rapidity the pulp is now drawn from the tank in sheets, it being just thick enough, and there being specially arranged rollers and adjustments at the bottom of the tank for effecting this. A series of pressures through press rollers reduces the sheet to the right thickness, and the sheet is next placed quickly upon the bed of a cutter; the wheels are now started, and in a moment the platen falls, forcing a hundred or more cutters upon the sheet, shaping out a heel each.-N. E. Lumberman.

Artificial Fuel

Anthracite briquettes have heretofore failed as fuel because the material has never been used in a sufficiently finely divided state. According to this invention, anthracite small coal ("duff") is passed through a disintegrator which will deliver it in such a condition that it will all pass through a sieve of at least twenty wires per linear inch, a finer condition being preferable. It is then mixed with (say) 6 per cent of equally finely powdered pitch, and the mixture is passed on to a pug mill. wherein (say) 6 per cent of coaltar or otherliquid ture prepared in this way is heated by superheated ture prepared in this way is heated by superheated
steam and compressed into briquette moulds at a pres sure of abou ttwo tons per square inch. If it be desired to render the briquettes smokeless, they may be graduallyheated to about 800° or $900^{\circ} \mathrm{C}$. It is claimed for these briquettes that each cakes separately in the furnace, that they are not deteriorated by rain, and that they are hard enough to bear tipping from a wagon or from sacks.-W. H. Biggs and R. R. Greenhow, Glamorgan.

Diastasic Ferments.

A misture is made of sand (90 pounds), starch (10 pounds), and water (10 pounds), and the whole heated by steam until the starch is gelatinized. Wheat or The steamed mass is cooled to $100^{\circ} \mathrm{F}$, and then mixed with a smali quantity of the spores of maize smut (Ustilago maydis). This is spread on trays and placed in a room kept at $80^{\circ} \mathrm{F}$, the air of which is kept humid. The mould spores grow rapidly and in about thirty six hours the moisture is shat off, when the pro duct quickly dries. If the growth be aliowed to continue longer, spores are formed which are useful for subsequent operations.
The finished product, either before or after drying, s extracted with water ; when it vields a solution rich in diastase. and which can be employed as a substitute for malt.-C. L. Hart, Chicago, U. S. A.

The toll for wheelmen on the Brooklyn Bridge has een reduced from three cents to one cent, and legisation is now expected which will make the bridge ree to ail riders. The system of stopping to buy a ticket, which was collected a quarter of a mile further on, has also been abandoned, and the rider now drops a cent in a box at the end of a stick as he rides past he ticket seller's booth.
The question is often asked, "How long will a ma chine or the tires thereon last?" Everything depends in answering this upon the machine's weight, its quality, the weight of the rider, the character of the roads ridden and the care taken of the machine. But taking average conditions, a wheel should be riable or four to six seasons, or at least 10,000 miles. With proper care, a well made pair of road tires should last the same length of time as the above estimate of a wheel's life, a pair having beea known in England to have traveled 25,000 miles and still be serviceable. The Wheel.
Cementing a tire to the rim is a task generally left to the repair man, as the thoughts of the trouble at tached to heating the cement and preparing it for use are enough to make the average person forego any desire to try the job himself. A way to cement a tire to any kind of a rim without heating the cement is by taking hard red cement, grind as finely as possible and let it stand for several hours in a large mouthed bottle, first having covered with benzine. An occasional shaking should be given it, until the cement is thoroughly dissolved, when it is ready for use. The rim should be cleaned with a cloth saturated with benzine, and a heavy coat of the cement applied to the rim with a brush. Then apply benzine to the part of the tire that sets in the rim, put on the tire and inflate hard. A tire cemented on the rim in this manner will never work loose. In order to remove it, benzine should be forced under the tire to soften the cement. The application of cement will suffice for any number of tires, as once on the rim it always remains. To keep this cement ready for use, it should always be corked.-N. Y. Recorder.
[And to prevent explosion, see that there is no fire [flame within a mile of the benzine.]
In Vienna, Austria, all bicycle riders before obtaining permission to ride on the public streets are required to pass an examiuation. They are required to ride be tween boards laid on the floor without touching the sides or edges of them. At the word of command they must be able to dismount either right, left or backward; until the rider passes this examination satisfactorily, a license to ride on the public highway is refused him.
An American turist is said to have recently sen his bicycle from Lond on to Paris by mail at a cost of a few pence, and received it in perfect order. The English parcels post now carries mail packages not over twenty pounds in weight. and not of a higher value than $\$ 100$, from any point in England to any place in France at what appears to be a ridiculously low tariff. The bicycle weighed just twenty pounds. The wheel and handle bars were removed from the frame and carefully wrapped in heavy paper, so as to make a compact bundle, before the postage was paid, and when the wrappings were removed at the tourist's hotel in Paris, the machine was in perfect condition.
In East Orange, N. J., the Board of Education ha just erected a special building for storing the bicycles ridden by pupils. It is 60 feet long and 16 feet wide with racks on both sides and a passageway between or the wheels. The wheels are stored here during school hours, the building being locked up by the jan itor, and opened at noontime and at the close of school This is probably the first building that has ever been erected as an annex to a school for the purpose of stor ing the bicycles of the pupils.
When the bicycle is put away for the winter, it should be thoroughly cleaned and vaseline or gun rease rubbed over all the bright parts, and the bear ings should be flushed with oil. The tires should also be thoroughly cleaned, and the machine inverted so as to rest on the handle bar and saddle, so that the weight will not rest on the tire. A bicycle stand is still better, or the wheel may be suspended from the ceiling. The tires should be kept fairly hard during the winter.
A new horse and bicycle riding academy, of larg dimensions, is now being erected in New York City, at Sixty-sixth Street and Central Park, west. A nove eature will be the bicycle ring upon the roof. 300×90 eet ; there will also be a riding ring, 200×90 feet, and an inclosed bicycle ring, 234×90 feet.
The latest invention of the French is a bicycle for use on land and water. It is described in Hardwar as follows: "The wheels are preferably of copper their side plates inclosing a large central air syace The rear wheel, forming the drive wheel, has on it sides lateral blades to engage the water when the bicy cle is so used, and its felly is toothed to enable it to take hold of ice when the rubber tire, which is only designed for land use, is removed. To hold the bicycle upright when used in the water, side weights are con-
nected by suitable bails to the wheel axles, but when the machine is used on land, these weights are raised by chains which pass through a tube depending from the frame bars, links of the chain engaging a stop or pin to hold the weights raised. The saddle of the machine is of a form designed to prevent the water from splashing up against the rider, and has at its rear end a lateral mud and water guard."

Demand for Five Weeks old Chickens.

At a large stock farm in Maryland, where a spe cialty is made of poultry, it is stated that 20,000 young chickens have been marketed in the year past, and that a single hotel in New York City would be glad to make a contract for the entire production. A "baby white " Plymouth Rock "broiler" is said to be the especial favorite, and one explanation of the manner in which they have come to be so popular is thus given by the Rural New Yorker : "A few years ago the family of one of our American millionaires went to Paris and ate a dinner at which little birds were served -one for each gruest. They were smaller than ordi nary broilers, one whole one providing about meat enough for each person. This seemed like an agree able fad, and when they returned to America this family demanded these little birds in place of broilers This fashion has spread among the rich until a plump chicken five weeks old will often seli for as much as a large broiler. Of course this means a gain to the feeder of at least a mouth's feeding. It just illustrate how changes in fachioa strike below the surface into the production of articles of food. The rich and fastidious demand delicacies-fruits, vegetables and meats out of their natural season. Tbis demand stimulates inventive genius, and men are found who invent the appliances needed to produce the artificia conditions required to grow plants and animals out of their seasons. These appliances are improved and ex tended until what was once a luxury becomes cheap ened to a necessity, and rich and poor alike enjoy it That is the history of forced fruits and vegetables, broilers, hothouse lambs, etc."

The Cost of Bad Roads

The office of road inquiry of the Department of Agriculture has completed an interesting investiga tion relating to the use of the common roads of the United States. Returns have been received from about 1,200 counties, showing the average length of haul from farms to markets or shipping points to be 12 miles; the average weight of load for two horses, 2,002 pounds ; and the average cost per ton per mile, 25 cents, or $\$ 2$ for the entire haul. Estimating the farm products at $219,824,227$ tons in weight, and mak ing estimates on other articles carried over the public roads, it is calculated that the aggregate expense of this transportation in the United States is $\$ 946,414$, 665 per annum. Reports have been asked from the United States consuls abroad of the expense of haul ing where the roads are good, so as to render possible a calculation which will show how much of this large outlay is due to bad roads. The estimate is ventured, however, upon information in the office of road inquiry, counting the loss of time in reaching markets, the enforced idleness and the wear and tear to live stock and hauling machinery caused by poor roads, that two-thirds of the cost might be saved by an improvement of the roads.

The British Cruiser Blake

H.M.S. Blake recently had an eight hours' natura raught trial and a four hours' forced draught trial of her propelling machinery, subsequent to having her boilers retubed and fitted with Admiralty pattern ferrules in Chatham yard. Both trials were satisfac tory, the original specified indicated horse power of 20,000 having been easily maintained. The Blake, it ill be remembered, has two sets of triple expansion ngines for each screw, and the designed piston speed was 840 feet. There are six double-ended boilers, each with eight furnaces, and an additional single-ended boiler for auxiliary machinery. The detailed results re as follows :

On preliminary trial the ship made 21.5 knots, and the indicated horse power was 20,132 .

