Srimutifir smorian.

ESTABLISHED 184E.
MUNN \& CO.. Editors and Proprietors. published weekly at
No. 361 EROADWAS, NEW YORK.
o. D. MUNN.
A. E. BEACH.

thems for the erientific american.

 :

a motive force
For many centuries wind has been used in the countries of the old world as a motive power. In some of the low lying lands of Central Europe the lumbering old windmill is still one of the characteristic feaares of the landscape.
In this country the windmill has of late years been greatly improved and brought extensively into use It is estimated there are over half a million wind mills now running, and the annual increase in sales is esti mated to be upward of 50,000 . They are mainly used for pumping the domestic water supply; in many of the Western States a farm is scarcely considered to In some unless it can boast of its windmin pump. cutting feed for stock, grinding corn, and the various lighter mechanical work of a farm. The success of the improved winduill in America has encouraged the manufacturers to push the trade in European countries and there is to day a growing demand in the old world for these very useful and economical machines. The chief drawback to the use of wind-driven motors is that the power is intermittent and uncertain. It has often been proposed to store up this power, so that the supply can be drawn upon in calm weather This can undoubtedly be done; but whether such storage can be acc

open to question.

Water might be raised a certain height and stored in tanks prepared for the purpose. But on the basis that one horse power would require the lifting of 33,000
pounds one foot in one minute, it is evident that it pounds one foot in one minute, it is evident that it
would require large storage tanks and much time to lift enough water to provide a supply of any practical value. To this must be added the cost and care of a water motor to utilize this stored-up energy. A simple calculation shows that to furnish a constant supply of one horse power for a day of ten hours would requir the 50 feet. To of 50 feet. To accommodate this would require a tank
20 feet square and 16 feet high. ' O o the expense of 20 feet square and 16 feet high. 'Po the expense of
such a tank must be added the cost of the strong tower which would have to be built to carry at sucin a height this load of nearly 200 tons. The cost of receivers and motors for the utilization and storage of compressed air would in like manner largely neutralize any appar ent utility of such device.
To store up sufficient electrical energy to run a one horse power motor for a day of ten hours would require pounds. They would occupy some 20 cubic feet of space; and with the motor, belting, shafting and general tittings complete, the plant would cost about $\$ 500$.
There would be a certain amount of drawback to the use of this system in the fact that the handling of a battery necessitates some technical knowledge and
skill; a consideration that must necessarily limit the range of its application. Of the three systems of storage, the last mentioned would seem to be the best; and with further improvements in the way o discharge of the batteries, we may look for a more extended use of this system in the future.

THE CHICAGO TIMES-HERALD MOTOR RACE.

It was extremely unfortunate that the weather shouid have interfered so seriously with the Chicago Times-Herald motocycle contest, which came off at that city on Thanksgiving Day. The recent storm had left the roads heavy with snow and mud. We are told that "for miles on the west side the boulevards were unbroken fields of snowbanks and slush." Six machines lined up for the start: The Duryea, of Spring field, Mass.; the Morris \& Salom electrobat, of Phila delphia; the H. Mueller motocy cle, of Decatur, Ill.; the R. H. Macy, of New York; the De la Vergne, of New York ; and the Sturges electric motocycle, of Chicago. The Roger motocycle, with a view to giving it a long distance test, was started from New York to Chicago by road on November 15 ; but it was stalled by snow when it reached Schenectady

Two of the machines covered the distance fixed for the race ; the first being the design of an American in0 'ventor, Charles E. Duryea, of Springfield, Mass. His vehicle, a gasoline motocycle, covered the fifty-four miles in 10 hours and 23 minutes; a really creditable feat, when we consider the wretched state of the roads. The H. Mueller, also an American machine, was second, making the journey in 1 hour 35 minutes longer time.

Sturges electrical machine made no effort to cover any great part of the course.

The R. H. Macy had toretire after covering half the distance on account of broken running gear.
Although it is to be regretted that the recent storm should have spoiled this most interesting contest a regards the number of contestants and the rapidity with which the course was covered, we must bear in mind that the great severity of the test speaks all the more favorably for the excellence of the vehicles which completed the journey
The storm of a day or two previous had completely paralyzed vehicular transportation in the very district where the Duryea motocycle completed a ifty-fou mile journey at a five mile gait, and came in to the winning post none the worse for the trying ordeal No better proof could be given of the all-round ex cellence of this vehicle. The greatest care must have been exercised in the proportioning of parts, and the general setting up, both of the motor and carriage, to enable it to battle for ten hours against the combined obstacles of mud and snow.
It is, moreover, greatly to the credit of the manu facturers that all this strength should have been ob tained without the sacrifice of general appearance As shown in the illustration, the Duryea motocycle is certainly an elegant "turnout," and for looksit could hold its own with the average horse carriage of to day.

Undoubtedly the motocycle has come to stay. For private use, as compared with the horse carriage, it has many points in its favor. The space required for stabling would be merely that occupied by its own bulk; and its running expenses would be limited to the fuel consumed and such repairs as might occasionally be required.
We think that this new means of transportation is estined to play an important part in the question of city traffic. In the main thoroughfares of the larger cities traffic is badly congested. The adoption of the motocycle will largely relieve this, for the reason that it occupies only about one-half the space of the horse carriage; moreover, it turns in a much smalle circle, and is in every way more flexible in a crowd thoroughfare.
The metaphorical allusion to a flow of water in seaking of city traftic is well chosen. The "stream of anc" is subject to the same laws as any fluid moving just themselves to each other, the more rapid will be the flow, other things being equal. Nothing hinder the flow of traffic so much as a line of vehicles mov ing on a fixed track and having the right of way over other traffic. If such a thoroughfare as Broad way, in New York City, were asphalted fromend to end, and its vehicular traffic carried on by various forms of the motocycle, its capacity would be largely increased.

The force of this statement will be realized by any one who has watche the ease with which the bicycle can thread its way through a crowded thoruughfare Making allo wance for its larger bulk, the motocycle shows an equal facility of control.

The general adoption of this vehicle, and the conse quent removal of many thousands of horses from the streets of our cities, would result in greatly improved sanitary conditions. The introduction of the trolley and the cable car removed the nuisance in part, it is true, but it still exists. A gusty wind will raise at any time in dry weather a cloud of dust, which is com posed more than any thing else of pulverized manure. The gravity of this nuisance, viewed from a sanitary standpoint, is not generally appreciated. The adop tion of any device, such as the motocycle, which will abolish the horse from a city's streets, would be wel comed by its sanitary officers as largely conducive to public health.

Wire Flywheel.

Among the most recent and novel applications of wire, attention is drawn in Hardware to the wire flywheel lately erected at the Mannesmann Tube Company's works, Germany, and especially notable, in view of the well known fact that heavy flywheels, driven at high velocities, piesent such dangers of breaking asunder from the great centrifugal force developed. The wheel at the factory mentioned is described as a cast iron hub or boss, to which are attached two steel plate disks or cheeks, about 20 feet in diameter. The peripheral space between the disks is filled in with some seventy tons of No. 5 steel wire completely wound around the hub, the tensile resist ance thus obtaine being found to be far superior to that of any casting.
This huge flywheel is driven at a speed of about 240 revolutions per minute, or a peripheral velocity of 2.8 miles per minute, or approximately 250 feet per second, which is said to be nearly three times the a verage speed of any express train in the world. For such a constructed flywheel the length of wire is estimated at about 250 miles. The use of paper is also regarded with favor for large fly wheels, the tensile strength of paper being enormous, and it is quite possible that some of the new big wheels will be built up with a paper rim.

