SILR GROWING IN INDIA．

Though the Indian trade in silk has fallen off since the days when the Portuguese found the silk－laden ships of the merchants of Cambay the greatest prize they could win，or the industry constituted the chief source of revenue to the old＂Honorable Company，＂ yet still it forms in the raw a very appreciable item in the commerce of India．A recent number of the Graphic，London，contains an interesting article on the subject，from which we abstract the following par－ ticulars and illustrations：To see something of the conditions，both of silk spinning and weaving，no better centers can be chosen than Berhampore and Murshid－ abad．The Indian government has placed here its la－ boratory of practical sericulture under the direction of Mr．N．S．Mukerji，who was trained for his work at Cirencester Agricultural College（where he was gold medalist of his year），Lyons，and in Pasteur＇s labora－ tory．Unfortunately，among the other influences which have handicapped the Indian output of silk had come to be that of those diseases among the silkworms known to bacteriologists as Pé－ brine，Flacherie and Grasserie．By a long series
is，of course，the exceeding cheapness of labor that would give India such an immense advantage in the world＇s markets could only her possibilities in silk growing be fully exploited，and meantime the primi－ tive methods that have been in voguefor years are practiced for the winding and reeling with very little advance in the use of machinery．

Most of the rearing is done by villagers in their own homes，while the wild tussus cocoons are collect－ ed by the Santals－the great hunting and jungle tribe of Bengal－who go out with a large amount of super－ stition and many strange observances to gather in their harvest．The treatment of the silk is practically the same after the first process of steaming the co－ coons to soften them has been sone through，the tussus being subjected to a chemical bath which is not necessary for the cultivated material．When the cocoons are brought to the filature，they are spread out upon enormous trays of plaited palm leaf in the sun to dry，and a curiously brilliant scene of color one sometimes obtains from the mass of row upon row filled with bright canary and pale amber oval balls， against walls of dull Indian red，while about the in－
by women＇s fingers into hanks，and is then ready for the market．The exceeding delicacy of touch which the natives show in sorting the different grades and thicknesses of silk is，perhaps，to European eyes one of the most marvelous features of the industry．They de tect any variation of fineness instantly，and place a skein with unerring accuracy in the category to which it belongs．
At the great Alliance Silk Mills of Bombay－the only ones in the Dependency－there is a very large and in creasing outturn now of the lighter silken fabrics． There the machinery is all of the latest and most ap－ proved of modern patterns，and save for the presence of Eurasian and Parsee foremen and dusky skinned Hindoo hands，male and female，it would not be diff－ cult to imagine one＇s self in one of the great factorie of Manchester，Congleton，or Leek，whose products， indeed，these Bombay ones much resemble in quality coloring，and design，as aniline dyes are used，and Eu ropean patterns are freely copied．The Mohammedans are large buyers，but for them are woven specially the Mashru and Sufi，i．e．，＂permitted＂and＂lawful＂ma terials with an appreciable admixture of cotton，in

PLACING SILKWORMS IN THE SPINNING TRAYS AND REMOVING THE COCOONS

UNWINDING THE COCOONS．

DRYING COCOONS IN THE SUN

testing，sorting，and packing silk

THE SILK TNDUSTRY IN INDIA．

of patient experiments，Mr．Mukerji has not only succeeded in stamping out a great amount of disease， but has placed within reach of the village silk rearers a large available supply of perfectly healthy eggs which，after the long time that seems absolutely in dispensable for the native mind to overcome prejudice against any sort of innovation，they are now begin－ ning ${ }^{1 \sim}$ take advantage of．The Bengal worms are those scientifically classified as Bombyx Fortunatus and B．Crœsi．and differ from B．Mori of most of the other silk－producing countries in that they give more ＂crops＂in the course of the year，and require their food in a much younger and less developed condition． Instead，therefore，of the mulberry trees associated with silk districts here in Bengal，one sees literally mulberry fields which are cut down three or four times a year with a sickle like so much wheat．Mr．Mukerji and other experts are greatly in favor of introducing the European worms and system of culture to a greater extent，and in Kashmir and the Punjab－looked upon by many as a coming field of silk production－it is probable that climatic and other influences might give satisfactory results in due course，though experiments so far have not given unqualified encouragement．It
closure move dark figures turbaned in some rich，
bright hues，or babited in white or colored saris，with bright hues，or babited in white or colored saris，with
overhead the eastern sky glowing in its deep un－ clouded blue．Steaming is the next process，the co coons being brought to the hot chamber in large bas－ kets covered by a piece of sacking．When sufficiently softened they go to be unwound，and in a large fac－ tory this is perhaps the busiest scene of all．Each latai，as the wooden appliance on to which it is wound is called，is in charge of two persons，generally a man and woman or man and boy．The man（or sometimes a woman，as there is no sex restriction of custom in the natter）sits upon his heels upon a long raised stone bench before a bath in which the cocoons are kept moist．The fine silk filament passes through his ingers on to the latai beyond，which the woman or boy keeps in rapid motion so long as the thread re mains unbroken．A mong the poor native spinners in their own homes mechanism even more simple is em－ ployed，and one may often see there a woman windin the cocoon through her fingers while she keeps her mall rough latai of bamboo sticks in swift movement with her toes．When spun，the silk，which to non－ex－ with her toes．When spun，the silk，which to non－ex－
pert touch seems beautifully soft and even，is twisted
obedience to that injunction of the Prophet which forbids the wearing of perfectly pure silk．
Of lgreater interest，perhaps，from the point of view of an art craft，are the works that are executed upon the band looms of the silk districts．Down in Murshi－ dabad and Bernampore are still woven the old ashioned saris with the anchlas，or bordered end，in which is renroduced the immortal and universal knop and flower pattern，or those strangely conven－ tionalized forms of mango，the sacred fig，or the lotus， which have come down through the centuries，as well as the chefijor which are seven yard lengths of usually）plain，colored and bordered silks，which form part of the ceremonial garb of the Hindoo bridegroom． The shawls，too，are very interesting，though the art of weaving these is on the verge，it is to be feared，of extinction．For at present the secret in this district of setting the complex naksha looms necessary for making them remains a secret of an old man of eighty years of age，named Dubraji．There is a beautifnl ex－ ample of his work in the Imperial Institute of a white twilled ground，with a design probably suggested by the ivory and inlaid work characteristic of many parts of India．

The Faneral of Pasteur.

Amid the signs of national sorrow, the funeral of France, more than any other nation, knows how to do honor to the memory of those who have contributed to her greatness, and by giving a national funeral, as well as taking the cost of it upon herself, she has once wore shown the esteem in which she holds those who have devoted their lives to the increase of the world's knowledge and happiness. How very full was this ex pression may be gathered from the report of the London Times correspondent at Paris. We read : "Quite a small army of infantry, marines, cavalry, artillery, and municipal guards, mounted and on foot; deputations from all the schools and learned societies; most of those who speak and of those who govern and command in the name of France came to render homage to the stainless glors of this Frenchman, whose genius devoted its efforts to the whole of mankind, and who deserves the gratitude of the world, not merely for the labors which he accomplished, but for the new paths which he opened to science by the fresh discov eries which he made for the benefit of mankind." Shortly after ten o'clock on Saturday morning, the troops and innumerable deputations, which had assembled in and near the Pasteur Institute, marched past before the coffin containing the body of the illustrious investigator. The funeral procession was then organized. General Saussier, surrounded by his staff and followed by the first division of infantry, preceded the hearse, and behind him came a long line of depu tations, many of which had wreaths in their center. A number of wreaths were borue on litters, and others
were carried on six cars, each drawn by a pair o were cas.
"Along the route from the Rue Dutot to Notre Dame," says the Times correspondent, "the compact and silent crowd respectfully uncovered their heads as the hearse passed, and the two thousand soldier and policemen, drawn up in line to keep the way clear, had absolutely nothing to do. The pall bearer were M. Poincare, M. Joseph Bertrand, M. George Perrot, Dr. Brouardel, M. Gaston Boissier, and M. Bergeron. After marching for an hour and a half along the left bank of the Seine, the procession reached the square of Notre Dame. The aspect of the cathedral was most impressive. The presence of President Faure Greece, Cardinal Richard, the whole of the Diplomatic Corps, the ministers, the Institute of France, the offlee bearers of the Senate and the Chamber of Deputies, the red robed judges, the members of the univer sity faculties, in orange, red, and crimson robes, an the other distinguished persons invited-all this dis play of official mourning was coupled with and yet eclipsed by the profound silence, the manifest grief The immense crowd was a rare and impressive, if no a nnique spectacle."
The Royal Society was represented by Mr. W. T. Thiselton-Dyer, C.M.G., director of the Royal Gar dens, Kew. At the final funeral, which was held in connection with the centenary of the Institute, on the 25th ult., several of the officers and fellows of the society were present, together with many delegate from other of our learned societies.
After the service in Notre Dame, the coffin containing Pasteur's remains was removed to a catafalque outside the cathedral, and M. Poincare delivered an oration before it, on behalf of the government.
"Thus," says Nature, "does France venerate the memory of her noblest son. But France is not alone in her grief. The human race joins with her in mouriing the loss of one who has done so much for humanity and science. The name of him to whom the world owes so much good is imperishable."

The Chicago Times-Herald Motocycle Content.
All contestants will be on hand with their motocy cles at 8 oclock Saturday morning, November 2, at the junction of Jackson Park and the Midway Plaisance At a signal from the starter, a platoon of mounted South Park policemen will proceed west on the Midway Plaisance, followed by the competing motocycle formed in parade line, the vehicles being separated b spaces of about forty yards. In thjs order the moto cycles will move west on the Midway, through Wash ington Park and Fifty-fifth Street Boulevard to Hal sted Street, where the contest proper will be started The judges decided on this programme for the reason that three important railroad crossings are situated between State and Halsted Streets, over which it would be impracticalto conduct a contest in which the element of speed was a factor. At Halsted Street and Fifty-fifth Street Boulevard the motocycles will b tarted in pairs at intervals of one minute. Each mo ocycle will have assigned to it a referee or umpire who will pass upon all questions which may arise on the route from Chicago to Waukegan and the return to Lincoln Park. Each motocycle will register at the established relay points, namely, Jefferson Park, Half Way, Wankegan and Winnetka.
The judges decided to make a time limit of thirteen bours, which is based on the minimum time specified
in the recent Paris-Bordeaux motocycle contest. It is
confidently predicted that some of the vehicles will make the 100 mile run in less than half this time. No motocycle will be admitted to competition unless it first passes the examination at ihe preliminary tests which will be held October 29, 30, and 31. An exception to this rule will be made for such foreign vehicles as won prizew at the Paris-Rouen or Paris-Bordeaux races. All competitors should bear in mind that the judges will take largely into consideration the showings made in these preliminary tests.
There were present at the session of the judges October 22, Prof. John P. Barrett, city electrician President Henry Timken, of the National Carriage Builders' Association ; Colonel Marshall I. Ludington, C. F. Kimball and Leland L. Summers.

Prevention of Smoke on Locomotives
The third annual convention of the Traveling Engineers' Association was held at Pittsburg, beginning September 10 and lasting until the 12th. The balance of the week was spent by the members in visiting the Galena Oil Works at Frarklin, Pa., and the Pennsyl vania Railroad shops at Altoona, Pa. Among the re ports was one on the following subject :
"How can the traveling engineer assist in preventing the unnecessary emission of black smoke."
The committee on the a bove question say:
We consider the brick arch one of the greatest aids to the engineman in the prevention of smoke, inasmuch as the smoke and gases to a great extent are consumed in coming in contact with it, which in its absence would escape through the flues.
We consider a good solid fire the best, i. e., about six to eight inches good white fire, then when fresh coal is added there will be more heat units to ignite the smoke and gases than there would be if a light fire was carried, and there will be less likelibood of the air coming through the grates in too great volume. And further, because, if service is heavy, the heavy fire will stand the action of the exhaust better than a light one.
We recommend the wetting of the coal when weathe will permit of it, as the vapor arising from the coal when put in the fire will materially assist in the con sumption of sluoke.
We consider the baffle plate over the door of great value, inasmuch as the cold air that enters at the door when open will be turned downward onto the surface of the fire, a great percentage of which, in the absence of the plate, will pass direct to the flues.
In cities where a little smoke is annoying, w recommend the use of a good smoke consumer, which if in the hands of careful men, will do good work an prevent the emission of smoke.
Gigantic Long Horn Beetle in Spruce Timber
I send you a bug for a name. I found it in a cavity which it had to all appearances cut out for itself in an old piece of (I think spruce) timber, that had been for don't know how long under a pile of lumber. This bug was in the cavity, headed out, and fastened its jaws viciously on a piece of straw when it was placed close to its head.
The cavity was oval in shape, about $13 / 4$ to 2 inche ong, $3 / 4$ to 1 inch wide and perhaps $5 / 8$ inch high, with an opening in front. The wood was somewhat rotte on top of the hole, but only dozy for the larger par where it had cut it out.
It was exceedingly lively when discovered, but did not attempt to run far.
C. A. Sumner.
answer by the late professor c. v. riley
The light brown beetle with long feelers having ylindrical joints and three rather siout spines on each ide of the thorax, sent by Mr. C. A. Sumner, of Mil ford, Mass., is known as the Cylindrical Orthosoma (Orthosoma brunneum, Forst.) There are several of these brown longicorns known to occur in the North American fauna, some of them three times as large as the present species. The larvæ of this and the allied species are large, fat, elongate creamy white grubs the posterior portion somewhat narrowing, but the an terior portion broadening and terminating in a dark horny head armed with a pair of strong jaws. The whole body is quite wrinkled and there are especialiy series of transverse wrinkles both on the upper and under or dorsal and ventral surfaces of the principa segments. It has long been known that the larva of
this particular species feeds in old stumps, whethe alive or dead. of various pines and spruces, so tha there is nothing surprising in the beetle being found in an old piece of spruce timber. The larva had fed on the timber and had transformed to the beetie which was probably just ready to eat its way out to the surface when found. The larvæ of some of the other species, especially of the broad necked Prionu (Prionus laticollis, Drury) and of the tile horned Prionus (Prionus imbricornis, L.), affect not only the old stumps, but the live roots of a number of differen trees, including various orchard trees, like the apple and have been found particularly injurious at times Rilapevine roots, as was shown many years age pp. 87-91).

The Baltimore Tunnel Electric Locomotive in

The first of the lot of four electric locomotives to be built bs the General Electric Company for the Balti more \& Ohio tunnel at Baltimore is in active service The second one is being shipped in parts. The contrac requires the engines to haul 15 loaded passenge cars and a locomotive at 35 miles an hour and 30 loaded freight cars and locomotive at 15 miles an hour through the tunnel up an 0.8 per cent grade; the object bein to keep the tunnel free from locomotive smoke, which would, of course, be aggravated when pulling up the grade. The tunnel is large and handsome and wel lighted by incandescent lamps on the walls, and through it passes the trafflc of the Philadelphia Divi sion of the Baltimore \& Ohio Railroad.
There have been some changes on the electric loco motive since it was put in service, but probably not more than might be expected from the limited ex perience had so far with such motors. The locomotiv is now pulling all the eastbound freight trains through the tunnel, that is about 12 trains a day. Going west the trains run through without steam, th \rightarrow grade de scending at 42 feet per mile all the way.
The speed made with the guaranteed load is not so fast as agreed upon. About eight miles an hour is all that the locomotive is capable of making with the 30 loaded cars and a locomotive, according to the state ment of the engineers on the ground. It is said that the motors will not stand the current required to haul such a train up the grade at 15 miles an hour. Thi is not to be wondered at when it is known that the current required at eight miles an hour is 1,500 am peres,'the motors being in series, so that all the current lows through all of the motors.
The locomotive is not being used now on passenger trains. The swoke clears from the tunnel between trains when pulled by steam locomotives, if the trains are not too close together, so that the freedom from smoke that could be obtained by the use of the electri locomotive is not very important. The steam locomo fives on the freight trains that are hauled through make a good deal of smoke while in the tunnel and moving at eight miles an hour.
An observation made recently shows that the freigh locomotives hauled ata slow speed foul the tunnel as much as the passenger train locomotives running at a high speed and using steam.
The length of the tunnel run is about $1 \cdot 4$ miles, and the useful service of the electric locomotive is about 28 miles a day, as learned from the attendants. The cost per mile run is. of course, very great, as it must include a heavy charge for that part of the stationary electric plant that is not needed for lighting the tunnel, yards and shops.
Whatevermay be the outcome of the use of electric ocomotives in the Baltimore tunnel, there is one valu able practical lesson already : there is a possibility of getting any reasonable pull with an electric locomo tive. This fact will be impressed on the mind of any one who sees the machine take hold of a train of 30 cars and start them without using the slack. In the matter of speed, there is nothing about this service that is intended to show how fast electric locomotives can run.
A far better example is found in suburban street car lines. It has been said in the press reports that the Baltimore electric locomotive has reached 61 miles an hour. This is quite probable, as there is sufficient power to drive the locomotive and several cars at 100 miles an hour if the motors were all placed in multiple instead of series. Speed with electric motors is largels matter of connection of the wiring, and high speeds are generally more feasible and economical than slow sped with heavy loads.
Taken as a whole, the Baltimore tunnel engine is a very interesting mechanism, and the controller in the cab for directing the electric current is a study in details that makes a profound impression on the layman. The sparking in the overhead conductors has been reduced by using two collector, but the rusting of the ron conductors is a continual source of annoyance. It is well worth a trip to Baltimore to see the locomotive pull a train, and the experience of the next six months with this plant may be very interesting to electricians as well as to railroad men who are looking to electric locomotives to bring back the passenger traffic which the street lines have "stolen." It may be well to say, in closing, that this theft is simply an illustration of the fact that the natural public, like nature herself, follows the line of least resistance, and it is often easier and more comfortable to take the trolley car than to walk to the station and wait for a train.-Railroad Gazette.

Traction Trials in Berlin.
The Elektrotechnischer Anzeiger announces that the municipal authorities of Berlin have resolved to grant a credit of 50,000 marks ($\$ 10,000$) for the purpose of carrying out experiments with various forms of traction, more particularly with the Serpollet steam car, the Dessau gascar, and the improved accumulator systeme.

The Lignite Indnstry of North Dakota.
According to the American Manufacturer, lignite is found in all the western half of North Dakota, cropping out of the bluffs and hillsides. In most localities there are three or four strata of it, the upper being from a foot to 3 feet thick, and the lower one from 5 to 30 feet thick. The upper veins are softer than the lower veins, and are too thin to be of any value. Most practical miners believe that still lower veins would be found if the shafts were sunk, and that these veins would prove to be harder than the ones now worked, but the industry of mining in the State is everywhere in a rather rudimentary stage, and there is no capital a vailable to make experiments. A level is run in from the face of some bank convenient to a railroad, a track is laid into the opening, and the coal is taken out by the simplest and nost economical method.
The mines now worked for shipping are at Sims, on the Northern Pacitic. 35 miles west of Mandan; at Lehigh, 106 miles west of Mandan, and also at Minot, where the Soo road crosses the Great Northern, and at Burlington, a short distance from Minot, on the latter road. Mines worked by settlers to supply neighborhoods with fuel are numerous. Perhaps the most notable of these are in McLean county, north of Bismarck, where a superior quality of coal is found.
So vast are the lignite fields of North Dakota in their extent and so wide in their geographical distribution, that only such as are very near to a railroad track and present thick veins exposed for the most economical mining operations have any present com. mercial value. In other words, coal lands are worth no more than otber lands unless they are contiguous to a railroad and unless the lower vein is thick and can be entered on a level.
The cost in carloads on the track at Fargo is $\$ 3.25$ per ton. This is now the furthest eastern point of supply, but it will not be long before lignite will cross the Red River and become established as the favorite fuel in the northern Minnesota towns. At Mandan lignite costs $\$ 2$; at Bismarck, $\$ 2.25$; at Jamestown, $\$ 2.55$; at Carrington, $\$ 2.90$; at Leeds, $\$ 325$; at Oakes, $\$ 3.10$; and at Lisbon, $\$ 3.15$. It is not possible to mar ket it in South Dakota by reason of the excessive charges of the railroads operating in that State. They demand as much for hauling it from Oakes to Aberdeen, about 50 miles, as they charge for hauling Eastern coal all the way out from Chicago, about ten times the distance. Such rapid progress has lignite made in public favor during the past year or two, and so ample have been the demonstrations of the economy resulting from its use, that it is evident that this home fuel will soon almost wholly supplant Eastern coals throughout North Dakota, except for locomotive use.
The mine now working at Sims is on a 7 foot vein. The owners say that their coal compares with the best Pittsburg coal in the ratio of 14 to 20 , and with Iowa coal in that of 16 to 20 . The freight rate to points of consumption is 25 cents a ton less than that from the this differen, is and miles further west, and of the two localities comes into equal competition at all places where it is sold. The Minot coal, which finds its markets along the lines of the Great Northern and Soo roads, is sold at the mines for $\$ 2$ a ton. It is of no better quality than that mined at Sims and Lehigh. The coal tield worked at Sims is broken by numerous ravines.
The Lehigh and East Lehigh mines at Lehigh, near Dickinson, work a 26 foot vein, but only 15 or 16 feet of coal is taken out. Rooms are excavated in the thick coal body each side of the entry, and sufficient coal is left above to form an arched roof, which re quires no timbering. The pillars between the rooms are "robbed" after the rooms have been fully blasted out, and then the mass of superincumbent clay, having a depth of about 50 feet, caves in. The process of mining is exceedingly simple. Holes are bored with a hrrast auger and dynamite shots put in to bring down the coal. A track runs into each room from the main line of the entry and the cars are loaded with fork shovels which allow the slack and fine coal to slip through the tines. All this fine stuff, although it is good coal, is left on the floor of the mines and only the lump coal is taken out in the cars. About 30,000 tons will be mined at Lehigh during the year and the product of the Sims mine will be about the same. either place 100,000 tons could be mined annualuv

Bust

The following are some interesting remarks made by Professor Skidmore, of Philadelphia, with regard to the distinction between winerals and metals. It is not possible, he observed, to define exactly what a metal is, yet there is little liability of mistake in dis tinguishing a metal from a non-metal. The metallic properties of luster, toughness, fusibility, opaqueness, conductivity, and rust may be possessed separately by non-metals, but they are not associated as they are with metals. Most metals may be bent, twisted, drawn, and hammered to an extent far beyond what

Skidmore showed by a series of interesting experiments that sodium, potassium, lithium, and, in a lesser degree, calcium, strontium, and barium, rust inquickly dissolving in water and forming alkalies. Other experiments demonstrated the fact that another group of metals, in which are zinc, lead. magnesium, and antimony, have white rusts which are not soluble in water. These rusts form a thin adherent coating, which only half conceals the metal, and gives to it a dull, tarnished appearance. It was shown that at higher temperatures than the ordinary, and especially if the metals are finely divided, the chemical energy of rusting is so great that the metals burn with a vivid light and emit a dense white smoke. The permanency of these rusts and their protective character are utilized in white paints. Professor Skidmore then directed attention to a third group of metals, which include attention to a third group of metals, which include
those which have dark or colored rusts, as with copper, iron and silver. A series of experiments followed to show how these rusts were formed, and the changes which iron undergoes in appearance in the tempering process were carefully noted. Attention was directed finally to the fourth group of metals, which never rust. These are gold and platinum, and it was noted that they are also the metals which are found as wetals in the earth, and not as ores from which the metal must be manufactured. In the case of the other metals it is an advantage that they are found in the rust or ore condition, as they can be wanufactured much easier than they could be cut from ledges of the pure metal.

The Flight of Birds.*

We often have, while the sun is shining, a layer of cold air superposed on a layer of hot air. Now as hot air has a less specific gravity at the same pressure than cold air, it follows that these two lasersof a ir are con stantly changing places, the relatively warm air at the surface of the earth ascending, expanding, doing work and becoming cooled, while the cold air from above settles to the earth to take the place of the warm air. The velocity with which these vertical currents move is, say, from one mile to six miles an hour, and their movement is quite independent of any other horizontal current that the air may have as relates to the earth at the same time. These currents may be going on in a valley surrounded by mountains without any other action of the atmosphere. On a plain, however, there is also another action taking place at the same time, but which does not in the least interfere with the ver tical action, that is, the whole hody of air may be pass ing along over the surface of the earth at the rate, we will say, of ten miles an hour, while the vertical action is going on at a velocity of, say, four miles an hour.
is going on at a velocity of, say, four miles an hour.
The soaring of a bird may be compared with a boy The soaring of a bird may be compared with a boy
sliding downitill on a sled. If a hill is, say, 100 feet high, and the sides slope off in a horizontal direction 2,000 feet from the suinmit, and if the snow is smooth boy can mount a sled and advance 2.000 feet while he is falling, as relates to the earth, 100 feet; that is, the sled with the boy on it in falling through a distance of one foot develops sufficient power to drive the sled forward 20 feet, but when the boy is at the bottom of the hill and can develop no more power by falling the sled soon comes to a state of rest. Suppose now that hill could be made in such a manner that it would constantly rise at such a velocity that the sled would never reach the bottom of the hill. The bos would then be able to slide forever, and this is exactly what occurs with a bird. A bird places its wings in such a position that, as it falls in the air say one foot, it moves forward surface of the air underneath its wings in the same manner that the boy slides down the hill. Suppose now that the velocity of the bird should be about 30 miles an hour, this would account for the whole phenomenon of soaring on an upward current of only $11 / 2$ miles an hour. With an upward current of 2 miles an hour, the bird would rise, as relates to the earth, one-
half a mile an hour while actually falling through the half a mile an hour while actually
air at the rate of $11 / 2$ miles an hour.
There is no doubt that a bird, by some very delicate sense of feeling and touch, is able to ascertain whether it is falling or rising in the air. In all probability the numerous air cells which are found in the body of a bird are provided with delicate nerves, which operate in a similar manner to those of the swim bladder of a fish, so that as the bird is moving forward through the air it is able to take advantage of a rising column of air. As a whole, we may consider that the rising columns of air would be half of the total area of the earth's surface, so that a soaring bird would always port. Referring to the eagles which I saw in the Pyrenees, on one occasion I observed five of these birds about 500 feet above the peak of a mountain, and they were balancing themselves in a stationary position on an ascending column of air produced by the wind blowing over the peak, and seemed to be as much at ease as if they were roosting upon a tree. As a ship
passes through the air, the a ir is divided exactly in the
same manner as water would be, and as it comes to gether again at the stern of the ship it produces an upward current, and it is on this ascending column of air that the albatross and the seagull find a resting place and follow the ship fo days at a time without any apparent exertion; but wr enever they find themselves in front of the ship or at one side where there is no as cending column of air chey have often to work their passage very much as \jmath ther birds do.
But all birds do no soar. Ducks, geese, partridges. and pheasants are types of birds which are provided with comparatively small wings. They only remain on the wing for a short time and while in the air exert an enormous amount of energy and move at a high velocity. They do not seem to have the power to take advantage of ascending columns of air, but move in a straight line quite independent of air currents, and it is these birds we should seek to imitatein ourattempts to navigate the air

The Laurel and Sassafras.

Few of the forest trees of eastern North America are more beautiful at this season than this member of the laurel family when its large variously formed leaves have turned to delicate shades of yellow and orange, sometimes tinged with red. The fruit, which, as a rule, is sparingly produced, is abundant in some years, and as it ripens in September and October, it adds much to the beauty of the tree at this season, being dark blue and surrounded at the base with a bright scarlet caly x tube and raised on a thick scarlet stalk. The birds relish its aromatic flavor, however, and they usually eat it as soon as it begins to color The beauty of the sassafras is notconfined to autumn. Its shining green branches in the winter, its drooping clusters of pale yellow flowers in early spring, the red brown and deeply furrowed bark gives the trunk a most picturesque appearance. The sassafras ranges from the shores of Massachusetts Bay to Florida and west beyond the Mississippi, and reaches its maximum size in southern Arkansas and the Indian Territory where trees are not uncommon with trunks six or seven feet through and eighty feet high. Large in dividual trees are often seen much farther north, and on page 213 of vol. vii we gave the portrait of a tree on Long Island which has a diameter of forty-three inches at two feet from the ground. Although it is so common, like many other native trees, it is much necommon, like many other native trees, it is much ne-
glected by planters, notwithstanding its usefulness. glected by planters, notwithstanding its usefulness.
It is easily raised. ©oo, for if the seeds are planted as It is easily raised. oo, for if the seeds are planted as
soon as they are ripe, they will germinate next spring, and the suckers, which are often produced in great abundance, can be easily transplanted. To many per sons the sassafras is interesting from its relationship to such trees as the bas, the cinnamon and the camphor, and perhaps its aromatic flavor helped to give it the reputation for sovereign curative properties which made it so eagerly sought for by Europeaus for two centuries. Thoreau, who found poetry about him everywhere, wrote in his journal, "When I break a green twig of sassafras as I go through the woods in February I am startled to find it as fragrant as it is in summer. It is an importation of all the spices of an oriental summer into our New England woods, and very foreign to the snow and the brown oak leaves."Gardeu and Forest.
A. T. H. W. Iri, the pajet or

Mr. T. H. W. Idris, the chairman of the Specia Water Committee of the London County Council, ac companied by several members of the committee, and Mr. A. R. Binnie, the engineer to the council, have isited a number of localities which it was believed might fairly be regarded as available sources of wate supply for London; and the chief engineer has pre pared an elaborate report.
The aqueduct required would be 150 to 170 miles in ength. The engineer has so designed the works that the total quantity of 415 million gallons a day can be conveyed to London in two separate and distinc aqueducts, which can be carried near to and paralle to each other, or, if thought more desirable for safety can be many miles apart.
The sources of supply are in Wales, at altitudes above 600 feet, extending to 2.800 feet above sea level at the head waters of the Usk, Wye, and Towy, in the counties of Cardigan, Brecon, Radnor, and Mont gomery. On these highlands, the rainfall. as com pared with that of the Thames valley (27 inches) is vers heavs, varying from 45 inches up to 75 inches or more per annum : consequently from a total area of 312.400 acres, or 488 square miles, 415 million gallons a day can be obtained after making full allowance for dry years and evaporation, and giving due compensation in water to the streams and rivers from which the supply is derived, as compared with 300 million gallons a day without compensation from the 3.542 square miles in the Thames valley above Molesey
For a gross supply of 415 million gallons a day to provide for all contingencies for a period of 50 or $\mathbf{6 0}$
years, the estimate is $£ 38,800,000$, at the rate of | $£ 93,494$ per million gallons.

