PHILBROOK'S DENTAL TOOL.

This tool, patented by Dr. B. F. Philbrook, of Dunlap, Iowa, is especially adapted for reducing a root to receive a cap, crown or bridge, and may be used in connection with dental engines, hand pieces and right argled attachments. Fig. 2 is a central longitudinal section and Fig. 1 a plan view through the tool. The mandrel is exteriorly screw-threaded, and has an intermandeable pivoted point adapted to enter the inter changeable pivoted point adapted to enter the nerve
seat of a tooth. A hub or tool carrier sliding loosely on seat of a tooth. A hub or tool carrier sliding loosely on receiving a feather on the mandrel, so that the tool carrier is free to slide upon, but revolves with the mandrel. An annular groove at the upper end of the tool carrier receives fixed pawls fast to a threaded milled nut, by rotating which the carrier is moved up or down on the man drel. Two, three or four springs, secured a one end to the lower end of the tool carrier, have at their other ends each a socket to receive the shank of a cutting tool extending in the direction of the opera tive end of the mandrel. These tools are adapted to engage the periphera surface of the root a the top, are preferably made of copper or aluminum, and have diamonds or diamond dust in their inner surface at their working ends. The tools are also longitudinally grooved to hold corundum or emery, and in operation, as they are rotated, the springs constantly hold them in engagement with the periphery of the root, which is thus reduced without changing its contour. The tool holder being adjustable upon the mandrel and controlled by the milled nut, the cut can be increased or lessened at will, one size hub or tool carrier being well adapted to reduce any of the human teeth or roots for crown or bridge work.

a Gage indicating pressure and temperatore.

Both pointers of this gage are designed to move in unison as long as the boiler is working under normal conditions, the heat indicator hand traveling faster than the pressure gage hand when an abnormal increase of heat takes place in the boiler, an alarm being at the same time sounded. The improvement has been patented by Mr. Alberi F. Mallick, Jamestown, North Dakota. Fig. 1 is a side elevation of the improvement as applied and Figs. 2 and 3 are sectional views of the gage. Extending into the boiler just above the crown sheet is a pipe on whose inner end is a cap forming a socket for the head of a rod extending loosely through the pipe and into an outer casing The rod is preferably of glass or of any material that expands and contracts less than the pipe. The outer end of the rod is pivotally connected with the short
arm of a bell crank lever, on the free end of the long arm of a bell crank lever, on the free end of the long
arm of which rests a vertical rod connected with the indicator casing. The upper end of the rod is con-

MALLICK'S BOILER ALARM GAGE.

nected by a rack and pinion with a shaft which moves a pointer on the face of the dial, the expansion and contraction of the pipe within the boiler communicat ing a corresponding movement to its inclosed horizon tal rod, and through the bell crank lever to the vertical rod connected with the indicator, and thus indicating the changes of temperature in the boiler.
On the same dial is also indicated the pressure of steam in the boiler, a pipe from the steam space connecting with a diaphragm which is also connected by
adjustable levers with a rack in which meshes a pinion on the shaft which carries the pointer. But when the temperature in the boiler becomes abnormal, a swing ing motion is imparted to a lever pivoted on one of the racks, whereby a battery is brought into circuit|with a magnet within the casing to actuate an armature lever and sound a bell. The alarm is sounded when the steam pressure is reduced and heat is not with drawn from the water, or when the temperature is increased and steam pressure remains the same, ab normal conditions of the boiler being at once indi cated, so that the attendant may apply the prope remedy to avoid or prevent an explosion.

How to Repel Train Robbera.

"How to Repel Train Robbers" is the title of a short paper in the North American Review for February by Lieut. John T. Knight, of the United States Army His principal suggestion is that the express car should be placed at the rear end of the train, so as to compel the attacking party to divide its forces. The express messenger should be able to communicate instantly to the cars by electric alarm bell or other effective means, and the passengers should be able to get repeating shotguns from a glass-front case in each car. Thus a messenger could give warning as soon as any one ap proached his door at an unusual time or locality, and the passengers and trainmen, being between the robbers attacking the engine and those attacking the express car, would have a decided advantage. Moreover, it would be necessary, in order to cover the engine, the express car and a sufficient number of points between,
to employ so large a force of men that the probable profits per mes would not be large; and this would discourage the industry. Mr. Knight has been in the cavalry service in Oklahoma Territory; in sending a guard to protect a paymaster he alwass ordered it to keep 100 to 150 yards behind the wagon carrying the money, so as to compel the attacking party to divide its forces.

The lieutenant's suggestion seems sensible. If w are going to fight train robbers, the advice of expert fighters is worth attention. But, as we have hereto fore said when discussing this subject, the only ration al remedy is to civilize our country. Repulsing o punishing the robbers is not a satisfactory remedy certainly not satisfactory to passengers, most of whom in any train, eren in the Wild West, come under the appellation "tenderfoot." To deter would-be robber from getting together is the desideratum. That is the main element in the success of the police in large citi in repressing violence; they keep suspicious character on the move as much as possible, so as to have them out in sight and let them know that they are being watched. Indeed, Lieutenant Knight evidently re gards the idea of making robberies unprofitable (by forcing the robbers to see that they will have to hav a large force of men in order to accomplish their object) as his most valuable suggestion. This wil deter them, if anything will, for their sole object is money, says the Railroad Gazette.

Economy in Cotton Transportation
It was noted in our columns, says the Manufacturers' Gazette, a month or more ago, that an experiment was to be tried of fetching from Galveston a large lot of cotton by steamer, with a barge in tow. This has been successfully accomplished, and the cotton landed in good condition at one of the Boston wharres. It was an undertaking of more or less concern to marine insurers, and of some interest to those in the cotton trade because of its originality and the doubt surrounding its success. The barge was a four-masted schooner and was capable of taking care o itself had it broken loose from th steamer by the parting of the hawser The latter.was nine inches in circum ference and was payed out 1,500 feet At no time was it brought taut, be cause of its great weight and length The steamer and barge carried to gether 7,059 bales, the former 2,962 bales and latter 4,097 bales. The con signees state that there was a saving on the shipment in freight over ordinary ocean transportation of $\$ 6,500$. What there is in the future for this method' of shipping cotton to New England ports we do not venture to say, but it is suggestive of what ma be done in lowering the cost of freight from South western points to a figure that will do away with Southern advantages in this particular that now exist With favorable freight rates for New England mill ong-stapled cotton from the Mississippi bottom land and from the Southwest, such as is required for fine counts of yarn, can be landed at these mills as cheaply as at the mills in the Piedmont district. For tine yarns, cotton can or may be soon delivered to Northern mill as cheaply as to the mills of the South Atlantic States.

If the mills of South Carolina, for instance, attempt to go into fine yarns, they will have to go outside of thei own vicinity for any considerable quantity of the cot ton that they may require.

ELECTRICALLY CONTROLLED VALVE GEAR FOR

 POMPING STATIONS.The improvement represented by the illustration is more especially designed for use in controlling supply pipes connecting a pumping station with a distan tand pipe, to enable the engineer at the station to open or close the supply pipe, connecting it with or disconnecting it from the stand pipe. A patent has been granted Mr. William Engberg, of St. Joseph Mich., for the invention. The gate valve in the sup ly pipe is on the upper end of a piston rod passing hrough suitable stuffing boxes to a piston head in cylinder connected by pipes at its upper and lower ends with the casing of a valve in which is a hollow valve plug, and the latter is connected by a small pipe with the supply pipe, so that waterunderpressure may pass to the valve plug. In this valve are opposite ports, adapted to alternately register with the pipes rom the top and bottom of the cylinder, a channe also connecting with a discharge pipe. A lever car ied by the stem of the valve plug supports at one and a weight and is connected at its opposite end by ink with a bar sliding in suitably arranged bearings, a otch in the bar being adapted for engagement by a spring-pressed armature operating in conjunction with an electro-magnet connected through a relay with a switch at the distant pumping station, under control of the engineer in charge. In vertical alignment with the sliding bar is another sliding bar, its upper end carrying a weight, its lower end having a foot dapted to engage an arm on the piston rod, and hav

engberg's valve gear.
ing in one side a notch adapted to be engaged by the spring-pressed armature of another magnet, also connected through a relay with the switch, the movement of the switch lever closing the circuit for either relay, nd causing the corresponding magnet to attractits ar mature. As represented, the gate valve is open and the piston in its lowermost position. To close the valve, on the movement of the switch lever, the upper magnet attracts thearmature lever and thus unlocks the upper sliding bar, which is moved down by the weight at its top and strikes the upper end of the lower (bar, moving the latter downward and turning the valve plug to supply water under pressure to the lower end of the cylinder, and open the channel connecting its upper end with the dischargepipe. The piston consequently moves upward and closes the gate valve, the arm on the piston rod at the same time engaging the foot of the upper bar aud elevating it, where it is held in locked position on the breaking of the circuit, and the releasing of the armature lever, which then engages the notch, the other bar being also locked in its lower position by the other armature lever. The operator always turns the switch lever to normal position after the circuit is temporarily closed.

New Russian War Ship.

The Fremdenblatt gives the following particulars of the new Russian ironclad Georgi Pobiedonostzeff. This great war ship, the construction of which was begun on August 12, 1889, has steel armor from 8 inches o 16 inches thick on the sides, while the casements are protected by 12 inches and the traverses by 9 inch to 10 inch plates. The total length of the ship, including the ram, is about 340 feet. The vessel is 69 feet broad and 26 feet 7 inches deep, with a displacement of 10,280 tons. It is supplied with two engines constructed in England, which will develop 10,600 horse power under ordinary pressure and 16,000 horse power under forced draught. The new man-of-war is armed with six 12 inch and seven 6 inch guns, as well as 14 quick-firing guns of English manufacture.

Hard Rubber Casting Patterns. by jorn r. Usher.

India rubber has been employed by the writer with very satisfactory results for making small patterns. Such patterns can be made and finished more cheaply than those made of metal and in many cases more cheaply than those made of wood. Patterns made of rubber are especially adapted to card pattern work, which consists of a number of patterns grouped together and attached to a metal plate, or upon a wooden board, together with the gate and spun channel pattern, the iron moulder being enabled thereby to produce at one operation a mould complete, ready for pouring in the metal. The rubber patterns are also eminently adapted for use in connection with a follower board, for grouping generally or to be used singly. The advantages claimed for rubber patterns are: 1. Their extreme lightness; (2) durability; (3) strength; (4) freedom from shrinkage and warpage ; (5) freedom from the attacks of water or acids, heat or cold under ordinary conditions.
It is presumed that all the readers of the India Rubber World are acquainted with the manipulation of rubber in a general way. Therefore only a summary of the methods employed in making the preliminary patterns and moulds from and in which the subsequent patterns are produced will be given.
The preliminary patterns can be made of wood, beeswax, modeling clay, or modeling composition; in fact, of any substance which can be shaped to the de sired form and which will retain this form long enough to allow an impression to be taken in plaster of Paris. In many cases the preliminary pattern can be formed all the more easily by making a face patitern of either of its sides. Then pour an impression of the face pattern and form the preliminary pattern therein or thereon with beeswax, and then pouring or making a plaster mould on or of that as the case maybe, the face pattern or mould upon or in which the preliminary pattern is formed serving as one-half of the mould. The other half mould being made by pouring or making a counter-impression directly on or in the first impres sion of half mould, cutting rings, grooves, or depres sions some distances from the mould surfaces proper to locate the two halves of the mould in their respective positions.
The moulds can also be made in plates or metal with out any preliminary pattern in the usual manner, if preferred. When the plaster moulds are to be used to make patterns in, they must, after being made, be invested in a metal flask. After the first pattern has been made, it may be used as a pattern for naking all the subsequent plaster moulds needed. When a preliminary pattern has been made or is available, the plaster moulds should always be made directly in the flasks, thereby avoiding the necessity of inverting the moulds after they have been made.
To pour an impression, and in making moulds o plaster in order to get the best results, the article to be poured should be first shellacked and allowed to dry, and then soaked in water for ten minutes or more, and then poured while it is still wet. If the article to be poured is made of some other material than plaster it may be dipped in water and then poured while stil wet, but on no account must oil or any greasy sub stance be used to insure an easy separation
ter are to be used for making the patterns in.
In pouring an impression, the amount of water ne cessary to saturate the plaster is first poured into a soft rubber bowl, a pinch of common table salt is then added and stirred in, the plaster is then added by shaking it out of a scoop in order to loosen it as much as possible, then let it stand a few seconds until thoroughly saturated; the surplus water can then be poured off, and the plaster stirred or mixed. If this has been done properly, the mixture will then be of the consistency of thick cream. When salt has been added
the plaster must be used immediately, as it commences the plaster must be used immediately, as it commences
to set very quickly. In no case inust the plaster be put into the bowl before the water, as it will nearly always come out lumpy after being mixed, and it is aiso liable to crumble away during the process of vulcanizing. In pouring an impression, a little of the plaster is first poured on the highest part and is then made to flow to and around the lower parts as quickly as pos sible by taking the article in the hand or hands and jarring it sharply; a little more plaster is then added again on the highest part and the jarringrepeated, and so on until enough has been added. Should the jarring be omitted when pouring, or too much plaster be added at one time, the chances are that the work wil be imperfect.
Should the shape of the moulded article be such that the parts cannot be separated by inserting the point of a knife blade between them, without the risk of breaking, then the part that has been poured must be care fally cut away until the shell and surface can be seen be done in such manner that the parts can be lifted be done in such manner that the parts can be lifted
away in large pieces, leaving the part it is desired to away in lar
save intact.

In making hard rubber patterns, where the body of the pattern or any part of it would be more than
$1 / 4$ inch in thickness, it will be necessary to so arrange the moulds as to produce a shell pattern.
When cores are used, the plaster of which they are made must be mixed with carbonate of lime, as whitallow of its being readily dissolved in acid after the patterns have been vulcanized. This removes the cores, the plaster of Paris being in itself insoluble. A mixture of half plaster and half whiting will be found to be very satisfactory for making the cores.
If the patterns are immersed in muriatic or sulphuric acid, the whiting will dissolve very quickly, leaving the plaster as a precipitate, which can be easily washed out with water, without in any way injuring the pat tern. Paper also makes an excellent core for this pur pose; in fact, better than plaster. When metal moulds are desired in preference to those of plaster, it will be found easier and better to first make the plaster moulds, and then, after carefully shellacking them, to use them as patterns from which to cast the metal moulds.

Before packing the plaster moulds, the surfaces proper should be coated with collodion. After being packed, they should be put into boiling water for a few minutes to soften the rubber prior to closing the moulds. The pattern may then be vulcanized. After vulcanization they must not be taken out of the moulds until thoroughly cold, otherwise they are lia ble to warp.-India Rubber World.

A PARASITE VERY NUMEROUS IN HOGS.

 During the four years in which I had charge of the inspection of hogs for the United States government, my attention was drawn to a parasite which was so numerous that it was found almost daily during the search for Trichina spiralis under the microscope.This parasite, shown in the cut which accompanies this article, has the appearance of an elongated worm with a blunt point at each end. It assumes man orms, sometimes being narrower and longer than hown in the drawing and at other times broas shorter, and even almost round. The interior is com

posed of granular matter, which with a high powe proves to be embyros, the worm-like body being only sac
These sacs are sometimes very numerous in the wuscle, while each sac contains many hundreds of the embyros; taken together the number existing in some hogs must be counted by the million.
This parasite, which is considered to be harmless, is called by the United States Department of Arricul ture "Tarcosperidium," and by the Germans "Psorospermien," and it is remarkable, considering their reat number in a food product, that little appears to be known of their life history
I have made preparations of the sac for microscopica examination, and expelled the embryos from the sac which prove to be the shape of half moons.

Rapid Fire Guns.

One of the most important lessons of the naval bat tle of the Yalu River was the demonstration of the great importance of the rapid firing guns, especially when the ships to which they are opposed are no protected. The recent trials at Indian Head will robably lead to the adoption of rapid fire mechanism hereafter for our 6 inch guns. Two 6 inch breech-
loading rifles fitted as rapid fire guns have been tried. One was fitted with a Dashiell breech mechanisw, and the other with Lieut. F. F. Fletcher's new Fletcher gun is said to be five rounds in 54 seconds. This invention is a close competitor oi the Armstrong gun of the same caliber, six rounds in one minute being fired from a gun of that make a short time ago. The Krupp gan of 15 centimeters, which is equivalent to 5.87 inches caliber, was fired at the Meppen ground at the rate of eight aimed shots per minute, and eight shots were fired at a target 3,000
meters away in 40 seconds. On the British Roya meters away in 40 seconds. On the British Royal
Sovereign a series of ten aimed rounds Sovereign a series of ten aimed rounds were fired from French rapid fire Canet guns 5.91 inches caliber hav been equally successful. In England an 8 inch Armtrong gun has been tested which gave very remar'r. able results. The interval between the shots for an ordinary 8 inch piece is about 1 minute 15 seconds he new Arustrong gun fired shots at an interval econds with a crew of only five men.
The mount for a rapid fire gun is hardly second in importance to the gun itself, as quick loading and firing would be of very little value without special facil
ities for training, elevating and sighting; mounts are now receiving great attention both at home and abroad.

water.

Pure water consists of 2 parts hydrogen and 1 part oxygen. Chemical name hydrogen oxide, chemica symbol $\mathrm{H}_{2} \mathrm{O}$. Pure water is a colorless, odorless, tasteless, transparent liquid, and is practically incompres sible. Water freezes at $32^{\circ} \mathrm{F}$. and boils at $212^{\circ} \mathrm{F}$. At its maximum density- $39 \cdot 1^{\circ} \mathrm{F}$.-it is the standard fo pecific gravities, and 1 cubic centimeter weighs gramme.
United Statea gallon..
${ }_{2}^{231}$ cub: inches. 8:3311 cubic foot. 8:3311 pounds-distilled water.
$8: 34$ pounds-in ordinary practic. 86.425 pounds at $39 \cdot 1^{\circ} \mathrm{F}$,
 $\left\{\begin{array}{l}62.355 \text { pounds at } 62^{\circ} \mathrm{F} ., \text { standard temperature. } \\ 59.64 \text { pounds }\end{array}\right.$ 59.64 pounds at $212^{\circ} \mathrm{F}$., boiling point. 57.5 pounds at ice.

1 cubic foot. 7.485 U. S. gallone.

1 cubic foot. 27.7 cubic inch
cubic inch.....$\quad 0.03612$ pound
A column of water 1 inch square and $\mathbf{2 \cdot 3 1}$ feet bigh weighs 1 pound.
A column of water 1 inch square and 1 foot high weighs 0.433 pound.
A column of water 33.947 feet high equals the pres sure of the atmosphere at the sea level.
One pound per square inch equals a column of water 2.31 feet in height.
0.433 pound per square inch equals a column of water 1 foot in height.
Water is an almost universal solvent; consequently pure water does not occur in nature. Sea water con tains nearly every known substance in solution.
The latent heat of water is 79 thermal units. When water freezes, it gives off its latent heat. The latent heat of steam is 536 thermal units. When steam condenses into water, it gives off its latent heat.-Cata logue of Holly Manufacturing Company.

The lowa Meteorite.

The Boston Commonwealth says: A close examina tion of the fragments of the Winnebago County (Iowa) weteorite has been made by Prof. H. A. Newiton, of Yale College. More than a thousand pieces of the meteor are in the museum at Yale, and the examina tion of them results in some interesting deductions. The meteor was a very noticeable one and attracted the attention of very many persons over a large extent of country, from the comparison of whose stories the details of the meteor's approach have been determined One man, a surveyor, had the presence of mind to di rect his theodolite to the cloud left after the explosion and an accurate reading of his circles gave most reliable data. The fragments were scattered over severa quare miles, and vary in size from a grain of dust almost, to some eighty pounds. It is estimated that the meteor must have been at least five hundred pounds in weight and was perhaps as large as a small flour barrel; and that it approached the earth with planetary velocity, or about ten miles per second. in an orbit not unlike that of the earth itself until within about five miles, when it burst. After the explosion the velocity of the pieces could not have been greater than that of sound, or about a quarter of a mile per second. After the primary explosion, there must have been numerous minor ones, evidence of which is to b seen in the fragments themselves. Their velocity was so great that the friction of the surfaces against the air caused the material to fuse and to flow backward over the edges. Different stages of fusion are clearly noticeable, and in addition many cases of fresh frac ture, which must have taken place when the fragment was quite close to the earth.

How to Arrent a Boil, Carbuncle, or Malignant
Br. Barker writes to the Medical Summary that he has used the following procedure for several years with unvarying success: Take a large hypodermic syringe holding say half an ounce, fitted with a small needle. Fill it with a 1 to 500 solerion of mercuric chloride, insert the needle into one of the peripheral openings, in case it is a carbuncle, and wash out the little cavity. Then direct the needle toward and into the surround ing induration and force a little of the solution into it. Treat each opening and its corresponding peripheral circumference in the same manner, carefully washing out the necrosed connective and other tissues that have become separated. Repeat this daily with the solution, gradually reduced to one-half the origina strength, until all induration has disappeared and granulations have begun to appear. If the first injection be thoroughly performed, the spread of the car buncle will be arrested at once and there will be no more pain. Washing out the little cavities is painless, but the injection into the indurated tissues is not free from pain. The same treatment is applicable to the ittle feruncles that invade the meatus auditorius externus and the inner surface of the als nasi.-Medical and Surgical Reporter.

