Brientifir smerican.

ESTABLISHED 1845.

MUNN \& CO.. Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

o. D. MUNN.
A. е. beach.

TERMS FOR THE SCIENTIFIC AMERICAN

nilding Edition

MUNN \& CO., Publishers,

NEW YORK, SATURDAY, JANUARY 19, 1895.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No. 994

For the Week Ending January 19, 1895.

AGRICULTURE-Spraving for Black Knot upon Cberries and
Plums.-Details of experiments tried at the Massachusetts State Agricultural statio
I. Chemistry.-Tbe Rise of Organic Cbemistry.-By V.CORNISH, M.Sc.,.F.C.S.
Carsmum

Cbromium Hluoride in Wool Dyeing
III. ENGINEERING.-Engineering Fallacies.-An address to the graduating class of the Stevens Institute of Technology by Presi-
dent HEN RY MORTON.-This paper contains dent HENRY MORTON.-This paper contains some interesting de-
tails of perpetual motions, the Keely motor, etc.-2 illustrations. Increasing Use of Traction Engines.- Description of traction engines used for logging purposes in California.- 2 illustrations. The Siphon of Clichy-Asnieres.-This siphon is 1520 feet long
and belongsto the sewerage system of Paris. -4 illustrations.....
1V. ENTOMOLOGP.-The Glowworm.-ByE. A. BUtLER, B.A., B
Sc.-A A interesting entomological study. -3 illustrations..
. FISHERIES.-Oyster Culture on the West Coast of France.-De tails of
Prof. B. E. FERNOW of the Department of Agriculture iefore by American Association for the Advancement of Science.valuabie resume of the conditions affecting the growth of ou forests....
VII. METALLURG Y. - Improved Ore Washing Machine.-Apparatus III. miscel La neous.-Recent Science.-An impurtant paper by P. Kr opotkin, dealing witb the new serum cure for diphtheria and Berlin.-Earthquakes,-A study of the recent earthuar which have visited Europe and Japan.-Flying Machines.-A re view of the prorress made from the time of Leonardo da Vinci to the present day
IX. TECHNOLOGY.-Galvanizing.-By M. P. Woor--A valuable paper on various methods of coating me
reference to the Cowper-Coles process
x. travel and exploration.-The andes of Ecuador. Views of Cbimborazo, 20,702 feet high. and the great crater of
Quilotoan-2 illustrations..

STATISTICS CONCERNING GERMAN TRADE MARES.
The German manufacturers are not as indifferent as are American manufacturers to the benefits to be derived from the protection afforded by the trade mark laws.
This new law went into effect on the first of Octobe last and resulted in the most wonderful activity in this department of the Patent Office
During the month of October, 1894, about 8,000 ap plications for the registration of trade marks wer filed in the German Patent Office; 5,950 of these applications related to trade marks which had already been registered under the provisions of the trade mark law of November 30, 1874, the present law requiring all such trade marks to be registered, anew before October 1, 1898, to preserve their validity.
Such a result was entirely unexpected, and the Patent Office officials have their hands full in attending to the great mass of work which is piling up in the office.

ON THE CHOICE OF A CAREER

There are times in a young man's life when he is beset as to what he shall do for a livelihood, and the question as to a choice between a profession and a technical course is before him. In looking over an experience of nearly fifteen years, it seems as if, not withstanding the many disappointments in life, there is a greater opportunity for a young man in the field of technology than anywhere else.
If the question were to be put as to what branch of technology offered the greatest opportunities for a successful career, the answer would be, In the domain of technical chemistry. The world is full of men who cannot make a success in any careèr, and yet they get along somehow. But they are not the ones to whom one should look as examples. Rather study the careers of those who have succeeded and who have overcome the obstacles that have at times impeded their progress. The success of Carnegie in this coun try and the success of Bessemer in England are well known illustrations of men who have succeeded, but for fear some captious individual may say, "Yes, but that was when times were different," let us take a modern example, one of the immediate present. No one in recent years has so thoroughly made a high reputation for himself as a chemist as H. Y. Castner. Let us examine his career for a short while, and see if there is not something in it that may encourage the young man about to enter upon a technical career. Castne left the School of Mines in 1879 without a degree, and chemistry. An analyst has, unfortunately, but few chemistry. An analyst has, unfortunately, but few
opportunities of developing his abilities. He does one thing, and the one thing that dozens of men can do and do equally well. There is no future to that sort of work. This Castner promptly recognized and de voted his leisure to the study of chemical processes. It was not long before he became interested in the manufacture of boneblack, and soon invented a continuous process for making that article. It was a chem ical success, but, for reasons that had to do with the economic conditions of the market, it failed to be a pecuniary success. The cheap production of aluminum was then a subject of considerable study on the part of chemists both here and in Europe. Castner exam ined the ground very carefully, making a very complete study of the literature of the subject, and then set to work experimenting. He soon in vented a pro presidential address before the British Association in 1890. said that it constituted "one of the most inter esting of recent illustrations of the progress made in technical chemistry, consequent upon the happy blending of chemical with mechanical science through the labors of the chemical engineer." A unique suc cess was made, and the world heralded the new dis covery with applause, but soon electrolytic processes compelled the abandonment of the direct chemical production of aluminum.
The characteristic feature of the Castner process was its method of maiking sodium, and he promptly turned his attention to that element, creating a de mand for it which he supplied. He also called at tention to the value of sodium peroxide, which was promptly recognized, and his plant at Oldbury continued in active operation, furnishing at a profit many of the sodium salts. Here we have a career of a chem ist who is not yet forty years of age, but who has in vented three valuable improvements in existing pro cesses. These inventions, each of which has marked a distinct era in the progress of science, have gained for the inventor a handsome fortune.
More recently Castner has invented an electrolytic process for the decomposition of alkaline chlorides, yielding caustic soda and chlorine, which, according to certain English technical journals, may result in reyolutionizing the long accepted Le Blanc and Solvay processes.
It is not necessary to enter upon any discussion of the merit of these inventions. They are cited simply for the purpose of illustrating that opportunities exist
around us all the time, which, if promptly seized upon lead to fortune and reputation.
In no country in the world are the possibilities of a successful career in the line of technical chemistry more evident than in these United States. With the single exception of potassium salts, there is no limit almost to the amount of crude substances existing in nature, capable and ready for use. One single illus tration of this fact may be permitted. Candles made from the paraffine contained in ozokerite are consid red superior to all others. If the deposits of this mineral that exist in Utah were developed and used for the making of candles, the entire supply required for the region that exists between the Mississippi Rive and the Pacific Ocean would be at the mercy of the maker. And yet we import candles.
The magnificent soap establishments in Chicago and Cincinnati are striking examples of the growth of enormous plants from very small beginnings. It is for such work that the chemist must educate himseif First he needs an education at some technical school and there are many of these. In New York City ther is the School of Mines of Columbia College; in Bosto there is the Massachusetts Institute of Technology; in Chicago there is the Armour Institute ; in Golden there is the Colorado School of Mines; and near San Francisco there are the technical departments of the University of California. In any one of these, and they are all good, a young man may prepare himself for just such a career as Castner has made for himself He must devote himself to the study of principles. These will be of more value than skill in manipula tion or a special knowledge of details. It is a great deal better to know how to make any analysis than to be able to make any one single analysis withou rror.
It is a great deal better to know how to install any factory than to be able to put up one kind of works. With this general idea the student pursuea his course until graduation. Places do not come at once, and ever sometimes are hard to obtain, but in time the u ay wil pen, and then, if the fledgling is able to put into prac tice the knowledge that he has acquired, there are no heights in the professional world to which he may not soar. Watch your opportunities. If you study the caree of any great man, you will find that it was the oppor tunity that made him. Grant might have remained a tanner in Galena if his opportunity had not come to him with the civil war. If opportunities do not come rea dily, you must try and force them. No process is per fect so long as it is of human origin. Therefore, select a process, study it, find out its weak point, and en deavor to improve that. In this way your opportunity will come. Find uses for refuse materials. Remembe that the refuse of gas works became the source of the that the refuse of gas works became the source of the
aniline colors. Frequently the value of by-products aniline colors. Frequently the value of by-products
is sufficient to pay for the process. Thus the precious metals obtained in the electrolytic refining of coppe enable the smelters of Montana and Arizona to sell re fined copper at a price far below that which English smelters can afford. Inspiration and suggestions fre quently come frow sources that are seldom expected A poet was once speaking of his valuable reference library. 'The connection was at first blush not appar ent, but it soon transpired that in his descriptions of nature he always verified his fancies by reference to his books. The reason of his having gained the re putation of being a poet true to nature was thus dis closed. His appreciation of a value or an application in something apparently remote from his work showed his genius. So it is in chemistry. The man who is suc cessful will find suggestions when he least expect them, and which, if properly applied, will bring hin wealth or that which is better, a high reputation.

Earthquake Waves.

Some of our readers inay remember that the pulsa tions of the great earthquake in Greece last April wer perceived in England and, it was believed, at the Cape of Good Hope, by means of very delicate instrument contrived for the purpose of registering any sligh shaking of the earth'scrust. In like manner the shock of the Constantinople earthquake of July last was per ceived at various meteorological observatories in Aus tria, Russia, Germany, Holland, France and England By a comparison of times, combined with the dis tances from Constantinople of the places where pulsa tions were observed, a fairly accurate estimate of the velocity with which the earthquake waves traveled was obtained.
The average speed was about two miles per second This is almost exactly the same velocity as that which was calculated for the pulsations of the Greek earth quake in April. At this rate, if it were continued with out diminution, the wave would passcompletely round the earth, along a great circle, in about three hours and a half.
One of the English instruments which registered these pulsations is at the bottom of a deep mine nea Newcastle on-Tyne, and its delicacy may be judged from the fact that it has recorded the beating of the waves on the sea coast ten miles away.

In our issue of last December 1 we described the process of engraving for newspaper work. The following from the New York Recorder contains a more complete description of the processes used in illustrating our monthly magazines and newspapers, which to the general reader is but little understood.
Pictures for the illustration of magazines and some newspapers are now made direct from photographs. A glass screen with diamond scratched lines ruled at right angles so closely together that the spaces can hardly be distinguished is placed one-eighth of an inch in front of the sensitive plate in the photographic camera. Looked through, the effect is much the same as gazing through a sieve. These lines reappear in the half tone engraving when printed.
The photograph or wash drawing from which the photo-engraving is taken is photographed in the usual way and with the usual sensitive plate, with the previously described screen in the camera between the plate and the picture. This produces a negative of the picture, showing the fine cross lines represented by clear glass. Now, in order to have the same position of the object of the engraving as in the original, the film of the negative is treated to one or two coats of collodion, which gives it a sufficient consistency to permit of its being removed. The film is then stripped, reversed and secured to another glass with the aid of collodion. After careful mounting this new negative is ready
plate.
The face of the plate is buffed to the highest degree of polish, then coated with a solution of albumen and gelatin, then sensitized with bichromate of ammonia. It is then dried and placed in the printing frame, the coated side next to the negative film. The case is then exposed to the sun or light three to five minutes or to an electric light for fifteen to twenty minutes. The light passes through the heavy inch thick glass of the printing frame, then through the negative, striking wherever it may fall. Where the plate is protected by the shadows and half tones of the negative the sun light has less effect, and where the shadows are dense it has no effect.
This plate is then removed from the frame in a dark room and carefully washed under running water for sev eral minutes, then dried and heated until the picture appears of a dark brown color. The back of the plate is rubbed with wax while hot to protect it from the etching solution, which is made from perchloride of iron. solution eats only where the plate is unprotected, that part which is blank in the finished engraving. The plate is allowed to remain in the acid bath for about fifteen minutes, or until sufficient depth is obtained. It is then washed and is ready for the router and the printer.

What Drowning Feels Like.

A woman, who was among those saved in the reeent deplorable accident in Morecambe Bay, is reported in the papers to have said that she remembered sinking twiceand thinking she had "only to go down once more and all would be over.'
There are several authentic records of such experiences. One of the most interesting is that of Admiral Beaufort, as described by himself in a letter to Dr. Wollaston. When a youngster he fell overboard in Portsmouth Harbor, and before relief reached him had sunk below the surface. All hope had fled, all exertion ceased, and he felt that he was drowning. Two minutes did not elapse before he was hauled up, and he found the return to life much less pleasant than drowning. Admiral Beaufort adds that he had heard from two or three persons who had had a similar experience that their sensations had closely resembled his own. Sir Benjamin Brodie relates the case of a sailor who had been snatched from the waves and lain for some time on the deck of his ship insensible, who on his recovery declared that he had been in heaven, and complained of his restoration to life as a hardship.
In a well known passage of the "Confessions of an English Opium Eater," De Quincey relates that he was once told by a near relative that "having in her hood (aged nine) fallen into a river, and being on the very verge of death but for the assistance which reach ed her at the last critical moment, she sawin a moment her whole life, clothed in its forgotten incidents, array ed before her asin a mirror, not successively, but simul taneously, and she had a faculty developed as sudden ly for comprehending the whole and every part."
An American gentleman, Mr. C. A. Hartley, has recently given an interesting account of his sensations when drowning. He lay at the bottom of a river in a state of semi-consciousness, in which he saw his relatives and friends all about him with their eyes full of tears. All the events of his life, from infancy upward passed slowly before his mental vision; he felt that h was drowning, and he remembers thinking, unlike Clarence, that it was not pain to drown. He was able
even to speculate whether his body would be found,
and he pictured his own funeral, and fancied he could hear the earth thrown on his coffin. He had sensations of the nature of tinnitus (ringing of bells, etc.) in his ears, and he had visual perceptions of the most marvelous combinations of colors. Next all was peace around him; he had a peculiar feeling of well-being in cold. Then he felt himself as if raised from the earth and floating in space, and looking down on the world spread out at his feet. Lastly came mere darkness and oblivion till he found himself stretched on the river bank and being subjected to the disagreeable process f restoration to life.
It will be noted that all these accounts agree in two points, namely, the apocalypse of the past life, even in its minute details, and the absence of any unpleasant sensation. On the whole, the popular idea (which in such matters is never wholly wrong) that drowning is a pleasant form of death is confirmed by the testimony of the few who have practically reached the bourne of the undiscovered country and yet returned to tell the tale.-British Medlcal Journal.
Note.-A friend of the writer, a reliable gentleman well known in business circles in this city, claims he died a pleasant death from drowning at the time of a steamboat disaster a few years ago.
His experience, as related about the time of its occur rence, was very like these given in this article. He claimed the act of dying, as he termed it, was a pleasur able sensation, while the resuscitation was distressing. -Eds.

The Plymouth Meteorite

The Plymouth meteorite was found in the year 1893 by Mr. John Jefferson Kyser, while plowing in a field on his farm, about five miles southwest of the town of Plymouth, Marshall County, Indiana. Mr. Kyser had about the year 1872 , found in the same field another, shaped, about 4 feet in length by 3 feet in its widest diameter, narrowing to 6 or 8 inches at its upper end. It lay for a year or two so near the surface of the ground as to be seriously annoying in plowing the field On that account Mr. Kyser, aided by his son, dug a deep hole by the side of the mass and buried it to the depth of $11 / 2$ to 2 feet beneath the surface, where it hould thenceforth do no more damage.
The account of this I had last June from the son Mr. John M. Kyser, now city clerk of Plymouth. Mr Kyser well remembers the circumstance of the finding of the large piece and assisting his father in burying the same; and he further thought that, notwithstand ing the removal of certain landmarks (a fence and tree) in the field, he would still be able to locate it very closely. This he subsequently undertook to do by renching, but was unsuccessful in finding the mass. I was myself present and assisted in a further search for it in September last, using a surveyor's magneti needle, with the hopes of the same being attracted to the mass and discovering it, but all to no purpose. Mr. Kyser seems to feel very confident of his knowledge of the immediate vicinity of the mass where he buried it 22 years ago, but is unable to prove its presence by rediscovery. Nor has hetheaid of another eye-witness his father having died soon after the original finding and burying as above mentioned.
The smaller piece, which was, as before said, found n 1883, was presented by Mr. Kyser, Sr., to Mr. W. S Adams, who, at that time, kept a plow factory in the city of Plymouth. It was retained in their family un til last November, when it was brought to Ward's Natural Science Establishment in Rochester, N. Y., by Mrs. Adams, from whom I procured it.
The mass is a lengthened, tongue like form, not unlike a rude mound builder's ax. Its greatest length is $121 / 2$ inches, its width $73 / 8$ inches, its thickness in the middle about 2 inches, from which, in the greater part fits length, it slopes in a somewhat even manner to hin, rounded edge.
Its surface is deeply eroded by oxidization, so that, although sound and free from scales, it shows no sign of an original crust. The characteristic pittings of meteorites are also by the same cause rendered some what feeble, although still quite clearly visible. We have cut a number of thin slices from the mass. These etched in dilute nitric acid give very clear Widmanstat en figures. There are, further, several small nodule ten figures
A carefulanalysis of this iron has been very kindl made for me by Mr. J. M. Davison, of the Reynold Laboratory of the University of Rochester, and I giv he same below

ANALYSIS OF PLYMOUTH METEORITE.

This iron, herein briefly noticed. is interesting many ways, and it is much to be regretted that the
large mass, of which the record seems to me to be en tirely reliable, cannot be rediscovered.-Amer. Jour.

Boiler Explosions.

At a recent meeting of the Engineers' Club, Phila delphia, Mr. John L. Gill, Jr., exhibited and explained a table showing the energystored in boilers of different types, dimensions, and horse powers, and the height to which this energy could throw the boiler, with its weight of water, if allowed to act through an explosion. The explosion which occurred recently at Shamokin, Pa., in a plant of 36 boilers, arranged in nests of 3 whereby 27 of the boilers exploded and were thrown to a considerable distance from their original resting places, was possibly due to gas having collected under one or two of the boilers, and by its explosion breaking the branch connection to the main pipe, thereby caus ing others to explode; or it may have been eccasioned by one set of boilers running out of water, the latter cause being the more probable. Mr. Gill then explained, by means of the projecting lantern, a number of photographs which had been taken in the neighbor hood on the day after the explosion. All of the boiler shells were broken circumferentially, and many of them had been thrown with such force that they had been embedded many feet in the side of a culm bank, some distance from the boiler house.
Mr. James Christie-As stated by Mr. Gill, the boilers at Shamokin were horizontal cylinders, about 44 feet long, and were suspended by rods 11 feet from each end. Hence they were not only subjected to internal pressure, but also to unequal strains at the top and bottom. due to this manner of mounting, and the and bottom. due to this manner of mounting, and the
latter strains must have been very great. In long latter strains must have been very great. In long
boilers like these there is also unequal strain, due to the differences in temperature between the bottom and top, the latter in this case being open to the air.
Mr. Henrik V. Loss-When I was connected with the Edge Moor Iron Company I remember to have made some experiments whereby we found that the differences between top and bottom strains in some cases might be as much as 5,800 pounds per square inch.
Mr. John Overn-I examined the boilers at Sha mokin on the day after the explosion and there was not a single casewhich showed any longitudinal strain Each boiler shell was composed of 13 plates, and al but one of those which exploded broke in the section to which the suspension rods were attached. By the use of a blower the heat under the boiler cylinders was made very great, while the top of the boilers was cool. After inspecting boilers for many years, I have noticed that there are comparatively few exploded because of low water. The disturbance at Shamokin I think, was due to unequal elongation on opposite sides of the boiler shells, and to the very poor quality f iron used in their construction.

case in the Cany, \mathbf{N}. \mathbf{Y}.

During the past year the imposing stone stairease at the west entrance of the Capitol building at Albany, N. Y., has been practically completed, and as it now stands the stairway is one of the most beautiful con structions of its kind in the world. The entire cost of construction has been nearly $\$ 1,000,000$, and about fiv and a half years have been consumed in building it The staircase occupies a space of 76 feet 10 inches by 6 feet 10 inches, and the height from the tile floor of the irst story to the uppermost cornice in the dome is 119 feet.
The stairway consists of broad central rows of steps, starting in the corridors and extending through the center openings between the cylindrical piers. The ower steps of each flight are constructed in convex urves, which serves to increase the length of the step and makes it possible to introduce a platform or break in the steps about one-third the way up each flight. These platforms in turn are flanked by short rows of stairs on two sides, which extend at right angles to the main or central flights. These secondary flights ex end to platforms which reach to the walls, and from these platforms next the walls four rows of steps, two from each platform, extend upward to the next floor which also forms the landing of the central flight
It will be seen that this construction provides for four wells, and these help to provide a plentiful sup ply of light and air to the lower floors. The central portion of the stairs is supported by eight bearing esting upon moulded granite bases, and extending u from the foundations to a height of three and a half stories.
The decorations of the staircase are very elaborate On the central ledge on the north side, for example, there is a head of Columbus carved in relief, with the three caravels used by him in the first voyage to America. The western ledge is decorated with the America. The western ledge is decorated with the
Viking ship, while on the east ledge is a modern steam Viking ship, while on the east ledge is a modern steam
ship, both of these being in bass relief. The sculptured ship, both of these being in bass relief. The sculptured
work is cut upon a plain surface surrounded by rich foliage. The rails, the steps, the ledges upon which the balustrades rest, and in short almost every ex posed surface is also richly and tastefully decorated.

Lead Poisoning in the English Dyeing Trade.
Mr. Sydney Smelt, deputy coroner for Manchester held an inquiry recently relative to the death of Emily Wood, 19, lately living in Irlam Street, New ton Heath, who had died from the effects of lead poi soning. The girl was in the service of Messrs. Kerr \& Hoegger, dyers, Grimshaw Lane. Early in Novem ber she becameill, and was attended by Dr. A. Walker He found well marked symptoms of lead poisoning Dr. Walker said he had seen a number of case of lead poisoning in the district of Newton Heath during the last few years. He gave evidence three years ago in the case of two girls working for the same firm who had died from lead poisoning. A girl named Carmichael, employed in the same room with the deceased, said that she had never used a respirator and up to a week ago had never seen one in the place The work was what is known as "noddling" yarn dyed in yellow and orange colors. Witness hersel had been ill on several occasions from lead poisoning. Prior to a week ago the employes used to take their meals in the " noddling room. There was a place to wash their hands, but no towel was provided. Dr. Reynolds, who had made an examination of the body of the deceased, said the cause of death was lead poisoning. The manager of the works, while admit ting that at a previous inquiry he had promised to see that washing accommodation and respirators were provided, said he had never seen more than two o three girls wearing the respirators up to quite recently He only knew of three girls out of thirty-six who had never been away ill from lead poisoning, and he had neverstopped the girls from taking their meals in the "noddling" room until recently. The occupation was a dangerous one, and he would not let his own daughter work at the place unless she wore a respirator At the conclusion of the evidence the coroner sug gested to the jury that they should recommend that this particular trade should be declared a special dan gerous occupation under the Factory and Workshop Act. Mr. Suelt commented strongly on the conduct of the firm in not taking every precaution to prevent such cases, in accordance with a promise made on their behalf in the course of a similar inquiry in 1891 Nothing he could say could add to the feeling of in dignation that everybody must have on this subject The girls had simply been allowed to commit suicide in order that foreigners might be supplied with yellow dyed goods. After deliberating in private for som time, the jury returned a verdict to the effect that the deceased had died from lead poisoning, caused by the firm neglecting to carry out the promises made by them three years ago. Mr. Rogers, H. M. Inspecto of Factories, and Dr. Niven, Medical Officer of Health for the city, were present at the inquiry. Mr. Pearson watched the proceedings for the firm.

A COMBINED CRUSHING MILL, AMALGAMATOR AND ORE CONCENTRATOR
The mill shown in the illustration is designed to perform its work rapidly and effect the utmost possi ble saving of gold and silver. It has been patented by Mr. Samson Beer, of No. 645 West Granite Street, Butte, Montana. The bed plate is slightly thinner at its outer edge, so that the tapering crushing roller fit and follow it nicely, and it has a central well in

BEER'8 MILL AND CONCENTRATOR FOR TREATING AND AMALGAMATING ORES.
which the quicksilver may lie, this well being sup plied through a duct from an amalgam box on the outer side of the tub. Extending up through the cen ter of the tub is a shaft casing, preferably cast inte gral with the bed plate, the driving shaft being stepped in a suitable bearing below, and on the shaft is a spider frame having at its top a collar which turns above the casing, and is keyed to the shaft. Th lower ends of the arms of this spider frame merge in a collar on which are lugs between which are pivoted the shafts of the crushing rollers, which are thus al-
lowed to swing vertically, that they may ride ove any large or particularly hard rock without doing dam age. In the tub, justabove the rollers, is a cross frame of parallel cross plates connected by diagonal plates, to check the rotary current of water, so that the quick silver in the central basin will not be disturbed. Th tailings flow out with the water from a spout at the top of the tub, the free metal amalgamating with the quicksilver, while the concentrates settle on the bed plate. At one side, near the bottom, is a valve-con trolled pipe through which the concentrates may be drawn out.

A PUMP GEAR FOR WINDMILLS.

With the construction shown in the engraving the wind wheel is free to turn to the wind without affect

ERICKSON'S PUMP GEAR FOR WINDMILLS

ng the position of the pump plungers, and the powe of the windmill crank shaft is uniformly transmitted The improvement forms the subject of a patent issued to Mr. Andrew S. Erickson, of Holdrege, Neb. On the shaft of the wheel are two crank arms connected by pitmen to two tubes, one sliding in the other the outer tube being mounted to turn and fitted to slide in bearings attached to the tower. The lower ends of the tubes have flanges on which rest the eyes of two levers fulcrumed on the tower, and these levers are connected with the pump rods to impart a reciprocating motion to the pump plungers. It will be seen that, as the tubes are alternately raised and low ered by the motion of the wheel, the turning of the tubes, as the wheel turns in the wind, in no way affects the position of the levers connected with the pump rods, the eyes of the levers only loosely engag ing the lower ends of the tubes. It will be obviou that a so

Railway Grade Crossings

The blindness of city officials to the great and daily dangers to which citizens are exposed by the practice of permitting street railways to cross the tracks of steam railroads at grade is becoming so serious a mat ter, says Railway Engineering, that some kind of a surgical operation seems necessary to restore their sight. Nor does any thought of the rank injustice which the steam railroad suffers ever flit through the minds of those who grant franchises to street railway corporations. Here is a steam road with its right of way already established, and crossed by streets which may have been laid out years after the railroad enter ed the territory; a street railway corporation gets a franchise permitting it to use the streets without pay ment of anything but the boodle necessary to get the ordinance through the council, and then it essays to cross the traciss at grade, exposing its patrons to un necessary danger, and compeling the steam road to share in responsibility for the lives of the passengers carried by the street railroad company. The cities of the land are anxious enough to have the steam roads elevate their tracks, but they do not display the same anxiety to protect citizens from the danger of street railway travel.
We believe that they will be awakened from thi lethargy at no distant date by the electric railroads The latter have a suitable power for high speeds, and the desire on the part of the populace for rapid transit already has and will compel them to adopt fast schedules, until when they successfully compete with steam roads for suburban travel the necessity for greater precautions for the safety of human life on street railways will be shown in no uncertain manner. On the ques ion of electric and steam railroad crossings, the direc tors of the Pennsylvania Railroad, in their fortyseventh annual report, after describing the work of elevating and depressing its tracks in several cities, said:
The object sought to be attained, however, through
the large expenditures made in this direction, both by
the railroads and the local authorities throughout the State, will be almost entirely defeated if the electric railways now being promoted throughout the country are permitted to cross the steam railways at grade, and thus create a new and most serious element of peril for the traveling public. It must be borne in mind that the entire movement of these electric railways is in the transportation of passengers, and that, therefore, the isk to life and limb from such crossings, owing to th requent service, is proportionately much greater than on the steam railways, where the trains are not nearly so frequent, and where the movement is made up largely of freight traffic. It would hardly seem reason able that the electric railways should be permitted to ndefinitely increase the number of these crossings, while at the same time your company and the city of Philadelphia are expending over $\$ 400,000$ to remove the grade crossings of your road by the North Pennsyl vania Railroad in the northern portion of the city."
The directors of the New York, New Haven \& Hart ford Railroad in their report also refer to the matte as follows:
"The creation of level crossings of steam railroads by electric roads, whether by legislative or judicial permission, must lead to dreadful accidents. The people are calling for large expenditures by the steam railroad for the elimination of all grade crossings, and simu taneously their agents are increasing the danger to those which exist by allowing the electric roads to us them. Public sentiment sooner or later will condemn uch inconsistency."

Punch Photograph.

The Consolidated Traction Company gives very liberal transfers, enabling citizens of Jersey City and Newark to go from almost any place in either city to any place in the other. To prevent cheating, the com pany has devised a ticket, on the top of which are printed in a row the faces of five men and two women There is a smooth-faced man, the man with a mus there, and another with side whiskers, a fourth with chin whiskers, and the fifth with a full beard. There re only two women-one meant to be young and the are only two women-one meant to be young and the
other old-a hat designating the former and a bonne the latter. There is also, as an additional safeguard, a mark just under the heads, which when punched ac cording to instructions shows the age of the holder to be more than or less than forty years.

SUGAR CANE COLTIVATOR.

The illustration represents a light, easily working machine, to loosen and clear the soil of weeds and vines and throw it around the roots of opposing rows of cane. It has been patented by Messrs Louis Danos and Albert Haydel, Hohen Solms, Ascension Parish, La.
the platform of the truck is narrow, and supported centrally under it is a triangular scraper with a knife at its apex or front edge, the convex edge of the knife dividing the soil and severing vines, weeds, etc., in it path. The knife is attached by means of a shank to the standard of the scraper, which extends upward and is pivoted to a link adjustably attached to a hand lever fulcrumed just back of its forward end to an up ight on the platform. Extending rearwardly from his upright is a rack upon which the lever has guided movement, being provided with the usual thumb latch to engage the rack. A second lever pivoted on a rear standard, is pivotally connected at

DANOS AND HAYDEL'S SUGAR CANE CULTIVATOR.
its forward end with the front end of the hand lever, and at its rear end this lever is adjustably attached to he upper end of a shank or standard on whose lower end is secured a follower or mould board, which travels over the surface that has been operated on by the forward scraper. As the machine is drawn between the ows of cane, the hand lever is pressed downward, bringing the scraper and its cutting knife into the de ired engagement with the ground, the same motion also bringing down the mould board, by which the oosened soll is thrown to both sides and upon the roots of the plants.

