Srixutific shmerican.

ESTARLISHED 184

MUNN \& CO.. Editors and Proprietors. PUBLISHED WEEKLI AT
 No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE JCIVNTIFIC

 The -ciputic American ©undemen

 Export Edition of Phe scientific A Anerican.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT

NO. 1014.

For the Week Ending June 8, 1895.
Price 10 cents. For sale by all newsdealer

 x. x. 8

 Nomed

the present btatub of the bicycle.

The development of the use of the bicycle, which ha been often spoken of in these columns, has attained now a wonderful extension. Wherever one travels in the country, whether near or far from the center of population, the omnipresent bicycle is found. On country roads the woman school teacher is met riding home from the district school; in manufacturing places the artisan is seen, perhaps dressed in his over alls and carrying his dinner can, going on his wheel on his way to and from his work. In road houses and in some stores special provision is made for the care of bicycles. Men go to their business on them, and it is at last proved that a new mode
All the above is trite. Coincidently with is im mense development of what was once a sport, but is now no more a sport than is any other means of loco motion, has appeared a considerable amount of oppo sition to the wheel on the part of those who do not ride. A disposition exists to enforce ordinances more rigidly in the case of riders of wheels than is the custom against others, while the old tendency to legislate directly against their use is still shown in places. The wheel, with its pneumatic tire, stealing along silentl at a relatively high speed, seems to possess the power of irritating the pedestrian from the apparent dange of collision. It seems not to occur to him that while leg islation is being in voked to force trolley cars to be pro vided with fenders, the very element which makes the bicycles noiseless, which is the pneumatic tire, provides it with a reasonably effective fender. The pneumatic tire is certainly a great safeguard, if, by accident, a pedestrian should be strucs by a wheel. Meanwhile, in spite of opposition, the use of the bicycle continues to increase, and one of the best safeguards against in imical legislation is certain to be afforded by the proba bility that the majority of legislatorsin the near futur will be riders themselves.
To transform the everyday progress of a man through the streets from a speed of three or four miles an hou to a speed of ten, to give him as environment, instead of a crowd of other pedestrians, a quantity of vehicles of all descriptions, is a most radical change. The country road invaded by the trolles car running a twenty miles an hour is a parallel illustration of ernmental ordinances the existing conditions have to be considered. The regulations formulated in past days, concerning traffic on roads, in a general way horseback rider, and the foot traveler as the elements to be pro vided for. As the bicycle came into prominence, the old view of it as an instrument of sport, pure and simple, something for pleasure, not for use, was hard to abandon, and many relics of this opinion still exist
It is not saying too much to assert that the time ha no longer the two thousand pound truck, the lighter carriage and the slow-moving pedestrian that are to be considered; the bicyclist is a new element, which ha created a new condition of things which must be recognized and provided for, and is destined sooner o later to haveits interest conserved. The day for inim ical legislation passed long ago; the time has come for special consideration. The streets of our large cities as a rule, are ill adapted in the business districts es pecially for the bicycle. In cities where the business streets are ridable, the bicycle has come into the most extensive use for business men and tradesmen of al classes. But the stone-paved street, adapted to heavy traffic, is but ill adapted to the bicycle, and what seems to be wanted is a compromise pavement, which will suit all classes of traffic. Taking the city of New York, it would not seem impossible to provide one or more through bicycle routes from the upper part o the island to the Battery. A street with proper pave ment on it, adapted especially for bicyclists, would not be too much to be granted to the ever
increasing army of riders, but it would be far better to devise some form of pavemen which would meet all classes of traffic and which would enable the bicyclists to ride abou the business portion of the city as comfortably as they now do in the parks and boulevards. An im mense field for the civil engineer is opened in the pro viding of such streets in business cities. Asphalt, which gives a smooth though dead surface, is being introduced very extensively in the residential portions of the metropolis. It seems questionable if it would answer for the districts devoted to heavy traffic Vitrified brick has been adopted in many places with satisfaction to bicyclists and truckmen. A snall ex perimental piece has been laid in this city, and it may be laid upon the Ocean Parkway, in Brooklyn. To provide a bicycle path, the asphalting of the space between the tracks of cable car lines or of trolley car lines has been suggested, and this has been done in this city on one street, though not to accommodate cyclists. As the case now stands, there is a new form of traffic to be provided for, one whose maynitude i daily increasing, and which in the near future will ex
friction between the bicyclists and the pedestrian is bound to decrease in time ; it seems at present to be merely due to the difficulty mankind has in recognizing the existence of a new state of things in daily life
Incidentally the lowering of the price of bicycles and the possibility of procuring cheap ones second hand has imparted to the bicycle a most important element in making it the vehicle of the workman as well as o the rich. A few months' car fare will pay for a wheel, so that it has definitely ceased to be a lusury, and the workman who never could have dreamed of owning a orse, can possess without extravagance a bicycle, which will surpass the ordinary horse in speed.

possibilities of beet sugar industries,

We derive the following from the Sugar Beet :
The total area devoted to beets for the seven beet sugar factories in the United States (this includes the small output of Virginia) was, in 1893-94. 19,647 acres, rom which were obtained 195,895 tons beets and $45,191,296$ pounds sugar, corresponding to a yield of 2,30 pounds sugar per acre, and an average of $230 \cdot 7$ pound per ton of beets worked on an average extraction o 1.5 per cent. The average yield of beets per acre wa 9.9 tons. Accepting these figures as a basis of calcu lation for the requirementsof the Union, the consump ion of sugar during 1894 was $2.024,648$ tons, or $\mathbf{5 3 5}, 211,520$ pounds. Toobtain this sugar there would be needed at least $2,000,000$ acres of land if the yield be 10 tons to the acre, and beets sell for $\$ 4$ per ton. The money for these roots represents the enormous sum of $\$ 80,000,000$ that would be put into circulation among our farming population.
If we admit that farmers receive gratuitously 50 per cent in weight of beets furnished by the residuum pulp as it leaves the process, this would be sufficient to feed not less than $2,000,000$ head of cattle during the thre winter months when fodders are the most expensive If we admit two pounds increase per head and diem then would result $400,000,000$ pounds meat obtaine from a product that is now receiving only a limited attention.
If the entire residuum should find utilization in the nited States when the industry exits fully, there would be not less that $550,000,000$ pounds meat obtained at a minimum cost
To make this matter thoroughly clear from a farmer's tandpoint, we can suppose that 10 acres of land yield 100 tons of beets, which are sold at the factory for $\$ 400$. In return he gets for nothing 50 tons, or 112,000 pounds, esiduum pulp. We may admit that the ration con sists of about 100 pounds pulp (combined with othe products) per diem for 100 days; the consumption pe head would be 10,000 pounds pulp, or sufficient for 1 beeves. If the rate of increase is 2 pounds per head per diem, during the time of feeding, the total increas is 2,200 pounds. If the farmer clears 4 cents per pound on his meat he has 88 additional dollars that his land ields him. The resulting manure from this feeding i n item of considerable importance, not to be over looked.
According to Willett \& Gray, the entire consumption f sugar in the United States during 1894 was 2,024,648 tons, i. e., 265,500 tons domestic cane sugar, 20.000 ton domestic beet sugar, 300 tons sorghumsugar, 5.000 ton maple sugar, 15,000 tons domestic manufactured mo lasses sugar, or 305,800 tons of home-made product, to which must be added $1,554.528$ tons of foreign can ugar, 159,796 tons foreign beet sugar, and 14.524 ton oreign refined sugar, or a total for foreign product of 1,718.848 tons.
Experiments in feeding inferior and superior beets to heep have shown that there are many advantages to be gained by using roots of high saccharine per age
In the manufacture of alcohol, either from beets o beet molasses, there is always a residuum which maybe used for the manufacture of potassa, or as a fertilizer The product left over is known is vinasse, and con tains about 12.8 per cent potassa, 3.7 nitrogen, 0.1 pe ent phosphoric acid, and 0.1 per cent lime. For bee soils this may be used in quantities corresponding to tons to the acre.
From the official data respecting the sugar campaign for 1893-94 in Germany, we glean some interesting Gures; 405 factories were working, and there wer 966,200 acres planted in beets. The total weight o beets worked at factories was $10,644,300$ tons, giving a verage per factory of about 26,000 tons. The average sugar campaign was only 78 days. The total suga production was $1,319,000$ tons, corresponding to an ex raction of $12 \cdot 36$ per cent. If we include the sugar ex racted from molasses, the extraction becomes nearly 13 per cent. The exportation of home-made sugar was 728,000 tons. The consumption of sugar remain bout the same from year to year, and is nearly 600,000 tons.

The returns from an acre of beets in Germany are 40 , while from wheat and other cereals only $\$ 20$.
The total area devoted to beets in the empire during 893-94 was 966,000 acres. The average yield of beet
sugar (with the product from molasses) required 308 pounds beets.
In molasses distillation the sugar is changed into glucose, then into alcohol and carbonic acid; and there is a final residuum, which may be used as a fertilizer or for potassa manufacture.
If Congress would pass a bill allowing residuum beet molasses to be distilled free of taxation, it would in a measure compensate for the withdrawal of bounty on sugar. If this distilling of molasses is carried on in connection with sugar making, it may be said that the profits thereon would go considerably toward the cost of working beets into sugar. At present we may admit that $\$ 2.50$ to $\$ 3$ represents the labor and interest on plant per ton of beets worked into sugar. Froma ton of beets there remains nearly 100 pounds molasses, from which may be exhausted 3 gallons of pure alco hol. The sale of it, even at $\$ 2$ a gallon, would leave a margin of profit certainly not less than $\$ 2$.
One acre of beets at Ames, Nebraska, may be said to cost as follows from data of practical experience on the field :
Manuring $\$ 2.20$, plowing $\$ 2$, seed $\$ 2$, seeding $\$ 0 \cdot 30$, harrowing $\$ 0 \cdot 50$. rolling $\$ 0.31$, 1st boeing $\$ 1.44$, bunching $\$ 2.12$, thinning $\$ 3.72,2 \mathrm{~d}$ hoeing $\$ 5.25$, 3d hoeing $\$ 4.81,4$ th hoeing $\$ 2.91$, cultivating $\$ 1.82$, sundry expenses, timekeeping, killing bugs, etc., $\$ 0 \cdot 77$, giving a total cost for "laying by" of $\$ 30.16$. To this sum must be added $\$ 4$ harvesting, $\$ 2$ plowing out, $\$ 2.13$ hauling and loading, or a total cost of $\$ 3829$. As the yield was 10 tons to the acre, the beets cost the farmer, even under the most carefin cultivation, $\$ 3.83$. If the yield had been as during 1893, then the cost per ton would have been only $\$ 2.56$.
Some interesting information respecting the working of the Norfolk beet sugar factory is published in the News: "Out of 27,551 tons of beets raised, the company manufactured $5,556,100$ pounds fine granulated sugar. To make this, 443 car loads coal were consumed, 225 car loads lime rock, and 33 car loads coke. During the three months the machinery was in operation 2,400 gallons of oil and 1,000 pounds grease were used to keep the machinery in running order;

300 men were employed."
In a speech by Senator Charles F. Manderson, of Nebraska, he says:
"Ten acres of land in Nebraska, Kansas, or Dakota devoted to the cultivation of wheat, corn, or potatoes, would lead to starvation rather than life. But in Nebraska, from same acreage, 220 tons of beets were sold at $\$ 4.05$ per ton, amounting to $\$ 901$. The total expenditure was $\$ 287.20$, leaving a net profit of $\$ 61.30$ per acre
'This is a peculiar crop. It cannot be raised in slovenly fashion. It means work; it means intelligent painstaking labor. It requires a much higher order of intelligence to grow beets than it does for wheat or corn. Every acre planted in beets means twenty days labor for one man. If $2,000.000$ acres of land are needed to supply this country with sugar, it follows that $40,000,000$ days' labor could thus be given to the labor ers of the United States. It would also mean the transportation of $26,000,000$ pounds freight for th industry."

The Beantifal Star Figure in Gemini.
In the early evening sky in the west now [May 23] nay be seen one of the wonders of astronomy. Three of the visible six planets of our system are bunched in the constellation Gemini.
Begin with big blazing Venus; thence down west ward is Jupiter, of diminished and diminishing glory as he approaches his conjunction with the sun. Above Venus and to the left, farther away from her than Jupiter is, is the red planet Mars, also nearing his Jupiter is, is the red planet Mars, also nearing his conjunction, and greatly diminished from his normal
splendor. Above these three are the fixed stars Cas splendor. Above these three are the fixed stars Cas-
tor and Pollux in the heads of the Twins. The ive make tor and Pollux in the heads of the Twins. The ive make
the figure of a dipper with the handle hung down; and of the five Castor and Pollux are the only ones whose places on the blue vault are permanent.
There is not among all the stars a more beautiful figure than this. Apparently as permanent as any of them, it is really as evanescent as the morning dew. Never seen before, except perhaps in eternal ages past it will never appear again except perhaps in ages ye to come. Its memory will be preserved in the annals of astronomy as one of the wonders of 1895. Let u name it the Planetary Dipper, or the Dipperof Venus.
Observe the nightly changes in this figure. It will distort, dissolve, and its component parts soon fade and disappear in the twilight of the eastward traveling sun. At the last of June the sun will have advanced to Gemini, to near where Jupiter is now.
Another of the visible six planets is up in the early evening now, eastward, about the beginning of Libra, and near the feet of Virgo; Cancer, Leo, and Virgo of the zodiac alone intervening between it and its friends in Gemini. It is Saturn, the ringed planet, twice as far outward from us as is Jupiter, and almost in fact the outermost visible planet; for Uranus, next outside of him, is hard for an amateur to identify even
side, Neptune, is not visible at all except through a telescope.
But one other planet is now to be accounted for, fleet Mercury, occasionally visible low down in the west or the east flitting past the sun on his little orbit, always white, bright, and pretty.-R. W. Musser, Ashville, N. C., Citizen.

Photo Fints.
 RICHARD PENLAEE

This does not pretend to be an article which devotes itself entirely to one given subject. It is a mixture; it embraces simple rules of composition and simple methods of manipulation whereby certain effects can be obtained, and divers other little points which way prove of value to those just starting on the sea of photography, as well as those who are within sight of port.
We will suppose that the camera has been purchased and the artist is ready and eager for the fray. Every one knows how easy photography appears to be to those who have not mastered the art. You simply take off the cap, or pull the string, put the plate in developing salts, and in the words of the song, "There's a picture for you." But, alas for young hopesl there generally is no picture at all. If develophopesl there generally is no picture at all. If development has been satisfactory and exposure correct, there
are the hundred and one rocks of lighting, composiare the hundred and one rocks of lighting, composi-
tion, etc., upon which the poor amateur may be cast away.
The simplest branch of study is landscape. Some are contented to take landscapes haphazard as they find them, while others walk about and select a point of view most likely to produce a pleasing picture. A building or some like structure which has sufficient pictorial element in its composition should be included but a great fault is that of trying to get too much one plate. Pictures should not appear crowded.
Never take a view with the sun directly opposite the camera, for if this is done the plate will be hopelessly fogged and consequently rendered useless. The sun
should occupy a position over one of the shoulders, should occupy a position over one of the shoulders,
and the artist should stand to obtain as much side light as possible. In this manner a harmonious blend ing of light and shade will be obtained, whereas if the sun were shining directly on the subject the result would lack contrast and be void of pluck and bril liancy. The chief mass of a picture should rarely oc cupy the center, but should have a position a little to ne side. A good plan is to mark the focusing screen in the manner shown in the diagram. Nine square

will thus be formed. The center square is the weak est point, and the points where the two lines intersect are the strongest. The horizon line should rarely, should be about one-third from the top or bottom, the upper for views taken from a height, the lower for orupper for views taken from a height, the lower for or-
dinary landscapes. There are, however, exceptions to this rule.
For the sake of variety a building should never be taken "full on," but at an angle. Plant the camera slightly at one side, much better effects are oistained Be careful not to have any prominent object, other than the principal one, to distract the attention. Th interest should be centered on the principal object.
Never stand in the middle of a street when photo graphing it, but slightly on one side. lt looks better As often as possible select an interenting foreground as a bad one spoils an otherwise good picture. H. P Robinson, oue of our celebrated landscape photograph ers, says :
"In the selection of a view great attention should be paid to the foreground. The foreground is of so much importance, that I do not hesitate to say that if a view is not well fitted in this respect, it can never be an effective picture. A landscape photograph seems to require a good foreground ruore than any other kind of picture." It is a matter for wonder, since a photographer is deprived of the use of color in his work, that he does not turn his attention with greater earnestness to design and arrangement. Some do so and with good effect.
We were shown in these pages a short time ago what great changes could be effected in the way of cutting and mounting. Much good work is undoubtedly sacrificed by an inch too much at top or bottom, on one or the other side. Many subjects that spread over the full area of the plate are tame, uninteresting, and may be improved by cutting down. The difficulties of judging the proportions best suited to the subject are great, and require careful thought and consideration. How charming some of those long, narrow pictures are, which, if printed full size, would be pictorially wortbless.
Be careful when focusing to get the minutest de-
tails. If the view be a church, focus the clock or leaded
windows, if a house, the window curtains or bricks, in a portrait, the eyes.
Many amateurs make a start by attempting portraiture. This is unwise, as successful landscape work should be mastered before attempting this difficult. branch. To accomplish portraiture equal in style to a professional, special lenses, various arrangements of light and shade, besides many years of apprenticeship, are necessary. A few hints will, however, enable a beginner to turn out passable work.

When taking a vignette, or bust portrait, always get the mouth in the center of the plate; by observing this rule, you will have tise satisfaction of knowing the head is in a proper position on the plate, and not slipping off at the top or bottom. A vignette should not be taken before a background composed of a brick wall or leaves. The result gives a very curious patchy effect. Good makeshift backgrounds may be made of brown paper, or a blanket, that commonly known as the "workhouse" pattern; at a pinch, a newspaper can be placed a short distance behind the sitter The reading matter will, of course, be considerably out of reading matter will, of course, be considerably out of
focus, thus producing a gray effect in the finished focus, thus producing a gray effect in the inished
print. Those who require a really serviceable article print. Those who require a really serviceable article
should buy a plain cloth washable background, costing about three shillings. Al ways bear in mind that one side of the face is better looking than the other usually the left side, except in the case of left-handed people, when the right side generally takes best. Carefully observe this when taking what is known as the "three-quarter" face
When taking a "full face," notice which way the nose bends, as no nose is really straight, and pose ac cordingly. Let the sitter be at ease and secure as much individuality as possible. Have the camera on a level with the face. If the lens points downward the forehead is exaggerated. if upward, the chin. Use the longest focus lens possible, as a wide angle lens distorts portraits fearfully.
When taking full or three quarter length portraits, don't mix them; let them be either one or the other. Many are taken with the feet cut off just at or above the ankles. In which of the two poses should these be classed 9 A proper three-quarter length should be taken to the knees, the top line marked on the screen (as mentioned at the beginning of the article) runving across the eyes. For a full length portrait allow a little foreground, so as to give the figure something to stand on.
Figure studies and genre work should be encour aged. This particular branch necessitates extra skill, but the results amply repay for extra time and trouble. -Junior Photographer.

American Association for the Advancement of
For five vears in succession efforts have been made to secure the annual meeting of the A. A. A. S., and its numerous affiliated societies, at San Francisco, or some other point on the Pacific coast. The most alluring offers have been made by the Calfornians, and it was confidently hoped that they could this year be available. The difficulty is to obtain proper concessions from the railroad companies. Hence the meeting for 1895 will be in some Eastern city, and Springfield, Mass., is now announced as the favored place.
The official time will be from August 26 to September 6 inclusive. The first general public session will be held on Thursday, August 29. Friday, Monday, Tuesday and Wednesday will be wholly given up to scientific discussions. Saturday will be devoted to excursions that have been planned for visiting points of interest in the vicinity.
The botel headquarters will be at the Worthy. The president's address will be given in Court Square Theater; other evening addresses and receptions will be in the City Hall. The general sessions and section meetings will be in the Y. M. C. A. Hall. Other buildings are also at the disposal of the association, and everything will be done by the citizens of Springfield to make the convention successful.
Further information can be had from Prof. F. W. Putnam, the permanent secretary, Salem, Mass., or from Prof. William Webster, local secretary, Springfield, Mass. A preliminary pamphlet can be had on application, describing excursions. giving hotel rates and other useful particulars.

We have long had slag paint and pavement, but the atest is a slag brick chimney. According to L'Indusrie this plan was adopted by the Courrieres and Ortricourt companies, and their example is followed by the works of Arbel and Douai. The latter establishmenc planned a chimney 164 feet high and to weigh but 379 gross tous, about half the weight of a brick chimney of the same dimensions. A special cement was to be used which would bind together the blocks composing the chimney so firmly as to require no chain or iron band for strengthening. This is an interesting application of a cheap industrial by-product, which, should the experiments prove a success, will be appreciated by metallurgists.

