A WLEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE UNITED STATES BATTLE SHIP OREGON. The accompanying view of the Oregon is of peculiar interest, as it was taken, not without some danger, from directly in front of the vessel when she was at the top of hertspeed, toshow the waves thrown from her bow, a matter to which much thought is given by naval experts and constructors. An excellent side view of the Oregon under way, with details of her construction, was published in the Scientific American of January 19 , but to show the great "feather" rolled up by the ship from a point directly in front, Mr. O. V. Lange, an experienced California photographer, arranged with the captain of a little tug to "shoot across" the
pitching of the tug," which, it was said, had escaped collision by the fraction of a second, the ship's side flashing by within ten or twelve feet.
The Oregon is an armored coast line battle ship of the first class, built at San Francisco, and is one of the largest and most important vessels of our new navyShe has a displacement of 10,230 tons and a maximum speed of 16.2 knots, her length being 348 feet, beam 691/4 feet, and draught 24 feet. She has a coal capacity of 1,800 tons, sufticient to carry her 5,000 miles at full speed or 16,000 miles at a speed of ten knots. Her en-
gines are of the triple expansion type the gines are of the triple expansion type, the cylinders

The Box as a Spectmen Shrub.

The assertion in a recent issue of the Garden that the common box is a much abused subject is, I think, quite justifiable. How seldom do we see it planted by tself where it can spread and develop to the fullest. Few, I think, have any idea to what proportions this shrub in good ground will attain. Some of the finest specimens I have ever seen are at Gunton, growing in the pleasure grounds. They stand quite clear of the eighboring shrubs, and bave plenty of air and light and are most useful and handsome. The variegated forms appear to be more stiff and erect in growth, and forms appear to be more stiff and erect in growth, and

THE UNITED STATES BATTLE SHIP OREGON

Oregon's bow as she came on at full speed, a plan of which the Oregon's commander had no knowledge. The vessels were almost together, and it was too late for the Oregon to swerve either way, when the tug was seen moving directly across the course of the bat tle ship, at whose stem a foaming wave was piled nearls twelve feet high and spreading far on either side. The tug could not turn back as the high steel prow of the
Oregon seemed about to bear directly down upon her, and there was consternation aboard the little vessel. The photographer says: "The Oregon seemed to be coming like a cannon ball, but I determined to get that picture if it was my last. I steadied my nerves a moment, glanced into the finder, and clicked the shutter. Then, with the camera under one arm, I ran to a stanchion and grasped it. The next moment there to a stanchion and grasped it. The next moment there
was a noise of rushing water and a violent whirling and
with a stroke of 42 inches, and she has twin screws. [I planting new pleasure grounds, I would certainly Her armor is 18 inches thick from three feet above the water line to four feet below it. Her battery was degned to include four 13 inch breech-loading rifes, lthough there has been not a little difference of opinion as to whether the largest guns should not be lim-
ited to 12 inch bore. These large rifles will be mounted ited to 12 inch bore. These large rifles will be mounted
eighteen feet above the water. Besides these, her battery includes eight 8 inch breech-loading rifles, four 6 inch, twenty 6 pounder rapid fire guns, two Gatlings, and six torpedo tubes.

Aluminum Horse Shoes,

Among the recent patents is one for an aluminum horseshoe having finely divided particles of hard metal embedded in the wearing face of the shoe. This metal embedded in the wearing face of the shoe. Th
forms a very light shoe, of considerable durability.

I planting new pleasure grounds, I would certainly
accord the box a prominent place among shrubs and give it plenty of room.-J. Crawford.

Anthrax in Human Beings.

Some extraordinary statements as to the ravages of anthrax, and the attitude of the Board of Agriculture in relation thereto, were made at a recent meeting of the Leicestershire County Council, England. The disease broke out on the farm of a Mr Warren, at Arnesby, and not only the cattle, but human beings and all kinds of animals were attacked. The farmer and sixteen men were all ill at one time, one man dying at the Leicester Infirmary. A woman in passing the plaguestricken spot was stung by a fly and died from anthrax. Cats, dogs, and birds in the neighborhood also thrax.

Sritutifir shmerican.

ESTABLISHED 184

MUNN \& CO.. Editors and Proprietors. PUBLISHED WEEKLY AT
 No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

 Theaders are specially requested to notify the
failure, delay, or irreaularitv in receipt of papers.

NEW YORK, SATURDAY, JUNE 8, 1895.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT

NO. 1014.
For the Week Ending June 8, 1895.
Price 10 cents. For sale by all newsealers

the present btatus of the bicycle

The development of the use of the bicycle, which has been often spoken of in these columns, has attained now a wonderful extension. Wherever one travels in the country, whether near or far from the center of population, the omnipresent bicycle is found. On country roads the woman school teacher is met riding home from the district school; in manufacturing places the artisan is seen, perhaps dressed in his over alls and carrying his dinner can, going on his wheel on his way to and from his work. In road houses and in some stores special provision is made for the care of bicycles. Men go to their business on them, and it is at last proved that a new mode of everyday, practica locomotion has been developed.
All the above is trite. Coincidently with is im mense development of what was once a sport, but is now no more a sport than is any other means of locomotion, has appeared a considerable amount of oppo sition to the wheel on the part of those who do no ride. A disposition exists to enforce ordinances more rigidly in the case of riders of wheels than is the custom against others, while the old tendency to legislate directly against their use is still shown in places. The wheel, with its pneumatic tire, stealing along silently at a relatively high speed, seems to possess the powe of irritating the pedestrian from the apparent danger of collision. It seems not to occur to him that while leg islation is being in voked to force trolley cars to be pro vided with fenders, the very element which makes the bicycles noiseless, which is the pneumatic tire, pro vides it with a reasonably effective fender. The pneumatic tire is certainly a great safeguard, if, by accident, a pedestrian should be struck by a wheel. Meanwhile, in spite of opposition, the use of the bicycle continues to increase, and one of the best safeguards against in imical legislation is certain to be afforded by the proba bility that the majority of legislators in the near future will be riders themselves.
To transform the everyday progress of a man through the streets from a speed of three or four miles an hou to a speed of ten, to give him as environment, instead of a crowd of other pedestrians, a quantity of vehicles of all descriptions, is a most radical change. The country road invaded by the trolles car running a twenty miles an hour is a parallel illustration o the change of conditions. In the matter of all governmental ordinances the existing conditions have to be considered. The regulations formulated in past days, concerning traffic on roads, in a general way recognize the wagou drawn by horses, the horseback rider, and the foot traveler as the elements to be pro vided for. As the bicycle came into prominence, th old view of it as an instrument of sport, pure and simple, something for pleasure, not for use, was hard to abandon, and many relics of this opinion still exist
It is not saying too much to assert that the time has now come for a change. On the roads and streets it is no longer the two thousand pound truck, the lighter carriage and the slow-moving pedestrian that are to be considered; the bicyclist is a new element, which ha created a new condition of things which must be later to haveits interest conserved. The day for inimical legislation passed long ago; the time has come for special consideration. The streets of our large cities, as a rule, are ill adapted in the business districts especially for the bicycle. In cities where the business streets are ridable, the bicycle has come into the most
extensive use for business men and tradesmen of all classes. But the stone-paved street, adapted to heavy traffic, is but ill adapted to the bicycle, and what seems to be wanted is a compromise pavement, which will suit all classes of traffic. Taking the city of New York, it would not seem impossible to provide one or more through bicycle routes from the upper part of the island to the Battery. A street with proper pave ment on it, adapted especially for bicyclists, would not be too much to be granted to the ever
increasing army of riders, but it would be far better to devise some form of pavemen which would meet all classes of traffic and which would enable the bicyclists to ride about the business portion of the city as comfortably as they now do in the parks and boulevards. An im mense field for the civil engineer is opened in the pro viding of such streets in business cities. Asphalt, which gives a smooth though dead surface, is being introduced very estensively in the residential portions of the metropolis. It seems questionable if it would answer for the districts devoted to heavy traffic Vitrified brick has been adopted in many places with satisfaction to bicyclists and truckmen. A sinall ex perimental piece has been laid in this city, and it provide a bicycle path, the asphalting of the space provide a bicycle path, the asphalting of the space
between the tracks of cable car lines or of trolley ca bet ween the tracks of cable car lines or of trolley ca
lines has been suggested, and this has been done in this city on one street, though not to accommodate cyclists. As the case now stands, there is a new form of traffic to be provided for, one whose maynitude is daily increasing, and which in the near future will ex
cite attention greater than it is now receiving. The
friction between the bicyclists and the pedestrian is bound to decrease in time; it seems at present to be merely due to the difficulty mankind has in recognizing the existence of a new state of things in daily life
Incidentally the lowering of the price of bicycles and the possibility of procuring cheap ones second hand has imparted to the bicycle a most important elemen in making it the vehicle of the workman as well as o the rich. A few months' car fare will pay for a wheel, so that it has definitely ceased to be a luxury, and the workman who never could have dreamed of owning a horse, can possess without extravagance a bicycle, which will surpass the ordinary horse in speed.

POSSIBILITIES OF BEET SUGAR INDUSTRIES

We derive the following from the Sugar Beet :
The total area devoted to beets for the seven beet ugar factories in the United States (this includes the mall output of Virginia) was, in 1893-94. 19,647 acres from which were obtained 195,895 tons beets and $45,191,296$ pounds sugar, corresponding to a yield of 2,300 pounds sugar per acre, and an average of 230% pound per ton of beets worked on an average extraction o 11.5 per cent. The average yield of beets per acre wa $2 \cdot 9$ tons. Accepting these figures as a basis of calcu ation for the requirements of the Union, the consump tion of sugar during 1894 was $2.024,648$ tons, or $4,535,211,520$ pounds. To obtain this sugar there would be needed at least $2,000,000$ acres of land if the yield be 10 tons to the acre, and beets sell for $\$ 4$ per ton. The money for these roots represents the enormous sum of $\$ 80,000,000$ that would be put into circulation among our farming population.
If we admit that farmers receive gratuitously 50 per cent in weight of beets furnished by the residuum pulp as it leaves the process, this would be sufficient to feed not less than $2,000,000$ head of cattle during the thre winter months when fodders are the most expensive If we admit two pounds increase per head and diem then would result $400,000,000$ pounds meat obtained from a product that is now receiving only a limited attention
If the entire residuum should find utilization in the United States when the industry exits fully, there would be not less that $550,000,000$ pounds meat obtained at a minimum cost.
To make this matter thoroughly clear from a farmer' tandpoint, we can suppose that 10 acres of land yield 100 tons of beets, which are sold at the factory for $\$ 400$. In return he gets for nothing 50 tons, or 112,000 pounds residuum pulp. We may admit that the ration con ists of about 100 pounds pulp (combined with othe products) per diem for 100 days; the consumption pe head would be 10,000 pounds pulp, or sufficient for 1 beeves. If the rate of increase is 2 pounds per head per diem, during the time of feeding, the total increas is 2,200 pounds. If the farmer clears 4 cents per pound on his meat he has 88 additional dollars that his land yields him. The resulting manure from this feeding is ooked.
According to Willett \& Gray, the entire consumption of sugar in the United States during 1894 was $2,024,648$ tons, i. e., 265,500 tons domestic cane sugar, 20.000 ton domestic beet sugar, 300 tons sorghumsugar, 5,000 tons maple sugar, 15,000 tons domestic manufactured mo asses sugar, or 305,800 tons of home-made product, to which must be added $1,554,528$ tons of foreign cane ugar, 159,796 tons foreign beet sugar, and 14.524 ton oreign refined sugar, or a total for foreign product of 1,718.848 tons.
Experiments in feeding inferior and superior beets to sheep have shown that there are many advantages to be gained by using roots of high saccharine per ntare
In the manufacture of alcohol, either from beets o beet molasses, there is always a residuum which may b used for the manufacture of potassa, or as a fertilizer The product left over is known is vinasse, and con tains about 12.8 per cent potassa, 3.7 nitrogen, 0.1 per ent phosphoric acid, and 0.1 per cent lime. For beet oils this may be used in quantities corresponding to tons to the acre.
From the official data respecting the sugar campaign or 1893-94 in Germany, we glean some interesting figures; 405 factories were working, and there wer 966,200 acres planted in beets. The total weight of beets worked at factories was $10,644,300$ tons, giving an a verage per factory of about 26,000 tons. The average sugar campaign was only 78 days. The total suga production was $1,319,000$ tons, corresponding to an ex raction of $12 \cdot 36$ per cent. If we include the sugar ex racted from molasses, the extraction becomes nearly 13 per cent. The exportation of home-made sugar was 728,000 tons. The consumption of sugar remain about the same from year to year, and is nearly 600,000 tons.

The returns from an acre of beets in Germany are 40 , while from wheat and other cereals only $\$ 20$.
The total area devoted to beets in the empire during 893-94 was 966,000 acres. The average yield of beet
sugar (with the product from molasses) required 306 pounds beets.
In molasses distillation the sugar is changed into glucose, then into alcohol and carbonic acid; and there is a final residuum, which may be used as a fertilizer or for potassa manufacture.
If Congress would pass a bill allowing residuum beet molasses to be distilled free of taxation, it would in a molasses to be distilled free of taxation, it would in a
measure compensate for the withdrawal of bounty on measure compensate for the withdrawal of bounty on
sugar. If this distilling of molasses is carried on in connection with sugar making, it may be said that the profits thereon would go considerably toward the cost of working beets into sugar. At present we may admit that $\$ 2.50$ to $\$ 3$ represents the labor and interest on plant per ton of beets worked into sugar. From a ton of beets there remains nearly 100 pounds molasses, from which may be exhausted 3 gallons of pure alcohol. The sale of it, even at $\$ 2$ a gallon, would leave a margin of profit certainly not less than $\$ 2$.
One acre of beets at Ames, Nebraska, may be said to cost as follows from data of practical experience on the field :
Manuring $\$ 2.20$, plowing $\$ 2$, seed $\$ 2$, seeding $\$ 0 \cdot 30$, harrowing $\$ 0 \cdot 50$. rolling $\$ 0 \cdot 31$, 1st boeing $\$ 1.44$, bunching $\$ 2.12$, thinning $\$ 3.72$, 2 d hoeing $\$ 5.25$, 3d hoeing $\$ 4.81,4$ th hoeing $\$ 2.91$, cultivating $\$ 1.82$, sundry expenses, timekeeping, killing bugs, etc., $\$ 0 \cdot 77$, giving a total cost for
"laying by" of $\$ 30.16$. To this sum must be added $\$ 4$ harvesting, $\$ 2$ plowing out, $\$ 2.13$ hauling and loading, or a total cost of $\$ 3829$. As the yield was 10 tons to the acre, the beets cost the farmer, even under the most careful cultivation, $\$ 3.83$. If the vield had been as during 1893, then the cost per ton would have been only $\$ 2.56$.
Some interesting information respecting the working of the Norfolk beet sugar factory is published in the News: "Out of 27,551 tons of beets raised, the company manufactured $5,556,100$ pounds fine granulated sugar. To make this, 443 car loads coal were consumed, 225 car loads lime rock, and 33 car loads coke. During the three months the machinery was in operation 2,400 gallons of oil and 1,000 pounds grease were used to keep the machinery in running order;
employed."
In a speech by Senator Charles F. Manderson, o Nebraska, he says:
" Ten acres of land in Nebraska, Kansas, or Dakota devoted to the cultivation of wheat, corn, or potatoes, would lead to starvation rather than life. But in Nebraska, from same acreage, 220 tons of beets were sold at $\$ 4.05$ per ton, amounting to $\$ 901$. The total expendit
per acre
This is a peculiar crop. It cannot be raised in a slovenly fashion. It means work; it means intelligent painstaking labor. It requires a much higher order o intelligence to grow beets than it does for wheat or corn. Every acre planted in beets means twenty days labor for one man. If $2,000,000$ acres of land are needed to supply this country with sugar, it follows that $40,000,000$ days' labor could thus be given to the labor ers of then of $26,000,000$ pounds freight for the industry."

The Beautiful Star Figure in Gemini.

In the early evening sky in the west now [May 23] may be seen one of the wonders of astronomy. Three of the visible six planets of our system are bunched in the constellation Gemini.
Begin with big blazing Venus; thence down west ward is Jupiter, of diminished and diminishing glory as he approaches his conjunction with the sun. Above Venus and to the left, farther away from her than Jupiter is, is the red planet Mars, also nearing his conjunction, and greatly diminished from his norma splendor. Above these three are the fixed stars Cas tor and Pollux in the heads of the Twins. The five make the figure of a dipper with the handle hung down; and of the five Castor and Pollux are the only ones whose places on the blue vault are permanent.
There is not among all the stars a more beautiful figure than this. Apparently as permanent as any of them, it is really as evanescent as the worning dew. Never seen before, except perhaps in eternal ages past it will never appear again except perhaps in ages yet to come. Its memory will be preserved in the annals of astronomy as one of the wonders of 1895. Let us of astronomy as one of the wonders of 1895 . Let us
name it the Planetary Dipper, or the Dipper of Venus.
Observe the nightly changes in this figure. It will distort, dissolve, and its component parts soon fad and disappear in the twilight of the eastward travel ing sun. At the last of June the sun will have ad vanced to Gemini, to near where Jupiter is now.
Another of the visible six planets is up in the early evening now, eastward, about the beginning of Libra, and near the feet of Virgo; Cancer, Leo, and Virgo of the zodiac alone intervening between it and it friends in Gemini. It is Saturn, the ringed planet, friends in Gemini. It is Saturn, the ringed planet,
twice as far outward from us as is Jup:ter, and almost in fact the outernost visible planet; for Uranus, next outside of him, is hard for an amateur to identify even with the aid of a telescope. The next and last out-
side, Neptune, is not visible at all except through telescope.
But one other planet is now to be accounted for, fleet Mercury, occasionally visible low down in the west or the east flitting past the sun on his little orbit, always white, bright, Ashville, N. C., Citizen.

Photo Hints.

This does not pretend to be an article which devotes itself entirely to one given subject. It is a mixture ; it embraces simple rules of composition and simple methods of manipulation whereby certain effects can be obtained, and divers other little points which way prove of value to those just starting on the sea of photogra phy, as well as those who are within sight of port.
We will suppose that the camera has been purchased and the artist is ready and eager for the fray. Every one knows how easy photography appears to be to those who have not mastered the art. You simply take off the cap, or pull the string, put the plate in developing salts, and in the words of the song, "There's a picture for you." But, alas for young hopes! there generally is no picture at all. If development has been satisfactory and exposure correct, there ment has been satisfactory and exposure correct, there are the hundred and one rocks of lighting, composi-
tion, etc., upon which the poor amateur may be cast away.

The simplest branch of study is landscape. Some are contented to take landscapes haphazard as they find them, while others walk about and select a point of view most likely to produce a pleasing picture. A building or some like structure which has sufficient pictorial element in its composition should be included, but a great fault is that of trying to get too much one plate. Pictures should not appear crowded.
Never take a view with the sun directly opposite the camera, for if this is done the plate will be hopelessly fogged and consequently rendered useless. The sun should occupy a position over one of the shoulders, and the artist should stand to obtain as much side light as possible. In this manner a harmonious blend ing of light and shade will be obtained, whereas if the sun were shining directly on the subject the result would lack contrast and be void of pluck and brilliancy. The chief mass of a picture should rarely oc cupy the center, but should have a position a little to one side. A good plan is to mark the focusing scree in the manner shown in the diagram. Nine square

	1	
	1	
	1	1

will thus be formed. The center square is the weak est point, and the points where the two lines intersect are the strongest. The horizon line should rarely, if ver, run across the exact center of the plate, but should be about one-third from the top or bottom, the upper for views taken from a height, the lower for or dinary landscapes. There are, however, exceptions to this rule.
For the sake of variety a building should never b aken "full on," but at an angle. Plant the camer slightly at one side, much better effects are obtained. Be careful not to have any prominent object, other than the principal one, to distract the attention. Th terest should be centered on the principal object.
Never stand in the middle of a street when photo graphing it, but slightly on one side. It looks better As often as possible select an interesting foreground, as a bad one spoils an other wise good picture. H. P Robinson, one of our celebrated landscape photograph res, says
"In the selection of a view great attention should be paid to the foreground. The foreground is
of so much importance, that I do not hesitate to say that if a view is not well fitted in this respect, it can never be an effective picture. A landscape photograph eems to require a good foreground more than any other kind of picture." It is a matter for wonder since a photographer is deprived of the use of color in his work, that he does not turn his attention with reater earnestness to design and arrangement. Some do so and with good effect.
We were shown in these pages a short time ago what great changes could be effected in the way of cutting and mounting. Much good work is undoubtedly sac rificed by an inch too much at top or bottom, on one or the other side. Many subjects that spread over the full area of the plate are tame, uninteresting, and may be improved by cutting down. The difficulties of judg ing the proportions best suited to the subject are great, and require careful thought and consideration How charming some of those long, narrow picture are, which, if printed full size, would be pictorially orthless.
Be careful when focusing to get the minutest de tails. If the view be a church, focus the clock or leaded
windows, if a house, the window curtains or bricks, in a portrait, the eyes
Many amateurs make a start by attempting portraiture. This is unwise, as successful landscape work should be mastered before attempting this difficult branch. To accomplish portraiture equal in style to a professional, special lenses, various arrangements of light and shade, besides many years of apprenticeship, are necessary. A few hints will, however, enable a beginner to turn out passable work.
When taking a vignette, or bust portrait, always get the mouth in the center of the plate; by observing this rule, you will have the satisfaction of knowing the head is in a proper position on the plate, and not slipping off at the top or bottom. A vignette should not be taken before a background composed of a brick wall or leaves. The result gives a very curious patchy effect. Good makeshift backgrounds may be made of brown paper, or a blanket, that commonly known as the "workhouse" pattern; at a pinch, a newspaper can be placed a short distance behind the sitter. The reading matter will, of course, be considerably out of focus, thus producing a gray effect in the finished focus, thus producing a gray effect in the finished
print. Those who require a really serviceable article print. Those who require a really serviceable article
should buy a plain cloth washable background, cost ing about three shillings. Always bear in mind tha one side of the face is better looking than the other usually the left side, except in the case of left-handed people, when the right side generally takes best. Care fully observe this when taking what is known as the "three-quarter" face.
When taking a "full face," notice which way the oose bends, as no nose is really straight, and pose ac cordingly. Let the sitter be at ease and secure as much individuality as possible. Have the camera on a leve with the face. If the lens points downward the forehead is exaggerated; if upward, the chin. Use the longest focus lens possible, as a wide angle lens distorts por traits fearfully.
When taking full or three-quarter length portraits, don't mix them; let them be either one or the other Many are taken with the feet cut off just at or above the ankles. In which of the two poses should these be classed? A proper three-quarter length should be taken to the knees, the top line marked on the screen (as mentioned at the beginning of the article) runuing across the eyes. For a full length portrait allow a ittle foreground, so as to give the figure something to tand on.
Figure studies and genre work should be encour aged. This particular branch necessitates extra skill but the results amply repay for extra time and trouble -Junior Photographer.

American Association for the Advancement of

For five years in succession efforts have been made o secure the annual meeting of the A. A. A. S., and its numerous affiliated societies, at San Francisco, or some other point on the Pacific coast. The most allur ing offers have been made by the Calfornians, and it was confidently hoped that they could this year be available. The difficulty is to obtain proper con cessions from the railroad companies. Hence the neeting for 1895 will be in some Eastern city, and Springfield, Mass., is now announced as the favored place.
The official time will be from August 26 to Septem ber 6 inclusive. The first general public session will be held on Thursday, August 29. Friday, Monday, Tues day and Wednesday will be wholly given up to scien tifie discussions. Saturday will be devoted to excur sions that have been planned for visiting points of interest in the vicinity
The hotel headquarters will be at the Worthy. The president's address will be given in Court Square Theater; other evening addresses and receptions will be in the City Hall. The general sessions and sectio meetings will be in the Y. M. C. A. Hall. Other build ings are also at the disposal of the association, and everything will be done by the citizens of Springfield o make the convention successful.
Further information can be had from Prof. F. W Putnam, the permanent secretary, Salem, Mass., or from Prof. William Webster, local secretary, Springfield, Mass. A preliminary pamphlet can be had on application, describing excursions, giving hotel rates and other useful particulars.

We have long had slag paint and pavement, but the atest is a slag brick chimney. According to L'Indus trie this plan was adopted by the Courrieres and Ortri court companies, and their example is followed by the works of Arbel and Douai. The latter establishmen planned a chimney 164 feet high and to weigh but 379 gross tous, about half the weight of a brick chimney of the same dimensions. A special cement was to be used which would bind together the blocks composing the chimney so firmly as to require no chain or iron band for strengthening. This is an interesting application of a cheap industrial by-product, which, should the experiments prove a success, will be appreciated by metallurgists.

a cylindrical propeller.

Two propellers are preferably employed, according to this improvement, one at each side of the keel, the propeller having the same weight as the water to be displaced, and being forced outward by steam power and returned by the pressure of the water in its rear. A patent has been issued for the invention to Mr . Lorenzo Julia ${ }^{5}$ Puig, a captain in the Spanish mer chant marine, of Barcelona, Spain. The propeller is a hollow cylinder, moving in a stuffing box through openings at each side of, and so as not to interfere with the rudder, the major portion of the propeller when in its inner position being exposed and accessible from the

puig's propeller.

interior of the vessel. In front of each stuffing box is a steam cylinder, the piston head and propeller being connected by a rod, and steam being admitted only to the front of the piston head to force the propeller outward. The small figure repreeents the vessel's hull fitted with strengthening plates or bars to receive the propeller. The propeller is designed to have a very easy motion, with no tendency either to rise or lower thus reducing the friction to a minimum, and all of the propelling mechanism is so located as to be readily accessible in case repairs are needed.

A CONTINUOUS PROCESS FIBER MACHINE

To convert into commercial fiber or, excelsior the leaves and stems of palmetto and palm trees and similar growths, by a continuous process, the machine shown in the accompanying illustration has been invented by Mr. Charles A. Green, and is being introduced by Mr. Eugene C. Dearborn, of Cocoanut Grove, Biscayne Bay, Fla. It is designed that the crude leaves fed into the machine from the feed table at the right shall emerge in the form of marketable fiber, shredded, crimped, and ready for use, the refuse material being discarded during the process. The leaves are first passed between adjustable crushing rolls, being straightened out by guides and novel devices being provided to prevent clogging, and from thence, by means of clutch rolls, they are fed to a beater cylinder having inclined teeth arranced in double spiral line around the cylinder, by which the fiber is longitudinally shredded. A slatted carrier then conveys the shredded leaves over an open structure, where trash and short fiber may fall through, to a hopper, across the bottom of which slides a plunger adapted at each stroke to double a portion of the fiber and deliver it to another plunger, on which are arranged prongs adapted to crimp the fiber and deliver it to a steam box, the fiber being also subjected in the process to an adjustable squeezing pressure in its crimped position. There are several steam chambers around the steam box, and the mass of fiber is held in the box in a series of compact folds, issuing thence in the form of a web upon an elevator to be conveyed to the upper part of a drier.

At a recent meeting of the Iron and Steel Institute London, Mr. Arthur Cooper read a paper on "Metal Mixers," as used at the Northeastern Steel Company's works. A mixer was erected of 150 tons capacity. In ead of a hydraulic cylinder fixed underneath the ves sel, as at Hœrde, the plan designed by the Northeastern Steel Company for tipping provided for fixing the hyçraulic cylinder overhead, the piston rod of which is attached to a crosshead coupled up to each side of the back eud of the mixer by long links. This arrange ment was devised because it was considered to be safer in case of a break-out than the hydraulic cylinder placed underneath
The early experiments were so encouraging that an additional mixer was at once erected, the same in every respect as the first one, so that with two vessels the lining of one could be repaired while the other was working, and in order to save labor and time in discharging the ladles into the mixer, a small pair of en gines and shafting were fixed on the wall at the back of the two vessels, by means of which, and an endless rope of spun yarn placed upon a grooved pulley on the ladle gearing, a ladle containing about fourteen tons of molten iron is tipped in less than one minute.
From the beginning of May, 1893, the whole of the molten iron used, consisting of about 2,000 tons of blast furnace iron and 1,800 to 2,000 tons of cupola iron each week, has passed through one or other of the two vessels, and the results have fully justified the company's expectations. It must not be for one moment thought that a mixer will cure all the ills which beset a steelmaker; that by its use inferior and unsuitable iron can be made into good steel at a reduced cost. Such is not by any means the case. If very gray or very common white iron be admitted, it is almost certain that severa casts of inferior steel will follow. It must also be remembered that there are certain charges to be defrayed, such as royalty, labor, maintenance of plant and tools, and haulage of molten metal, which together amount to a considerable item per ton of finished product. Still, notwithstanding this, there are certain great advantages to be derived from the use of mixers, for if ordinary care be taken to exclude extremes, i. e., iron which is too gray or too white, as would be done if the iron were taken direct to the converters, very regular results can be obtained from blast furnace iron alone; but if into this is poured, at regular intervals, about equal quantities of cupola iron melted from carefully quantited pig, such as is done at the works in question, a converter metal can be maintained of an almost uniform composition, far more uniform than when the iron is used direct from the capolas, and, provided the manganese in the iron in the mixer does not fall below one per cent, a considerable reduction in the sulphur is effected. Again, with a reserve of molten iron always available, the converting plant can berun to better advantage than when it has to depend upon the cupola or blast furnace. Lastly, by use of the methods above described, the weight of each
individual charge from the mixer can be controlled individual charge from the mixer can be controlled within a few hundred weights with far greater certainty than is practicable when each charge is tapped separately from a blast furnace or cupola, and thus, with an almost absolutely constant weight of charge in the converter, carburizing can be effected with much greater precision.
Mr. David Evans said it was only fair to say that the first mixer capable of dealing with large quantities of metals was designed and erected by his friend the late Captain W. R. Jones, the general superintendent of Messrs. Carnegie's works. At his visit to England, in 1888, he pointed out the great advantages they were deriving at Messrs. Carnegie's works by the adoption of them. At Eston they had two metal mixers of simi lar design and of like capacity to those of the North-

KOLB'S CENTERING DEVICE.

the work at opposite sides. A transverse bar carries the centering punch, and a quadrilateral link frame pivotally connected with the gage arms has a sliding connection with the transverse bar, whereby the center ing punch will always be moved in the center of the gage arms.

Paper Sails.

The Marine Record says: An innovation in yachting ircles is now being talked of, nothing less than sails made of compressed paper, the sheets being cemented and riveted together in such way as to form a smooth and strong seam. It appears that the first process of manufacturing consists in preparing the pulp in the egular way, to a ton of which is added 1 pound of bichromate of potash, 25 pounds of glue, 32 pounds of alum, $11 / 2$ pounds of soluble glass, and 40 pounds of prime tallow, these ingredients being thoroughly mixed with the pulp. Next, the pulp is made into sheets by regular paper-making machinery, and two sheets are pressed together with a glutinous compound between, so as to retain the pieces firmly, making the whole practically homogeneous.
The next operation is quite important and requires a specially built machine of great power, which is used in compressing the paper from a thick, sticky sheet to a very thin, tough one. The now solid sheet is run through a bath of sulphuric acid to which 10 per cent of distilled water has been added, from which it emerge to pass between glass rollers, then through a bath of ammonia, then clear water, and finally through felt rol lers, after which it is dried and polished between heated metal cylinders. The paper resulting from this pro cess is in sheets of ordinary width and thickness o cotton duck, it is elastic, airtight, durable, light, and possessed of other needed qualifications to make it available for light sail making.
The mode of putting the sheets together is by hav ing a split on the edges of the sheet or cloth so as to admit the edge of the other sheet. When the split is closed, cemented, and riveted or sewed, it closes completely and firmly.

THE "DAUGHERTY VISIBLE" TYPEWRITER. We illustrate in our present issue the "Daugherty Visible" typewriter, a machine which in many ways upholds the makers' claim that it is unique. The disposition of the type with upturned faces, so that they are perfectly accessible for cleaning, the arrangement of roller and carriage by which the writing can be seen by the operator, the very characteristically soft and light touch of the keys, and the minor details which cannot be described within our limits, mark as many innovations on the mechanism of the ordinary class of typewriters.
The general appearance of the machine is shown in the two general views, in which the paper is shown in position for receiving the impression of the type. In front is the regular keyboard, comprising the letter bars, the spacing bar and upper case bars. Immediately back of the keyboard come the type bars, arranged nearly in the segment of a horizontal cylinder, thus departing from the familiar basket arrangement which has been so very much used. fore the type strikes it, and as the key is released, the ribbon drops back. One of the allimportant points of the machine is that the writing is visible, the wri ting is visible; the line being written comes just above the metal scale. The motion of the keys is somewhat peculiar. They are very flexible and the touch is very easy. The center keys move vertically up and down. The lateral keys when depressed move down and pressed move down and a little outward, this peculiar motion tending to give much relief to the operator.
From its construction it seems to be the acme of simplicity, as its operative parts number but 105, while in other typewriters as many as 500 or more pieces are employed. In addition to the general view we present illustrations of some of the parts. Fig. 1 of these views shows the frame of the machine with the printer roller and carriage removed as well as the keyboard and type bar. The two circular segments of wire which run across the base give the line of the letter bars, as the latter rest on these wires. In front is
rapidly against the type ribbon. In
when depressing a key, the type bar is depressed at \mid for the type to strike. This space represents a species
Whis way the desirable feature is secured that the type its back end, and the type, which occupy the ends of of mortise with inclined sides that direct the type to bar begins to rise slowly and terminates its motion at the bars nearest the operator, flies up and, striking the its place and secure perfect alignment. More toward high speed.
inking ribbon, imprints the letter on the paper. With the front are seen two short upright standards. Screws There are many other ingenious features about the each motion of the key a type is thrown against the or pins passing through the holes in these standards machine which cannot be well condensed within the ribbon and the ribbon is independently pressed \mid hold the keyboard in place. $\left\lvert\, \begin{array}{ll}\text { space at our disposal. The easy removal of the entire }\end{array}\right.$ against the paper be- \quad type action is specially
seen the spacing bar, extending nearly across the front, while on each side thereof are the upper case bars. The latter, when depressed, cause upper case or capital letters to be imprinted.
In the back are seen the two inking ribbon rollers, and in the center of the ribbon is the space left free

When in the machine, the type lie exactly as shown in Fig. 2, so that their faces are exposed for cleaning. The ready accessibility of the type cannot be too strongly emphasized.

Fig. 3 shows the roller and carriage. This part also is easily removed. By simply pushing it to one side it all comes away as shown. When car riage, type and keyboard are taken out, the machine is stripped for the fullest inspection and cleaning. fig. 1 shows how complete is the exposure of all details by the procedure described.
The operation of the type bars is peculiar and is represented in Figs. 4 and 5. The key lever pivoted not far from its center has a species of forked end; when a lever is depressed, the upper end of the fork first presses against the type bar and raises it somewhat slowly; after the type bar has reached a certain elevation, the upper point of the fork loses engage ment with the type bar while the lower point catches it at a greatly reduced leverage and sends it in very

THE "DAUGHERTY VISIBLE" TYPEWRITER. to be commended, as this makes it possible to remove the action in case any of the type are broken and to replace it temporarily by a new one until the old has been repaired. The same is to be said of the car riage, which is instantly removable. All the parts are interchangeable and a very slight inspection is sufficient to show that it really has no light or delicate parts to be injured by the hard ser. vice to which a typewriter is necessarily subjected.
It is obvious that where the entire writing can be seen, as in the "Daugherty Visi ble," great facility in executing tabular or specially spaced work is given. It is a fair assumption that any operator who has be come accustomed to se the work would find it very disagreeable to Fig. 2 shows the keyboard and type bars, all of \mid work in the dark, as is done with the ordinary mawhich come out as shown in one part. The removal chine.
nvolves not the least trouble, being only the work of This new machine is being introduced by the Daugha minute. It is obvious that this gives great facility erty Typewriter Company of 21 Sixth Street, Pitts-

THE DAUGHERTY TYPEWRITER-PRINCIPAL PARTS.

Rhododendrons.

The Garden (London) considers the rhododendron the "queen of flowering shrubs." After naming a number of the choicest varieties, but which do not endure the winter climate well, the writer adds
To those who may be interested in procuring a few of the very grandest varieties of hardy rhododendrons -whether old or new-in cultivation, and who do not care to wade through nurserymen's bewildering catalogues, I would suggest a trial of the following twenty kinds as almost certain to give satisfaction in their re spective colors if properly planted and attended to. If the former is weli done, they do not require much of the latter, beyond well watering and syringing just when they are coming into bloom. Baroness L. De Rothschild, superb conical truss, brilliant scarlet, with lighter throat; Mrs. John Penn, salmon pink edges, with waxy cream center; Helen Waterer, white center with most brilliant scarlet edge; Kate Waterer, rose crimson, with yellow center; Lady Eleanor Cathcart, salmon pink, finely marked, very beautiful, but shy bloomer; Mrs. R. S. Holford, superb truss, salmon pink; H. W. Sargent, dark velvety crimson; James Mackintosh, rich velvety crimson, fine truss, and splendid foliage; Michael Waterer, an old favorite, bright scarlet, rather poor foliage; Marchioness of Lansdowne, light red, intense maroon blotch, very fine flower; Marie Stuart, lovely shade of rose lilac, with intense purple blotch, splendid truss and habit, flowers as beautiful as an orchid; the Queen, one of the most beautiful whites; Lady Gray Egerton, pearly white magnificent truss; Sir T. Sebright, metallic bronzy purple, free and long bloomer; Joseph Whitworth, dark maroon, beautiful flower and foliage; Martin Hope Sutton, brilliant dark scarlet-if perfectly hardy one of the finest in cultivation; James Marshal Brooks, scarlet, with a curious mossy bronze eye synonymous, grand trusses, bright pink, fine foliage; Frederick Waterer (or John Walter), different habit and foliage, but very similar flowers, bright scarlet, perfect trusses; Sigismund Rucker, rich magenta crimson, with a black intense blotch

It would be-easy to add twenty more almost as good as the foregoing, but it would be hard to name twenty better. When varieties such as those enumerated cost very little more than the ordinary ponticum, it is strange that they are not more extensively planted.

Potash Soft Soap.

Potash soft soap for engineer's lubricating purpose may be made as follows: Take 20 pounds of absolutely pure, flne, strong caustic potash, dissolve it in an iron or earthenware vessel, with 2 gallons of soft water Add this strong lye to 9 gallons of oil, heated to about $140^{\circ} \mathrm{F}$., pouring it in a small stream and stirring con tinually until the two are combined and smooth in ap pearance-about ten minutes is necessary. The mix ing may be done in a wooden barrel. Wrap it up in blankets to keep in the heat that is generated by the mixture itself slowly combining and turning into soap. Put it in a warm room and leave it for three days The result will be 120 pounds of the finest concentrated potash soft soap, pure, and free from adulteration Any vegetable or animal oil will do. Pale seal oil for wire drawing and lubricating is the best. For ordinary washing, when made with cottonseed oil, the soap is both cheap and good, and, besides being useful for machinery purposes, produces a very superior soap for flannels and greasy or stained woolens in cold water.Textile Industries.

New Machine Guns Wanted

The Chief of the Bureau of Ordnance will shortly issue invitations to companies or individuals to submit machine guns of 6 millimeter caliber to a test, with a view to their adoption in the navy. It is probable tha the first order of the bureau will be for 100 guns. An American invention will of course be preferred, but the best gun will be selected without reference to where it is made. Only guns using smokeless powder and jacketed bullets will be used. Ten thousand rounds of ammunition must be supplied. Great at tention will be paid to the facility of dismounting and assembling the mechanism, and to the liability of th gun being injured by dust and rust. The guns will be fired for rapidity without aimfng with ordinary and extreme elevations and depressions. Rapidity and accuracy of aiming will be tested by target firing at moderate ranges. Excessive pressure tests will also be made. It is expected the Driggs-Schroeder, Hotch kiss, Gatling, Gardner, Maxim and Robertson gun will enter the contest.

How to Drive Rats Away Alive

Somebody who has tried it recommends putting pulverized potash, which soon becomes sticky when exposed to the air, in all the rat holes about the house. The special detestation of a rat is anything which will stick to his silky coat. Some persons find a mixture of led well into the holes still more efficacious.

RITCHEN REFUSE READILY DISPOSED OF. One of the most serious of the sanitary problems in all our large cities is that of the practical and economi cal disposal of garbage, or refuse and waste of the kitchen. Its removal by the local authorities is expen sive and frequently the cause of much vexation and annoyance, although the necessity that it be promptly disposed of is everywhere recognized as imperative, in the interest of the public health, to which there i nothing more inimical than a quick decay of organic matter in warm weather. To obviate this difficulty and provide for the complete removal of all garbage in a most simple and inexpensive manner, is the object of he improvement represented in the accompanying lustration, and which is being introduced by the Sanitary Construction Company, of No. 113 Devonshire Street, Boston, Mass. The carbonizer consists of a horizontal cylinder about one-third larger in diamete han the stovepipe in which it is to be placed, accord ng to convenience, in a joint or an elbow of the pip making the connection between the stove and th chimney. It may be applied to any stove or furnace and any size of pipe. One end of the cylinder is re movable, and attached thereto is a basket or scoop of somewhat reduced diameter, and with perforated side and a tight bottom, affording free passage for the smoke and heat from the stove around the scoop and through the perforations. When this scoop or basket s filled with garbage and placed in the cylinder, the water is quickly driven off, and the residuum changed to charcoal, which burns freely when placed in the fre, affording in fact a valuable material for kindling the fire in the morning. The natural draught up the chimney prevents the escape of any odor into the rooms and there is no odor from the chimney, as the gase from the stove thoroughly deodorize the gases escaping rom the drying garbage. It is intended that the wast shall be placed in the carbonizer as it is made, so tha there will be no accumulating garbage in the kitche and no need of a garbage bucket. The device has bee

A HOUSEHOLD GARBAGE CARBONIZER.
highly recommended by the chairman of the Boston Health Board and other sanitary and street cleaning fficials. Many of them are in use in Boston and vicinity.

The Bordeaux Mixture

The history of the cupreous solution popularly known as Bordeaux mixture is brief, but of much in terest, more especially as it contains conclusive evidence that, as in the case of some other discoveries of great economic importance, this fungicide is the re sult of an accident. It is a matter of some interest to know that it was first used in the vineyards of the Medoc, not as now for the purpose of preventing or checking the ravages of fungoid diseases to which he grapevine is liable, but for the purpose of prevent ing the grapes being stolen. A thick paste was made with lime and sulphate of copper, and this was sprinkled upon the vines and trellises alongside the highways. There is no authentic information with regard to the length of time the practice had ob tained previous to Professor Millardet visiting the re cion in 1882, but we know that when engaged in hi investigations in the Medoc vineyards in that year, he was informed by the owners that the vines ove which the paste was scattered escaped the ravages of he mildew.
Taking note of this fact, Professor Millardet, who had for several years been engaged in investigating he fungus, with a view to discover a remedy, con ducted a series of experiments in 1883 with a simila preparation, and although the results were not satis actory, he repeated them on a larger scale in 1884 These proved more encouraging, and at the end of the year the results were communicated to the Agricul tural Society of the Gironde, and as the French vine yards were being seriously injured by mildew, the communication created much interest, and a consid erable number of viticulturists at once instituted ex periments with the mixture. Subsequently variou ormulas for its preparation were published, the pro portion of copper sulphate recommended ranging from 13.2 pounds to 2.2 pounds to 22 gallons of water, but

Professors Millardet and Gayon found in the course of their in vestigations in 1888 that the mixture in which the sulphate of copper was used at the rate of $2 \cdot 2$ ounds gave nearly, if not quite, as good results a one of much greater strength. While to the French is unquestionably due the honor of discovery of this important fungicide, the credit of extending its use a preventive of diseases other than those of the grape vine and potato plant belongs to American investiga tors.
The use of Bordeaux mixture has extended in America at a very rapid rate, and although it has no been found a panacea for all the fungoid diseases of plants, it has proved of great value, as shown in the Bulletin prepared by Mr. Fairchild, assistant patholo gist of the U. S. Department of Agriculture, in check ing a considerable number of them. The more im portant of the diseases that may be prevented o checked by its judicious use include the downy mildew of the grapevine, the pear, cherry, and plum lea blights, the apple and pear scab, the peach leaf blister the quince spot, the chrysanthemum leaf spot, th black rot of the potato, and the well known potato disease. There are some other diseases for which Bor deaux mixture will probably prove an effectual remedy but those mentioned are sufficient to indicate that it utility is by no means limited to preventing the at tacks of the destructive Phytophthora infestans. The Gardeners' Magazine.

The Iron Trade situation.

The present situation of the iron and steel industrie of the world is one of more or less suspended anima tion and unstable equilibrium. All countries alike are looking forward to a great improvement on the existing condition of things.
England must be content in the future to share the outside markets of the world with Germany, Belgium, the United States, and, to a less extent, other iron producing countries, including probably Spain, Aus ria, and Russia.
It may now be said that there is no iron-making country that is not prepared to place a surplus of its produce, actual or possible, on outside markets. The following statement shows approximately the existing esources of the chief metallurgical countries for the production of pig iron and steel :

	Pig iron. Tons.	Steel. Tons.
The United States,	.14,000,000	7,500,000
Great Britain......	. 9,000,000	5,000,000
Germany...	. 6,500,000	4,000,000
Belgium.	. 1,000,000	950,000
France.	. 2,000,000	1,000,000
Russia.	1,009,000	600,000
Austria-Hungary..	1,000,000	650,000
Sweden.	750,000	500,000
Spain	400,000	200,000
Italy.	60,000	130,000
Canada.	150,000	75,000

When we consider that the greatest quantity of pig on hitherto produced in any one year has been about $25,000,000$ tons, and that the largest output of steel in single year has been about $12,000,000$ tons, it is clea hat there is a considerable margin available for meet ing any possible increase of demand, and that there is little or no chance of such increase of demand leading o a material increase of the realized prices of either ommodity. If a large demand springs up in the United States, and prices become inflated there in con sequence, Europe will step in with unlimited sup plies, while conversely, if the demand comes from out ide markets, Europe and America will fight with the tmost vigor to secure and hold the field
As matters stand at the present time, it is astonish ing how nearly the chief iron-producing countries of the world come to one another in the matter of prices Between the United States, England, and Germany here is not, at the moment, a difference of more than 10 per cent in the current prices of ordinary descrip ions of iron and steel. In other words, it comes to this, that prices are tending to a virtual equality in all the chief countries of the world, except for special pro ducts, more or less indigenous to the different coun tries concerned.
All this is, or should be, a source.of satisfaction and f protection to the outside markets, which for that reason should have the less hesitation in taking up new enterprises calling for large supplies of iron and steel. When the United States began to import stee ails from England, and for many years afterward, they had to pay from $£ 10$ to $£ 15$ per ton for them. To day the same country is prepared to supply steel rail o outside markets for less than $£ 4$ per ton at works.
Manufacturers can hardly, in view of the facts jus stated, look for any very large increase of price. They may, of course, secure much more remunerative rates than those current for the last year or two. If they had not this prospect to look forward to, it would hardly be worth the while of the majority to continue in the business. But where supplies can be drawn row such a great variety of sources, the profits that ere formerly easy become virtually impossible.-Iro and Coal Trades Review, London.

The Paris International Exhibition of 1900. The general plan of the next Paris Exhibition may now be regarded as practically complete, and it is possible to fill in some of the details that we have omitted in our former notices. The classification and allotment committees have fixed the locations of each group, and have also decided on the amount of space that shall be given to them ; the methods of facilitating the circulation of the public within and around the Exhibition grounds have been decided on in principle, and after a few more questions of detail have been determined on, the complete project for this stupendous scheme, the cost of which is estimated at about $100,000.000$ francs, or $£ 4,000,000$ sterling, will be submitted to the approval of the Chambers. The area inclosed by the boundary of the Exhibition will be about 270 asres, and of this 100 acres will be covered by buildings of all kinds. The actual size of the inclosure will therefore be less than hali that of the Chicago World's Fair, which is very fortunate both for visitors and exhibitors; on the other hand, the covered area will be considerably larger, and a far greater outlay is contemplated than at Chicago; the public may, therefore, anticipate a more satisfactory result, both as regards the artistic effect of the Exhibition and their own comfort and convenience. We have already explained that it is intended to destroy the Palais de l'Industrie; this work will not be so simple as might be supposed, as it must be carried out with due consideration for the numerous uses to which the building is put. One half will be first demolished -that facing the Seine. By this means a sufficient area will be cleared for the commencement of the great avenue which is to connect the Champs Elysees with the bridge of the Esplanade des Invalides, and for the erection of the new palace which is to stand on the right side of this avenue. The other half of the Palais de l'Industrie will be preserved for two years longer, during which time it will be used for the various exhibitions now held there. At the end of two years the new palace will be completed, and the various expositions can be accommodated, setting the other half of the Palais de l'Industrie free for demolition. Afterward a second permanent palace will be erected on the new avenue, and these, which will form prominent features of the exhibition, will remain as monuments arter its close. The Palais des Champs Elysees, on the right of the avenue, will contain the exhibits of modern art; on the opposite side will be of these buildings will have two entrances through rotundas, and giving access, on the one hand, to the Champs Elysees and on the other to the avenue, Champs Elysees and on the other to the avenue,
which will be known as the Avenue de l'Esplanade des which will be known as the Avenue de l'Esplanade des
Invalides : it will form a vast rectangle with a central Invalides: it will form a vast rectangle with a centra
gallery and two wings, but the side nearest the Seine will be open, and will, in fact, constitute a small park that will be enriched with the choice trees and shrubs so numerous in the Champs Elysees, and which will have to be displaced to a large extent in the alterations that will be unavoidable. In the other wing of the building there will be a great covered court, which, after the close of the exhibition, can be utilized for horse and similar shows.
It need hardly be said that practically all the trees in the Champs Elysees will be preserved, though, of course, many of them will have to be slifted, and the landscape gardening very possibly improved thereby. In one of the most picturesque locations in the park will be erected the pavilion of the government Sevres factory, where processes, as well as manufactured articles, will be shown. The Esplanade des Invalides, ed with the Champs Elysees by a bridge that will be a good example of modern engineering practice. It will good example of modern engineering practice. It will
be of steel, 360 ft . long and 328 ft . wide: on this extenbe of steel, 360 ft . long and 328 ft . Wide: on this exten-
sive platform galleries will lue erected and flower beds laid out. On the Esplanade there will be a series of magnificent structures bordering on the main avenue, and continuing the perspective commenced by the
Fine Arts nalaces on the Champs Elysees. In this Fine Arts palaces on the Champs Elysees. In thi
part of the exhibition there will be the buildings devoted to the groups of education and teaching, the appliances and processes connected with literature, arts and sciences, as well as with the decoration of buildings and with furniture. On the esplanade all the trees will be preserved, though possibly rearranged, and there will be many small pavilions, scattered about this part of the exhibition, devoted to the prac tical exhibition of processes associated with the indus trial arts-bronze, ceramics, crystal and glass, the working of precious metals, jewelry, horology, leather work, etc. The further end of the esplanade will be covered with buildings, and conspicuous among them will be a great portal placed immediately on the axis of the central avenu

We have already
We have already referred to the important role it is intended that the Seine shall play in this forthcoming exhibition. It is proposed that not only shall the wide, sloping banks on each side of the river be utiliz ed, but that promenades shall be arranged on the
will be first a series of historical reconstructions, followed by the Pavilion of the Ville de Paris and the buildings of the Horticultural Section, for which there will be at least 20 acres covered. At the back and parallel with the river, on the road known as the Cours-la-Reine, will be a long range of miscellaneous buildings-kiosks, cafes, restaurants, etc. Opposite the Trocadero there will be erected the Congress Hall, which no doubt must be of very large proportions, seeing that congresses on every possible subject have become inseparable attendants on universal exhibitions. On the opposite side of the river, pavilions will be erected for the service of certain special foreign exhibits, and near the Pont de Jena is to be placed the very important structure devoted to naval and military exhibits, while close by will be the pavilion of ocean and internal navigation exhibits. Much care will be given so to arrange this water front of the exhibition that it shall be one of the most attractive centers, and as during the evenings all the business river traffic will be suspended, the position will be admirably adapted for the numerous night fetes that will form a special feature of the exhibition. For the accommodation of visitors passing from one side of the Seine to the other, there will be two new bridges, in addition to the Pont de Jena and the Pont de l'Esplanade des Invalides. As we have already stated, the ample space on the Trocadero grounds will be chiefly devoted to colonial exhibits, which it will be remember ed occupied so brilliantly the Esplanade des Invalides in 1889. Here will be assembled pavilions containing colonial produce, mission exhibits, native villages, bazars, reproductions of famous buildings, etc. Complete as no doubt this part of the exhibition will be, it is difficult to understand that it can be more perfect than the similar display in 1889. Asregards the Champ de Mars, it is not the intention to erect here the long series of buildings more or less similar, such as formed the chief features of the last two great French Exhibitions. The buildings of the Beaux Arts and of the Arts Retrospectifs are to remain, as well as the Machinery Hall. Between these, and on each side of the Champ de Mars, there will be erected long ranges of buildings extending down to the Seine; these build ings are not to be uniform in design or in size; the highest and most important, will adjoin the Machinery Hall, and they will gradually decrease in size toward the Seine, where they will be relatively small. It is expected that this arrangement will possess many advantages, among others those of an improved perspective, and of showing at a glance the comparative importance of the groups to which the buildings are devoted. Near the Seine the smallest groups will be placed, or, at all events, those which do not occupy much space, and this system of graduation is to be ex tended toward the Machinery Hall until the buildings are sufficiently large to receive exhibits of the most
bulky nature. It should be mentioned that this long range of pavilions is to be connected by two galleries, one on the ground level and the other on the first floor It is to be regretted that the Machinery Hall of 1889 is to be preserved, yet it is doubtful whether it would be possible to devise a finer interior for the special purpose for which it was designed. It will, however, be much altered by the creation of a vast salle des fetes in th center, while the ungraceful exterior will be complete ly masked by the range of miscellaneous pavilions to which we have just referred.
We are glad to see that there appears no evidence of vainglorious desire to make a record at the 1900 Ex
hibition with size of buildings; on the contrary, a hibition with size of buildings; on the contrary, a leading idea seems to be to reduce the dimensions a as possible and increase the number of structures in the two permanent buildings that are to replace the Palais de l'Industrie, and in the Electricity Building that will form the main architectural feature on the Chawp de Mars. But, as a rule, it would seem that beauty rather than size, and true taste rather than ostentation, will be two of the leading characteristics o the exhibition buildings of 1900.-Engineering.

Bleaching Cotton

Cotton is never bleached in the unmanufactured condition, but in the manuiactured state is frequently subjected to the process. As yarn, it is first "boiled ut" with very dilute caustic soda, to remove the oil or gum, then washed or not, as desired, then immersed
for one or two hours in a clear bath of bleaching powder, then washed to remove excess of bleaching liquor and finally passed through a very weak bath of sulphuric or hydrochloric acid. When in the condition farps (which may be 1,200 yards in length), it is machited to the same treatment, except that special such great length. In the form of woven fabrics pecu liar apparatus and special careand skill are required and great ingenuity is displayed in the mechanico hemical part of the operation. Two systems are in ase, which are known respectively as the high pressur and low pressure systems. The essential difference be subjected to the boiling. In both, also, the operatio
is divided into two stages. The first, in which the cleaning of the goods is effected, consists in boiling with lime or soda, followed with a weak acid (termed a "sour"), then with soap and soda, followed by a wash. The second is the bleaching proper, in which the goods are brought, for a definite length of time, in contact with the actual bleaching agent, followed by a wash, and a passage through very dilute sulphuric acid, after which the goods are allowed to lie in heaps for a time, then well washed, and dried over revolving cans heated by steam. Modifications of the above processes have appeared from time to time. A notable one was that of Messrs. Mather \& Thompson, and is admirably suited for warps and piece goods. The important feature in this process resides in the use of carbonic acid gas, by which hypochlorous acid is liberated, which, in curn, effects the whitening of the fabrics. The previous remarks cover the essential points governing the bleaching of cotton, and the same principles, with only slight alterations, are applied to the bleaching of linen and jute.-Industrial Record

Incubation Period of Diseases.

The Clinical Socicty of London, wishing to establish a period of inoubation for various diseases, insti tuted a series of investigations with the following re sults:
Diphtheria.-In this disease the incubation period does not as a rule exceed four days and is more often t wo days. It may also extend to five, six and seven days. The infection may take place at any time in the course of the disease. Mild cases may spread it.
Typhoid Fever.-This may vary within wide limits twelve to fourteen days, but not infraquently it is less. As the disease is usually introduced into the sys tem by food and drink, it is not carried from one person to another, but several may get it from the same source. Contaminated water and milk is the usual cause.
Epidemic Influenza or "Grippe."-The shortest in ubation period in this disease is from a few hours to three or four days. It generally strikes suddenly and without warning. A parient may carry infection hroughout the whole course of the disease.
Measles.-The incubation period of measles is usually short. It is counted from the date of the eruption, which decides the disease.
Mumps.-The incubation period of mumps is rathe long, from one to two weeks, and the chances of infec tion diminish daily.
Rubeola, Rotheln, or German Measles.-This has a long incubation period, like ordinary measles, and it infectivity diminishes in a day or two after the rash disappears.
Variola or Smallpox.-The incubation period of this disease is from one to three days.
Varicella, or chickenpox, has a period of incubation slightly longer than variola.

Asia and North America.

I would suggest a thorough exploration of the inter continental tract which on the North Pacific unites North America with Asia-the Aleutian Islands and Peninsula, the Behring Sea and Strait, and the Pen insula of Kamtchatka. Where two continents ap proach one another so closely and give evidence of having been united at seemingly no very ancient date; where a connecting land bridge could not but most effectually influence the distribution of life, human, animal, and vegetable, upon two hemispheres-there manifestly, the harvest of exploration must be great or bound in with the research are problems of deep significance, touching alike the sciences of geology or physical geography, ethnology, geology and botany. physical geography, ethnology, geology and botany.
We ask ourselves the questions : If North America and We ask ourselves the questions: If North America and
Asia were united, when and how did the separation take place? What heterostatic condition existing be ween the land and the water permitted of the incur sion of the sea or the dropping of the land? To wha extent was the union complete, and what were the initiatory steps that prefaced the fall? What were the nature and extent of the animal and vegetable migra tions of which the connecting land mass permitted, and which way did they influence the present distri bution of life upon the globe? It what way was the istribution of races effected or determined by that connecting bridge? Plainly enough the breadth of these questions indicates how vast is the field that is to be covered by the answer; and while it may be dif ficult to obtain these answers, they are surely locked up with the rocks that form the continental border ands, the islands that dot the sea, and the submerged bottom land of the ocean. And when they will have been obtained, they will constitute some of the worthiest contributions to geographical science the records of which adorn the pages of discovery. It is almost incredible that with so much promise in the exploration of this region so little should have been accomplished. Easy of access, and well within the re source of a moderately equipped expedition, the region should long since have attracted to it an army of scientists.-Prof. Angelo Heilprin.

A PETROLEUM TRICYCL

The petroleum tricycle, which we illustrate, was designed by MM. De Dion and Bouton, the well-known builders of automobile carriages, and weighs, when fully equipped, 88 pounds. The general appearance of the vehicle is like that of the ordinary tricycle. In addition to the motor, there are pedals for actuating the machine through the medium of sprocket wheels and a chain. The tricycle is started, after mounting, by giving the pedals a few turns until the motor begins to operate, the pedals then cease to be used, and the rider need only steer the machine. In climbing hills, the pedals are sometimes used as an auxiliary force. This combination of mechanical and human power permits of the rider enjoying the pleasures of locomotion without the aid of the motor or to economize the combustible when necessary. The motor is not com plicated. It is actuated by the explosion of a mixture of air and the vapor of the pe troleum. The explosion is effected by mean of electricity. The motor is one-third of a horse power, the shaft making 800 turns per ninute. With the aid of the motor and pedals it is possible to attain a speed of eighteen miles an hour. The carbureter has been dispensed with, its place being taken by a small pump, which is actuated slowly by the motor and thus utilizes the petroleum drop by drop. The clumsy and heary water jacket has also been eliminated, th cylinder being cooled by contact with the air.
A small satchel resembling a photo graphic camera is fixed to the frame in front. This satchel carries a dry battery which will run the exploder for one hundred hours. It is connected with a spark coil by means of insulated cord. The rider can stop the motor instantly by cutting off the current with a switch. MM. De Dion and Bouton propose to apply their system to the propulsion of a bicycle and hope to realize the greatest possible speed of individual locomotion from it. For our engravings and the foregoing par ticulars we are indebted to L'Illustration

THE NEW ATLANTIC STEAMER ST. LOUIS. The new steamer St. Louis, of the American Line, has had her sea trial, which proved highly successful, and is now doubtless speeding on her first voyage across the Atlantic, her day of sailing from New York being June 5. On her recent trial at sea she is reported to have reached a maximum speed of 22.75 knots, which gives promise of satisfactory performance for her business trips.
The St. Louis is the first of a number of vessels authorized to be built under the special act of Congress of 1892, designed to encourage the building of American steam vessels, and also to provide cruisers for the government in the event of the sudden outbreak of hostilities. A sister ship, the St. Paul, was recently launched from the yards of Cramp \& Company, Philadelphia, and will soon take her place with the St. Louis, on the line between New York and Southampton. Four magnificent boats, the Paris, New York, St. Louis, and St. Paul, will then be in service, and four better ships it would be difficult to find.

The St. Louis is 554 feet long over all and 536 feet on the load water line, with an extreme beam of 63 feet, and draws 26 feet of water, her gross register being 11,000 tons. She has six decks and nine water-tigh compartments, without any openings or doors in th intervening bulkheads. Her hull is of steel, the plat ing being three-quarters of an inch thick, and the frames and beams channel-shaped. The engines ar quadruple expansion, designed to afford 20,000 horse power, the four cylinders being 36, 50, 71, and 100 inches in diameter respectively, and the stroke being 60 inches. There are six steel double-end boilers, each 20 feet long and 15 feet $71 / 2$ inches in diameter, and de signed to furnish steam at 200 pounds pressure. The
vessel has t win screws and the hull is built out to sup port the shaft bearings.
Of her building and equipment, Mr. Charles H. Cramp says: "No foreign materials entered into the construction of the hull. It is of American model and design, of Awerican material, and has been built by American skill and muscle. The existing tariff law gave us the privilege of importing, free of duty, all plates, tees, beams, angles, wire rope and composition metal that might be needed in her construction. But we did not take advantage of the law. On the contrary, we placed every order with American rolling mills, forges and foundries."

A PETROLEUM TRICYCLE.

Her interior furnishings are said to exceed in cost and beauty anything of the sort afloat. There are accommodations for 350 passengers in the first cabin, 250 in the second cabin, and 900 in the steerage. The arrangements of berths and saloons and the fittings and decorations embody American ideas of comfort, and differ from the prevailing styles in European-built steamships.
In recognition of the courtesy of the American Line in the bestowal of thename St. Louis on the first transatlantic steamship of American material and workmanship, the citizens of St. Louis have presented to the beautiful steamship finely bound libraries for the first and second cabins. The citizens of St. Louis have also given ten ornamental glass windows for the first cabin library room, and a full set of flags, including the American ensign and the house flag in silk, and a burgee bearing the name St. Louis.
Our engraving is from a photograph of the St. Louis
ascertaining whether the height of the thermometer had any causal relationship with the disease. By a comparison of data at one and another portion of the year he has found fresh prima facie evidence that a very close relationship of the sort in question does exist. Thus, allowing a period of fourteen days to elapse between the date of attack and death, seven days for average duration of fatal cases, and seven days for notification from the registrar of deaths, Dr. Priestley shows that the 4 foot thermometer having reached and passed 56 degrees Fah., on July 2, the deaths began to rise considerably a fortnight later, and continued high so long as the thermometer registered above that temperature, but that immediately the thermometer dropped below the figure so, too, the deaths from diarhea fell and continued to fall until the disease ceased to appear in the death records. -British Medical Journal.
Interesting Archæological Discoveries.
According to a note in the London Times, the excavations by the American School at the Heraion of Argos, under the direction of Professor Waldstein, which were resumed this spring, have been very successful. Two hundred and fifty men have been employed on the work. Besides the two temples and five other buildings previously discovered, a large and well-preserved colonnade 45 meters long has now been found, 25 feet below the surface south of the second temple. The discoveries include parts of metopes, two marble heads of the best Greek period, a hundred objects in bronze and gold, gems, vases and terra cottas of the Homeric period, as well as numerous scarabs and several Mycenean tombs with Argive inscriptions on bronze, proluably of a religious character. The ex cavations, which are now in the fourth season, will be completed this year. They rival the French excava tions at Delphi in magnitude and importance, repre senting all the periods of Greek life from prehistoric to Roman epochs.

The New Navy Rifle
The new navy rifle is the invention of J. P. Lee, of Connecticut, and was recommended by the Small Arms Board aftermany experiments. By many the new gun is believed to be superior to the Krag-Jorgensen rifle which is now supplied to the army. The navy rifle is lighter, thus enabling the sailor to carry 50 more rounds of ammunition than the soldier, and gives a latter trajectory. The rapidity of fire is very great five aimed shots being fired in three seconds. The total weight of the gun with straps is $81 / 4$ pounds, which enables the sailor to carry 200 rounds of ammunition. enables the sailor to carry 200 rounds of ammunition.
e barrel is 27 inches long the trigger is at all time under control and there is no danger of accidental fire, whil the magazine clip is the lightest in use The fire is very accu rate at 2,000 yards while at 5,000 yards the bullet would pierce two or thre men in a row. It would penetrate the body of a man at a istance of 6,000 yards. The barrel is nade of nickel steel hich is now so largely used in ar nor plates. The re sults of the test o new Lee gun have been so satisfactory that it is expected hat the national guard may adopt it in some States.

The total output of new cars during the past five month is estimated by the Railroad Gazette to have exceeded tha

hows the vessel steaming up the bay of New York ou her way to her pier at Fulton Street.

Diarrhea and Earth Temperature

The close relationship between rise of diarrbeal mortality and rise of earth temperature is strikingly hown by Dr. Priestley in his report for the past yea for the borough of Leicester. Dr. Priestley studied carefully the death roll from diarrhea in those weeks wherein the temperature at 4 feet below the surface reached or exceeded 56 degrees Fah. with the view of
the entire year 1894 by 5,000 . The total numbe contracted for is 22,030 ; these figures are for freight cars only. The passenger cars ordered amount to 72 with contracts for 13 more to be given out shortly This represents an investment of over $\$ 10,000,000$. The decrease in the cost of cars to the railroad companie has been very considerable in the last few years.

THE share of land falling to each inhabitant of the globe in the event of a partition might be set down a twenty-three and a half acres.

TERRIFIC POWER OF NITRO-GLYCERINE

We are indebted to Mr. William C. Siebold, Jr., our valued correspondent at Fort Wayne, Ind., for the photograph from which the accompanying engraving was made, showing the effect upon a roadway where a recent explosion of nitro-glycerine took place. The scene of the explosion was near the city of Bluffiton, scene of the explosion wa
Ind. Our photo was made three hours after the explosion. The Fort Wayne Sentinel gives the following particulars:
Early on the morning of April 26 William Ulmer, a young man eighteen years old and unmarric 1 , a driver for the Empire Glycerine Company, which Glycerine Company, which
is furnishing nitro-glycerine for the companies engaged in sinking oil wells in the Montpelier field, 14 miles distant, started from the mills in a two-horse wagon to take 720 quarts, about 1,200 pounds, of nitro-glycerine to the Montpelier fields.

About 9 A. M., when two miles southeast of the city of Bluffton, near the Powell farm, his wagon struck the root of a tree and upset and the explosion of the nitro-glycerine immediately followed, carrying death and destruction in its wake and creating a scene of horror which it is impossible to correctly describe.
The wagon, the driver, and the horses were blown to atoms, and when the people living in the neigh borhood arrived at the place where the explosion occurred not a trace of
either of them could be discovered, they having been torn into a thousand pieces and carried miles a way.
Several large trees in the vicinity were torn up by the roots and carried many feet away, and the window glass in the houses for two miles around was broken by the force of the explosion, which made a hole in the ground 15 feet deep, 60 feet across the top, and 35 fee at the bottom.
All that was found of Ulmer, the driver, was a part of his clothing, and this was nearly a mile away from the spot where he met his death. Pieces of the horses were also found at about the same distance from the spot, as were also parts of the demolished wagon.
The force of the explosion was plainly felt in thi city, although Bluffton is twenty-five miles away, by the rattle of windows in the houses, and many persons thought it was due to an earthquake shock. The same shock was also felt in many towns for miles around Bluffton.
this district a few days before the picture was made. The nature of the damage shows plainly on the edges of the leaves. Many of the leaves were 6 feet in diameter, with rims 6 inches high. Will this plant compare favorably with good specimens grown under glass in England? I have often stood on leaves to satisfy doubtiand? 1 have often stood on leaves to satisfy doubting visitors. The heaviest person I ever photo.

A WAGON LOAD OF NITRO-GLYCERINE EXPLODES.

 The Chronicle says:Chronicle, one of which was reproduced in fine style
"It shows what may be done in the open air by an enthusiast. The pond in which the Victoria is grow ing is heated by hot water pipes in connection with an ordinary greenhouse boiler. The temperature of the water is kept up to between 75° and 85°. Toward the end of the season the water often falls to 65° or even 60° without injury to the plant.
"It was in the year 185 that Messrs. Weeks, who then owned the nursery in the King's Road, Chelsea now in the possession of Mr. William Bull, succeeded in flowering the Victoria regia in the open air; the first flower opened on April 16. On July 12 of the same year, it is recorded that the plant had been in bloom for three weeks, sixteen blossoms having been expanded in that period. Gold fish multiplied so abundantly in the tank that it was calculated that the sale of these fish would eventually uearly cover the cost of the experiment
" The Victoria always at tracts attention from the singularity and noble ap pearance of its foliage, but there are many of the Nymphæas of nearly equa beauty that might be grown under like con ditions, such as the very large blue Nymphæa gi cantea, the Cape N. scuti folia. the purplish N. zanzi barensis, the primrose yel low N. amazonum, the white lotus and its rose colored varieties, and a explosion and many runaway of frightened horses occurred at Bluffton.
the victoria regia in new JERSEY.
It has been supposed to be difficult to grow this remarkable plant in this climate, owing to the warm temperature required But Mr. S. C. Nash, of Clifton N. J., has admirably succeeded. A recent number of the Garden, London, gives an engraving which we copy, made from a photograph sent by Mr. Nash to our cotemporary, together with the following particulars:
This specimen had twenty leaves in different stages of growth above water, a fine flower, and two buds. The seed was started in the greenhous early in March. The plant was moved to the outdoor pond about the middle of Mas, from which time till July 4 it had the protection of a sash. The sash and frame were then removed. The first flower opened July 14, and was followed by thirty others in succession, the last one opening October 4. Four flowers were permitted to mature seed, vielding re spectively $188,458,293$, and 569 large, plump, heavy seeds. Unfortunately, three of the young leaves were injured by a severe thunderstorm which passed over
graphed on an unsupported leaf weighed 174 pounds add weight of rack (9 pounds) made of laths, and placed on the top of the leaf to distribute the pressure and protect the web of the leaf from the sharp shoe heels. The total weight was in that case 183 pounds vouch for the absolute accuracr of these statements I have nearly all the varieties of Nymphæas, or have had them, both hardy and tender. Some I have discarded as not worth bothering with. The only one that proved too much for me was N. sphærocarpa (the Swedish pink lily). I have paid as high as 32s. for a small root of this species or variety, but though I have tried several times, I have not succeeded as yet.
Nelumbium speciosum does grandly here out of doors. A neighbor of mine planted one tuber of this in a natural pond (about $11 / 4$ acres extent) in 1892 . I visited this pond last year in August, and do not hesitate to say there were more than 1,000 blooms and buds in
sight. At my request he cut the largest leaf we could sight. At my request he cut the largest leaf we could

THE VICTORIA REGIA IN NEW JERSEY.
large number of others. aquatics, such as Lim , Pontederia, Pistia, Sagittaria, might be rown in the same way. Most of these may be grown rom seed or, as in the case of Nymphæas, from tubers which may be kept through the winter in bottles, a light amount of moisture only being maintained. It is not given to every one to utilize hot water pipes as Mr. Nash has done, but they need not repine on that account, as few things are more beautiful than our ordinary water lilies, and especially the new varietie ntroduced by M. Latour Marliac. The tubers may be planted in mounds, or sunk in baskets of loam, en riched with decayed manure, and cased over with peb bles for the purpose of maintaining the earth in the baskets. Full exposure to the sun is essential. Mr. Nash has reason to be proud of his water garden, and the photographs taken by himself show that, as well as his garden, he cultivates photography with success."

Glass Bricks.-Some glass bricks of the system Falconier were exhibited from the glass works, Adlerhutten, in Penzig, Silesia, at a recent meet ing of the Vereins zur beforder ung des Gartenbaues in Berlin. These bricks are intended to be used in constructing the walls of plant houses and winter gardens, and they are made out of blown glass, and closed under 500° of heat. They possess internally a hollow of about one-third of their entire contents, which, being filled with rarefied air, acts as a non-conductor of heat. They are joined together with cement, by which a rigidity is obtained which points to the obtained which points to the possibility of their being employed as roofing in semicircular form, without any use being made of iron as a supporting structure. In honses built of this material, there must be many advantages not obtainable by other modes of construction with other materials, including greater economy in heating. No
see. The stem measured 10 feet 6 inches in length and the leaf 42 inches in breadth. This was, by 6 inches arger than any leaf I had previously measured. In my opinion the N. speciosum bears the handsomest flower hat grows, everything considered.
S. C. Nast

Clifton, N. J

Mr. Nash also sent photographs to the Gardener windows are necessary, although, for the purpose of enabling a person to look outside, these fittings might be supplied.

A carp taken out of the water may be kept alive for over twelve hours by a piece of bread soaked in brandy placed in its mouth.

Eorrespondence.

The Ambulance Bicycle.

To the Editor of the Scientific American
Under the caption of "A New Use for the Bicycle," in your issue of 25 ult ., credit is given for its intro duction and invention as an ambulance to a Dr. Honig, of Berlin. This seems to be an error, for the first am bulance bicycle, with litter, splints, and medical outfit, was designed and invented nearly two years ago by the Medical Director of the Naval Hospital at Chelsea Mass., and application was made to the Pope Manufacturing Company, of Boston, to introduce it into that city.
G.

Chime Whistles on Passenger Engines. To the Editor of the Scientific American :
In your issue of May 18, 1895, appears a short article on this subject. In this article the principal reason for urging the use of gong whistles on passenger locomotives has been entirely overlooked. To the traveler it is a very common sight to see the waiting passengers come pouring from the waiting room on hearing the whistle of a coming locomotive, which, to their discomfort, is only an incoming freight. The passengers may repeat this a few times before hearing the proper whistle, which must also be inquired after or investi gated.

I have learned to distinguish the whistle of the pas senger locomotives which concern me most, and although I may be several blocks from the depot I know just how much to quicken my pace if I desire to meet them. It is to be hoped that other roads will lose no time in profiting by the good example set by the Pennsylvania Railroad.
L. C. Mann.

in the Bleaching of Textile by Louis J. matos, chemical mnainere.

Of all the many and varied uses to which the electric current is put, there is none of more interest to the textile chemist than its application to bleaching. It should be explained at the outset that electricity per se is totally devoid of any bleaching properties, and that the textile chemist simply avails himself of the property of the electric current to effect certain chemi cal decompositions, which he is able to utilize advan tageously in his art.
The earliest attempts to use electricity for this pur pose are somewhat clouded in obscurity, but it is cer tain that the credit for the first commercially available results are due to $\mathbf{M r}$. Eugene Hermite, the inventor o the process I am about to describe in detail.
The bleaching liquor employed in this process is produced by the action of the electric current upon an aqueous solution of a metallic chloride. The one found to be most desirable, owing to its greater econo mical value, is that of magnesium, although the chloride of calcium or of aluminum may be used with the same result. As will be readily understood, upon pass ing a current through such a liquid, there occurs a simultaneous decomposition of the chloride presen and the water. The result of this electrolytic action is the simultaneous liberation, at the positive pole, of chlorine and oxygen. These two gases-in the nascent
state-unite at the positive pole, with the production state-unite at the positive pole, with the production
of an unstable compound possessing, to a very great degree, effective decolorizing properties. Simultane ously also, at the negative pole, the action of the cur rent liberates magnesium, and as the magnesium instantly decomposes an equivalent of water, we obtain, as products of this reaction, hydrogen and oxide of magnesium.
Now, if we add to the electrolyzed solution, or bleach bath, some vegetable fiber-for example, digested and washed wood pulp-the natural coloring matter of the fiber is destroyed by the highly oxidizing power of the chlorine-oxygen compound previously mentioned, and the chlorine, which is now set free, immediately unites with the hydrogen, forming hydrochloric acid, and this, in turn, in the presence of the magnesium oxide, dissolves that substance, re-forming the original salt in solution. After the pulp has become sufficiently bleached, the liquor is drained off, run back into the decomposing or electrolyzing vat, and, after the addition of a sinall quentity of fresh magnesic chloride, it is ready for another operation, on passing the current. The pulp only requires to be washed, as is ordinarily done at the present time in the common bleaching powder proeess. and then ready for con version into paper.
Thus we see that but two elements are consumed in the operation-electricity and the coloring matter of the sukstance to be bleached.
The electrolyzer, which is the most important piece of apparatus in the plant, consists of a vat or tank, of galvanized iron, provided with a tube of zinc, perforated with holes, in order to facilitate the circulation of the liquors. The negative electrodes are made of zinc in the shape of disks, and are secured to horizontal
shafts, which, by proper gearing, are caused slowly to shafts, which, by proper gearing, are caused slowly to
revolve. Between each pair of these disks are placed the positive electrodes, each of which consists of an
ebonite frame, holding, with the necessary firmness, a
net or perforated strip of platinum. Each of these net or perforated strip of platinum. Each of these piece of lead and is completely isolated. Every frame of the positive poles communicates by means of a piece of lead
yzer.
The bar of copper to which the positive electrode are attached is in communication with the positive pole of the dynamo. The current is distributed through all the electrodes of platinum, and passe through the liquid to the disks of zinc forming the negative electrodes, which are connected by means of the tank or vat with the nezative pole of the dynamo
In order to maintain the negative electrodes at the proper distance apart, ebonite blades are fastened to the positive electrodes. At the lower portion of the box or tank is a gate or door, which permits of acces to the apparatus for cleaning; a valve is also provided for drawing off the liquor, should this become neces
sary.

When several electrolyzers are employed in a battery, the negative pole of one is connected to the positive
pole of the next in the series, and so on to the last one.
The current strength ordinarily employed in the electrolyzer is from 1 to 1.2 amperes, and with a corre sponding electro-motive force of 5 volts. Instruments for measuring the strength of the current are placed in the circuit, and give at any moment a record of the force utilized.
The electrolyzers require no special attention. About once in every month the apparatus is thoroughly cleansed with water applied by means of a rubber hose through the door previously mentioned; it is not necessary to dismantle it for the purpose. The wear of the electrodes, in consequence, is very slight.
The conductors, which join the electrolyzers and which bring the current from the dynamo, are made of bars of commercially pure copper ; the cross sectional area of these bars varies with the distance between th dynamo and the electrolyzer.
It is always advisable to locate the dynamo and the electrolyzer as close to each other as possible.
The Dynamo.-For this work a very strong type of machine is required, and it should be so constructed as to be capable of yielding its maximum duty-run ning day and night.
The Bleaching.-Bearing in mind the remark previously made respecting the peculiar action of chlorine upon animal fibers, it will be understood that the electrolytic process is inapplicable to them. We will confine our remarks, in consequence, to the bleaching. of vegetable fibers, in connection with which much has already been accomplished with the process, and where there is still room for important improvements.
The fiber of most importance is, of course, cotton and of this I shall speak first.
Cotton occurs in the form of a silky hair, which, when examined under the microscope, is revealed to us as a flattened tube, more or less twisted, and of a pearly white color. It consists almost wholly of celluose, with certain admixtures natural to it, such as moisture, several coloring matters-collectively termed "endochrome" oils-and a certain amount of inorganic alts. The quantities of these admixed substances peculiar to cotton are small, but, in the processes of
converting the crude fiber into a manufactured product, certain other substances are added, such as oils ats, starches, sizes, mineral matters, etc., all of which must be removed before the goods can be properly bleached. To do this it is necessary to subject th goods to a preliminary boiling or scouring.
Electrolytic Bleaching of Slubbing.-In this state cotton is difficult to bleach, owing to the mechanica obstacles, nevertheless it is done, and with remark able success. Preliminary scouring is out of the ques tion, and the electrolyzed solution is allowed to act
directls on the material. The contained wasy matters, and those which are insoluble, are not acted upon by the solution, but the latter causes a decomposition of the coloring matter, which is converted into carbonic acid. The pectic acid is changed into a soluble pec tate of magnesia, and the remaining mineral matter are dissolved. The greatest difficulty encountered is in causing the liquid to penetrate evenly into every part of the slubbing, but this is overcome by the us pressure
The length of time required for the immersion varies according to the color of the cotton treated, to the degree of white desired, and also to the amount of chlorine and oxygen contained in the solution. Compared with the old method of immersion in the chloride of lime solution, the time can be very greatly prolonged without injury to the fibers. After bleaching, the cotton is removed, and carefully washed with water slightly acidulated with sulphuric acid; this is follow ed with a rinse, the excess of water is removed, and the stuff is finally dried in the ordinary way.
Electrolytic Bleaching of Cotton on Cops and Bob bins.-Some difficulty is experienced in successfully bleaching yarn that is wound upon tubes or spools,
wing to the resigtance offered by the threads when
superposed, but, by employing the conditions advised for the bleaching of slubbing, the difficulty is over come. The cotton is acted upon by the bleach liquor of suitable strength, and, owing to the rapid action of the solution, the fibers are bleached during the ingress of the liquid.
Electrolytic Bleaching of Yarn and Cloth.-These Electrolytic Bleaching of Yarn and Cloth.-These
offer the fewest obstacles. Ys.rn is bleached in a series of tanks supplied with the solution of constant strength from the electrolyzer. Cloth is similarly treated, except that it can be passed through the bath in a con tinuous form.
Electrolytic Bleaching of Linen and Hemp.-These fibers differ very much from cotton in the amount and nature of the extraneous matters which they contain. Linen is made from the fibrous part of the flax plant. The flax fibers are bound together by a cement like ubstance, which must be removed in order to isolate the individual fibers. The removal of this substance constitutes the very important process of "retting," of which several methods are carried on. The oldest and perhaps the best known is the retting by fermentation, which is a kind of rotting of the ligneous matter. After this is removed, the subsequent operations of bleaching and dyeing are in order. It has been found that if these fibers are subjected to the action of the electric current in the bleach tank, the oxygen, which is given up very readily, oxidizes the constituents of the vegetable cement, converting them into resinous bodies, and thereupon at once proceeds to exercise its bleaching powers. When the fibers have assumed a yellowish or reddish color, the oxidation is finished, further treatment in the electrolytic bath is stopped the material is removed and subjected to the action of boiling caustic or carbonated alkalies, either with or without pressure. This boiling operation effects the more or less complete removal of these resinous bodies, and leaves the fiber in a very clean and free condition, ready for further treatment. To bleach, all that is now necessary is to subject the fibers to a simple passage through the electrolytic solution, when a white of extreme brilliancy is obtained, and a silky feel is imparted to the fibers, which can be obtained by no other process, if the fibers have been retted in the ordinary manner.
Electrolytic Bleaching of Linen Threads.-Threads made of electrically retted fibers are of great purity, containing, besides cellulose, the natural coloring mat ter, and the residues of the vegatable cement, and, from what has preceded, it is easily seen that the bleaching of yarns is devoid of any difficulty. In comparison with the ordinary bleaching powder process, that of Hermite has the decided advantage that the liberated gases, which do the bleaching, do not, as is the case in the old method, act injuriously upon the fibers. A modification of cellulose-termed "oxy-cellu lose"-is formed in the old process, which is responsible for a considerable loss of fiber.
Electrolytic Bleaching of Jute.-This fibrous sub stance is one of a group closely allied to linen, but it has been quite impossible to bleach it on account of its feeble resistance to oxidizing agents. By way of comparison, I will describe the method generally in use, at the present time, for bleaching this substance:
The goods are scoured in a bath containing half of one per cent of silicate of soda, and kept at a fair heat next they are washed and passed through a bath of sodium hypochlorite, containing about one per cent of available chlorine; then well washed, passed through a weak bath of hydrochloric acid, and washed again. The bleaching by the Hermite process, which resembles that forlinen, consists in the preliminary removal of the cutose and vasculose (vegetable cement) by conversion into resinous bodies, and the extraction of these by reatment with soda or other alkali. The actual bleaching is done by means of the electrolyzed solu ion, worked in a tank, in the same manner as with the ordinary chloride of lime process.-Textile lndustries.

The Pottery Tree.

One of the most peculiar vegetable products of Brazil is the Moquilea utilis, or pottery tree. This tree attains a height of 100 feet, and has a very slender trunk, which seldow much exceeds a foot in diameter at the base. The wood is exceedingly hard, and con tains a very large amount of silica, but not so much as does the bark, which is largely employed as a source of silica for the manufacture of pottery. In preparing the bark for the potter's use, it is first burned, and the residue is then pulverized and mixed with clay in the proper proportion. With an equal quantity of the two ngredients, a superior quality of earthen ware is pro duced. This is very durable, and is capable of withstanding any amount of heat. The natives employ it for all kinds of culinary purposes. When fresh the bark cuts like soft sandstone, and the presence of the silex may be readily ascertained by grinding a piece of the bark between the teeth. When dry it is generally brittle, though sometimes difficult to break. After be ing burned it cannot, if of good quality, be broken up between the fingers, a mortar and pestle being required to crush it.

Our Country's Progress as Seen by a Foreigner.
The English statistician, Michael G. Mulhall, publishes, in the June number of the North American Review, an article on "The Power and Wealth of the United States." Mr. Mulhall's conclusion is that:
"If we take a survey of mankind in ancient or mod ern times as regards the physical, mechanical, and intellectual force of nations, we find nothing to compare with the United States in this present year of 1895, and that the United States possess by far the greatest productive power in the world."
Mr. Mulhall shows that the absolute effective force of the American people is now more than three times what it was in 1860, and that the United States possess almost as much energy as Great Britain, Germany and France collectively, and that the ratio falling to each American is more than what two Englishmen or Ger mans have at their disposal. He points out, by a care ful comparison bet ween the conditions in these differen countries, that an ordinary farm hand in the United States raises as much grain as three in England, four in France, five in Germany, or six in Austria. One man in America can produce as much flour as will feed 250, whereas in Europe one man feeds only thirty persons.
Mr. Mulhall calls special attention to the fact that the intellectual power of the great republic is in har mony with the industrial and mechanical, eighty-seven per cent of the total population over ten years of age being able to read and write.
"It may be fearlessly asserted," says he, "that in the history of the human race no nation ever before possessed $41,000,000$ instructed citizens."
The post office returns are appealed to by Mr. Mulhall in support of this part of his statement, these showing that, in the number of letters per inhabitant yearly, the United States are much aliead of all other nations
According to the figures of Mr. Mulhall the a verage annual increment of the United States from 1821 to 1890 was nine hundred and one millions of dollars, and he adds that "the new wealth added during a single genera-tion-that is, in the period of thirty years between 1860 and 1890 -was no less than forty-nine milliards of dol lars, which is one milliard more than the total wealth of Great Britain."
Classifying the whole wealth of the Union under the two heads, urban and rural, Mr. Mulhall finds that rural or agricultural wealth has only quadrupled in forty years, while urban wealth has multiplied sixteen-fold. Before 1860 the accumulation of wealth for each rural worker was greater than that corresponding to persons of the urban classes; but the farming inter ests suffered severely by reason of the civil war, and since then the accumu lation of wealth among urban workers has been greatly more than that awong rural workers, a fact which Mr. Mulhall thinks explains the influx of population into towns and cities.
In a series of figures Mr. Mulhal shows that the "rise in wealth and increase in wages came almost hand in hand." In dealing with the development of farm values, he makes the following statement:
'If the United States had no urban population or industries whatever, the advance of agricultural interests would be enough to claim th admiration of mankind, for it has no parallel in history."

The Almaden Quicksilver Mines in Spain.
The complete statement of the work done at the Almaden quicksilver mine for the year 1894, as given by the Revista Minera, is important and of much interest. During the year there was excavated at Almaden 6,680 cubic meters of ore, and only 561 cubic meters of barren rock had to be taken out. Most of the mineral was obtained in the crosscuts and galleries on the 12th level, and it was on this level that most of the stoping has been done during the year. The per manent work required the construction of 8,309 cubic meters of masonry in the various galleries and cham bers. In weight the extraction for the year amounted to 19,428 metric tons of ore and 1,828 tons of barren rock.
In the furnaces of the Almaden during the year 1894 there were 18,744 tons of ore treated, which produced altogether 44,521 flasks of quicksilver, representing a total weight of $1,535,988$ kilos. of quicksilver, the ave rage yield of the mineral treated having been $8 \cdot 19$ per cent. This shows an improvement over the preceding year, when the yield was only 782 per cent. The fur naces were run for seven months of the year, having

A NAUTICAL BICYCLE.
Scientific American. In our numbers for Novem ber 8, 1890, and February 14, 1885, illustrations will b found.

Egyptological.

The tomb of Senmut, the famous architect of the emple of Queen Hatasu, has just been discovered by Mr. Newberry, of the Fund, and Professor Steindorff at Gurneh, consisting of three chambers elaborately ecorated.
Professor Petrie announces that he has discovered the graves and remains of a hitherto unknown race n the soil of Egypt, and that his work the past season produces results "filling the greatest blank in Egyptian history." He claims for them a period between the fourth and twelfth dynasties. This, if true, dis pels the notion, at first conveyed, that he had found evidences of a prehistoric race. He thinks the race a cross between the Libyans and the Amorites. They used metal and flint, and the variety of fineness of their pottery is surprising. Further and established vidences of this remarkable discovery, between Ballas and Negada, will be welcomed by the anthropological world.
Professor Adolf Erman, Ph.D., has just accepted the position of vice-president of the Egypt Explora ion Fund for Germany.
The Ashmolean Museum, at Oxford, has been enrich
ed by the chief results of the excavations last year a Coptos by Mr. Petrie, which he considers to have yielded prehistoric fragments of archaic sculpture and terra cotta. Among the sculptures are the colossal head of a bird, a lion's head, and the head of the god Minz the rest of whose statue is en route. We cannot asser these remains to be prehistoric, but may indulge the fond belief that they belong to Egypt's mythic era.
Captain H. G. Lyons, R.E., of the Fund, has pre sented the same museum with stelæ of the twelfth dynasty, found on the site of the temple at Wady Halfa, and with two hieratic stelæ from the village of Mut in the Dakhla oasis, which refer to the artesian wells in that district and the water supply
The value of the Archæological Survey departmen of the Egypt Exploration Fund, whose chief mission is the recording of important inscriptions, which ar being constantly obliterated, is well illustrated in a letter from Professor Sayce. At El-Kab, near an ancient well and under the cliff, he found a platform of rock which had been cut for the foundations of a chapel of some size. Here he discovered many text relating to the Old Empire, including one of special value, as it gave the names of two temples built on the spot in the period of Pepi of the sixth dynasty. One of them was named Kenb-set (Corner of the Mountain) The texts are so numerous that weeks of labor would be required to tran scribe them.
At Esneh, the recently found paint ings in two subterranean Coptic churches, Dr. Sayce says, are already nearly destroyed by the fanatica Arabs. Of the few still untouched paintings, he writes that "one repre senting the Virgin and Child is espe cially good, though it will probably have been destroyed by the Moham medan iconoclasts before this lette reaches England."-W. C. W., Boston Commonwealth.

Ampere's Induction Experiment.

At a recent meeting of the Physica Society, Prof. S. P. Thompson read a note on " A Neglected Experiment of Ampere."
Ampere, in 1822, made an experiment which, if it had been properly fol lowed up, must have led to the dis covery of the induction of electric currents nearly ten years before the currents nearly ten years before the
publication of Faraday's results. While attempting to discover the presence of an electric current in a conductor placed in the neighborhood of another conductor in which an electric current was flowing, Ampere made the following experiment: A coil of insulated copper strip was fixed with its plane vertical, and a copper ring was suspended by a fine metal wire so as to be concentric with the coil and to lie in the same plane. A coil and to lie in the same plane. A mar magnet was so placed that if an uspended was induced would be produced. No such deflection, however, was observed.
In 1822 , in conjunction with De la Rive, Ampere repeated this experi ment, using, in place of the bar mag net, a powerful horse shoe magnet He describes the result in the follo:ing words: "The closed circuit under the influfnce of the current in the coil, but without any con nection with this latter, was attracted and repelled alternately by the magnet, and this experiment would, consequently, leave no doubt as to the production of currents of electricity by induction if one had not suspected the presence of a small quantity of iron in the copper of which the ring was formed." This closing remark shows that they were looking for a permanent deflection. When, however, Faraday's results were published in 1831, Ampere after again describing the experiment made in 1822 by himself and De la Rive, says: "As soon as we con nected a battery to the terminals of the conductor, the ring was attracted or repelled by the magnet, according to the pole that was within the ring, which showed the existence of an electric current produced by the influence of the current in the conducting wire."

The Spider's Web.

The spider is so well supplied with the silky thread with which it makes its web that an experimente once drew out of the body of a single specimen 3,480 yards of the thread-a length but little short of two miles. A fabric woven of spider's thread is more lossy than that from the silkworm's product, and is.of a beautiful golden color.

American and Russian Petroleum.
The recent sensational rise in the value of American crude and refined petroleum, and the causes to which it may be attributed, are readily accounted for, and a study of the relative positions of the American and the Russian industry shows that the present revolution in the petroleum market may soon be accentuated by the replacement of a large proportion of the American oil by the Russian product. The Americans possess the advantage of having been first in the field, and of producing an oil which yields on distillation nearly twice as much illuminating oil as does that of Russia, and, furthermore, of producing a type of oil which is better adapted for burning in the ordinary lamp than that of any other country. It is true that the oil of Ohio is an inferior quality, owing to the presence of an excess of sulphur compounds, and that it yields only about as much lamp oil or kerosene as that of Russia, but at present it is not of great importance as regards the European markets, and American oil may be considered to be almost entirely derived from the States of Pennsylvania, New York, and Western Virginia.
The American industry, dating only from 1859, has hitherto grown year by year under the skilled guidance by which it has been fostered, and until within the last two years or so has shown no indication of diminution of supply ; but it is now becoming evident that the depletion of the oil lands which Mr. Carll, Professor Leslie, and other American geologists years ago asserted would before long result in a large decrease of supply, is beginning to show its effects. The older fields are rapidly falling off in their supply, while, although new areas of more or less importance are constantly being opened up, the amount of untested territory is rapidly becoming less, and the prospect of a renewal of the enormous supply of the past is ever becoming smaller
lf we glance at the statistics showing the stocks held of late in America, we find that at the end of 1892 there was in the crude oil tanks no less than $17,395,389$ barrels of 42 American gallons; that this fell, by the end of 1893, to $12,111,183$ barrels, and was, at the close of $1894,6,336.777$ barrels; and that, on March 1 last, it was only $4,908,776$ barrels-and this in the face of a demand which shows no sign of diminution, and of a supply which is inadequate and constantly decreasing. It is, of course, certain that the increased activity in the sinking of new wells, which is now in progress, will result in a large increase in production; but this
can only be at enhanced cost, and must bring ever nearer the time when the American oil industry shall become of secondary importance, and ultimately of only historical interest.
When we study the position of the Russian industry, we find that it possesses entirely different features. Although of great antiquity, its commercial importance only dates from 1872, when the monopoly of Prince Meerzoeff was abolished, and only within the last few years has it become a dangerous antagonist of the United States. The production shows no diminution, and, so far as appears at present, can be almost indefinitely increased at small cost, whenever occasion demands. The wells are shallow, usually about a fourth of the depth of those, ${ }^{\prime}$ Pennsylvania, and en-
tirely dwarf the latter in output. Wells which are considered rich in America would not be worth sinking in the Baku district, which at present constitutes almost the entire producing area of Russia. From the fact that the Apsheron peninsula, on which the Baku fields stand, possesses an area of oil-containing land es timated at 1,200 square miles, and that only about 7 or 8 square miles is at present under the drill, we can
readily realize how important a factor the Russian oil readily realize how important a factor the Russian oi able it is that the Russians will soon take the leading position in the oil markets of the world. Furthermore, there are enormous tracts of country in the Caucasus and elsewhere in the Russian empire which, although scarcely tested, have given indications of richness even exceeding that of Baku, and showing a potential wealth of oil capable of supplying the world for ages to come. Wells drilled in the Grosnaia field to the north of Baku and in Gouria-Georgia-between the
Black Sea and the Caspian, have given the most encouraging results, and both these fields, and also that of the Crimea, are more favorably situated for transporting the oil than Baku.
The conditions under which the oil occurs in Russia and America are very different. In the former it is found in strata of the Tertiary period, usually a formation resembling a quicksand, and at depths of only a few hundred feet; while in the latter it occurs at great
depths in the older compact sandstones and limestones of the Carboniferous, Devonian, and Silurian periods. The oil of Russia consists of a class of hydrocarbons known as naphthenes, and belonging to the "benzene" group, while the American oil is mainly composed of paraffins. It is to this difference in composition that the great variation between the products from these
oils is due, for whereas the American oil yields a very large proportion-about 70 per cent-of illuminating oil exactly suited for combustion in our ordinary lamps, the Russian oil produces far less of such oil and a larger proportion of the high class lubricating oil for which that country is famous. The Russian illuminating oil also requires to be burned in a modified form of lamp with a more perfect draught, to overcome its tendency to produce a smoky flame. Hence, before the Russian oil can obtain a powerful position in the English market, the Kumberg or any other of the lamps which are employed in Russia must become naturalized among us, and, although that is a somewhat difficult operation with such a conservative people as we are, it is practically certain to result in the near future from the greater cheapness which Russian oil will now show as compared with that of America.-The Engineer, London.

Hematite Mining in Greece.

A new hematite mine at Marathon, in the village of Grammatico, Greece, was opened last year. The ore is carried down by a railway for about five miles to Limonia Bay, where there is a jetty on the west side 200 feet in length, by means of which 1,000 tons daily can easily be loaded. Proper appliances have been provided for mooring the vessels. The anchorage is considered quite safe, as it is well sheltered. The mine has been leased ior twenty years by several French capitalists. The actual output is 6,000 tons monthly, but if necessary the quantity can be increased to 15,000 tons. The ore is of an excellent quality, and contains 56 to 58 per cent iron, 380 to 4 per cent manganese, and $1 \cdot 60$ to 2 per cent only of silica, but whenever the seve ral lodes are found in contact with some small veins of yellow ocher, the presence of a very slight percentage of arsenic is found by analysis, but this seldom happens.

Spirit for Incandescent Lighting.
The problem of employing spirits for lighting on a ew principle similar to the incandescent gas light has, it is stated, been solved with great success by a Berlin firm. Experiments have just been carried out in pres ence of the Prussian Ministers Herren Berlepsch, Miquel, and Hammerstein, which are reported to have been completely satisfactory. If this news is confirmed it is likely to prove of enormous importance to the German spirit industry, which has recently been in extremis.

RECENTLY PATENTED INVENTIONS

 ElectricalTelephone Call.-Frederick J. Troll, Washington, D. C. This invention relates to a call in metal tape on a drum, the tape when drawn out revolying the armature in one direction, and the tape being re wound by the tension of a coiled spring. By an im proved construction and arrangement of parts the motion is transmitted to the armature direct, and the armature
is made to ring a call by both the forward and backward movement of its oscillation, the armature being also cut out when the call is not in use. The call box is very
simple and not liable to be damaged by inexperienced operator
Boiler Low Water Indicator. Charles D. Tisdale, Boston, Mass. According to this inthe lower end of the water gage and the water gage cock the intermediate piece having contact wires extending up into the tube, and a float within the tube being adapted to The device can be applied to a boiler by removing the glass water gage tube and replacing it with a tube having' the auxiliary connecting piece, the tube and attachments be ing made to replace the ordinary water gage tube. The
alarm may, with this improvement, be given in the boiler alarm may, with this improvement, be
room or at any desired distant point.

Mining, Etc.
Reducing Gold and Silver Ores.John C. Garvin, Denver, Col. This inventor has devised
a simple apparatus for rapid and economical work, in a simple apparatus for rapid and economical work, in
which the :firebrick stack has a central shaft, alongside of which are ore-drying chambers connected by upwardl of which are ore-drying chambers connected by upwardly
slanting apertures with outer gas chambers, there being slanting apertures with outer gas chambers, here being
in the central shaft opposite inclined shelves of tile, and in the central shaft opposite inclined shelves of tile, and shaft being used for chlordizing and roasting and the outer chambers for making sulphuric acid. Below the central shaft is a roasting chamber with cone-shaped
hearth on a revolving disk, and this chamber is connected with the fire box, the pulverized ore, mixed with chloride of sodium or sali, being kept upon the
until it is desulphurized, chloridized, and roasted.

Mechanical.

Cotton Gin and Wool Blerer.Samuel L. Johnston, Boston, Mass. This machine be longs to the class known as roller gins, but it has a re
ciprocating stripping mechanism supported and held to ciprocating stripping mechanism supported and held to
operate in a more effective, rapid, and uniform manner It also has a vibrating receiver and separator mechanism which receives the material from the hopper and delivers it to the roller and stripper, and also serves to clear the seed and dirt therefrom as it feeds. The machine like wise has other features designed to increase its capacit
Machine for Making Dress Shields
forming a flexible material into dress shields in a simple and inexpensive manner, this inventor has devised an with a heating chamber, and one of the dies being adapted for vertical reciprocating movement, while the other die has means for moving it bodily in a horizontal direction into and out of position to be engaged by the irst die. Several shields are thus formed at one pressing peration, the dies remaining long enough in contact to terial is cut transversely to form the individual shields

Agricultural.

Corn Harvester and Husker. Gustave Leblanc, Mead, Neb. This is a machine for field use, gathering the ears from one or more rows of
standing corn and conveying them to husking devices, from which they are conveyed by an elevator to a wagon, he husks being discharged on the ground. The ma-
hine may be drawn or pushed forward by a team at the ront or rear, as found most convenient, and all the driving mechanism is actuated from the axle. The machine designed to be durable, inexpensive to build, and sim ple in its operation.

Miscellaneous.
Tachometer. - James Donnan, Ballaghaut, India. This is a distance measuring instrunions of which is clamped an arm adjacent to a scale here being mounted on and adapted to move along the arm a lengthening bar having an index adapted to traverse the scale. The instrument is designed to enable the user to readily read off the horizontal distance of any point to about three thousand feet from the point of tive to the point of observation, and also the bearing of this line from the magnetic north, or the horizontal angle subtended between any two lines which meet at the instrument.
Library Stack.-Dean A. Beckwith, New York City. The front and rear posts of this stack are provided with lugs connected by plates which form pending flanges adapted to drop into position between the supporting posts, whereby the shelves cannot slip o be displaced, although they may be conveniently removed when desired. The construction is simple and
durable, and a stack thus made presents a neat appear-

Wheel Tire.-Samuel A. Smith, McKinney, Texas. Acco-ding to this improvement the two ends of a wheel tire are connected in a very inexpensive screw, the lug forming practically a part of the felly, and the connection between the tire ends being firmly made, while the tire may readily be tightened at any time by simply turning a nut.
Veficle Safety Driving Rein Hitch.-Isaac A. Stewart, De Land, Fla. In a casing
to be attached to the wagon body is held a rotatable
roller or drum within which is a retracting spring, while
on the drum are two oppositely wound cords, one conon the drum are two oppositely wound cords, one connected with the driving reins and the other with a wheel
of the vehicle. When the cords are properly connected of the vehicle. When the cords are properly connected put on the cords by the rotation of the wheel to check phe anii
backs.
Sewer Valve. - William Godfrey Saugatuck, Conn. This valve is formed of two halves, an inlet and an outlet section, bolted together, the inle extension having an inclined extension with bevele edge forming a seat for a hinged inclined valve, and the outlet section at its mouth being larger than the body of
the inlet section. The bottom of the outlet section he inlet section. The bottom of the outlet section
sharply curved or bent down to form an offset or drop affording a clear space under the lower edge of the valve for the passage of sewage, insuring the positive working of the valve and
Bottle Stopper.-James F. Martin New York City. This stopper has two independen valve seats, to be secured at a suitable distance apart in
the neck of a bottle, and two ball valves having forked stems each projecting through the central opening of it seat, the forks being bent outwardly at their ends to en
gage the under side of the valve seat. The stopper i gage the under side of the valve seat. The stopper is
designed to permit the ready pouring out of the contents of a bottle, but prevents refilling, thus making it nally placed in the bottle
Soap Holder.-Frank H. Milligan High Lane, England. To allow the draining off of water from toilet and other bar soap after use, this inventor provides a holder consisting of a plate or disk
from whose opposite sides project studs, between which are apertures, the outer studs being longer than the inner ones, and thus forming a central depression to receive the soap. The holder may be placed in a suitable
dish if desired or directly on the slab of a washstand
Fruit Jar Clamp.-Henry C. Dilworth, East Orange, N. J. Fitting over the top of th piece to which is secured a spring, a cam lever carrie by the clamping piece being adapted to engage to spring. The device may be adjusted to form a wate tight seal, with the fastening yielding to permit the escape of any steam or gas which may be generated, or it
may be adjusted so as to bind the cap rigidly and her may be adjusted so as
metically seal the jar.
Skate.-Henry D. Carryl, New York City. This skate is made to be readily and firmly a tached to shoes having long or short heels. It has punner of the ordinary form, to which is secured a sole ball foot rests, and on the narrow portion is an eccentric dog which engages the forward side of the heel and clamps the narrow part of the sole plate. The improve-
ment is designed to cheapen the manufacture, and t simplify and facilitate the clamping of the skate upon
the foot. the foot.

Sprinkler.-William L. Van Horn and Martin Yount, Norfolk, Neb. For the sprinkling of sprinkler to be placed at any desired point and which sprink er to be placed at anr esired point, and which
has a revolving section through which the water may be delivered through the sides, or downwardly or upwardly, in the latter case falling in drops to imitate rain.
Design for a Ring Holder. Adolph Sametz, New York City. This design com-
prises a series of elongated V -shaped tongue-like fifures on a rectangular board, the edges of which display a lace work ornamentation.
Note.-Copies of any of the above patents will be
furnished by Munn \& Co., for 25 cents each, Please send name of Munn \& Co., for 25 cents each, Please of this paper.

NEW BOOKS AND PUBLICATIONS

Lee's Condensed Crclopedia. A comprehensive digest of the world's
knowledge in history, biography, geography, philosophy and science, Laird \& Lee. Pp. 384 Price Pr gilt, $\$ 1$.
Nystrom's Pocket Book of Mechanics and Engineering. Revised, cor-
rected and greatly enlarged, with adrected and greatly enlarged, with ad-
dition of original matter. By Wildiam Dennis Marks. Twenty-first edition, further revised and corrected by B. Lippincott Company. 1895. Pp.
675 . Price $\$ 3.50$.

We welcome the twenty-first edition of this book, which has had a wide popularity, this twenty-first edition only emphasizing its utility to the engineering pro-
Mechanics. An elementary text book, theoretical and practical, for colleges
and schools. Dynamics. By R. T. and schools. Dynamics. By R. T.
Glazebrook. Cambridge: At the University
This excellent little work, one of the Cambridge on the idea of having the student make his own experiments. This it does without in the least impairing the thoroughness of the work, which is a genuine scientific treatise and by no means an intermediate manual.
Vothing is clearer than the fact that a thorough Nothing is clearer than the fact that a thorough knowledge of mechanics is the greater part of the foundation
of physics, or, at least, represents the greater portion of of physics, or, at least, represents the greater portion of
the work that is to be done in acquiring a comprehension of the science. The experiments are somewhat in the ine of the Harvard entrance examination work, but are far superior in type, a superiority, perhaps, partly due to the somewhat more advanced treatment of the subject
not go outside of mechanics. The description of Hicks
ballistic balance, with a "comparison of particularly to be noted as an example of the treatmen particularly to be noted as an ex
given the subject by the author.

Popular Essays upon the Care of THE Teeth and Mouth. By Victor C. Bell. Published by the author.
1894. Pp. 103. Price $\$ 1.25$.

It really seems to us as if this book were one whic might have considerable utility. It treats of the general sensible care of the teeth, home remedies, and an excel
lent chapter is given in conclusion on "quackery" which is really an appeal for good work, and as such must be recommended. The book has no index, but, perhaps on account of its shortuess, it hardly needs one
Telegraphist's Guide to the New GRAPHY. Together with an appen dix dealing with dry and secondary cells, universal battery system, direct reading battery instrument, du plex (bridge method), new system of morning testing, fast speed repeaters, tified Teacher City and Guilds of tified Teacher City and Guilds of
London Institute. London: Electricity. Pp. 101. Price 60 cents.
Practical Telegraphy. By F. E. Wessels. A book for self-instruction
The Locomotive, a monthly publica tion of the Hartford Steam Boiler Inspection and In surance Company, has just completed its 15 th volume
Its inspectors' reports of examinations of boilers, with the defects found therein, and its notes on boiler explosions, render this little work an especially valuable one
to engineers, when it is remembered that the boiler in spections number as many as from ten to twelve thousand per month. In 122,893 bollers examined last year 597 were condemned, and dangerous defects were found
in 12,390 . As might be looked for in in 12,390. As might be looked for in such a pubilication,
it contains much valuable information on boiler construc tion and preservation.

SCIENTIIFIC AMERICAN

BUILDINGEDITION
JUNE, 1895.-(No. 116.)
table of contents.

1. A cottage at Bronxwood Park, Williamsbridge, N ., recently erected for Dr. Geo. P. Shirmer, at cost of about $\$ 2,500$. Perspective elevation and Esq., architect, New York City.
. An elegant plate in colors showing a cottage at
Bronxwood Park, Williamsbridge, N. Y., recently erected at a cost of $\$ 2,200$. Perspective view an floor plans. Mr. A. F. Leicht, architect, New York City. A neat design.
2. A cottage at Flatbush, L. I., recently erected for \mathbf{W} K. Clarkson, Esq., at a cost of \$5,000. Perspective elevation and floor plans. Mr. Christopher Myers,
architect, New York City. A picturesque design 4. A modern cottage at Bedford Park, New York City recently erected at a cost of $\$ 3,000$. Perspective
elevation and floor plans. A picturesque design. Mr. Edgar K. Bourne, architect, New York City. 5. The Bedford Park Congregational Church. Two plans. Cost complete, $\$ 7,000$. Mr. Edgar K Bourne, architect, New York City
3. A Colonial cottage recently erected at New Dor . I., at a cost of $\$ 3,675$, complete. Perspective
elevation and floor plans. Messrs. Child \& De Goll, architects, New York City. An attractiv design.
. A residence at Germantown, Pa. Two perspective
elevations and floor plans. Cost complete, about elevations and floor plans. Cost complete, about 10,500. Messrs. Child \& De Goll, architects, Ne York City.
4. The New Theater, San Luis de Potosi, Mexico促
5. The residence of E. P. Sandford, Esq., at Montclair .J. Two perspective elevations and floor plan P. Sandford, Montclair, N. J.
6. A cottage in the English half-timbered style recently rected for F. E. Kirby, Esq,, at Glen Ridge, N. designer, New York City.
7. Miscellaneons contents: The Hanging Gardens of -Points of support.-Architects' estimates.-A mproved hot water heater, illustrated.-A new in ention for raising water, illustrated.-Improved paving.-The Bommer spring hinge, illustrated. Adjustable sliding door track and hanger, 110 e rated.-Weodworker's improved vise, illustrated -African mahogany.-A new steam and hot wate heater, illustrated.-Powers' improved automatic chimney top, illustrated.-Improved wood workin nachinery, illustrated.
The Scientific American Builaing Edition is lisu monthly. $\$ 2.50$ a year. Single copies, 25 cents. Thirty wo large quarto pages, forming a large and splendid Magazine of Architectire, richly adomed with legant plates and fine engravings, illustrating the most ion and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of any Architectorar Publication in the world. Sold b all newsdealers. \quad MUNN \& CO., Publishers,
381 Broadway, New York.

Business and Pexsonal.
The charge for Insertion under this head is one Dollar a line for each insertion : aoout ciont worads to a lince. Adver
tisements must be reccived at pubication office as cariv a
Thurgday morning to appear the follo

For pumping engines. J. S. Mundy, Newark, N. J.
C. S." metal polish. Indianapolis. Samples free Marine Iron Works, Chicago. New catalogue free. Stave machinery Trevor MPg. Co., Lockport, N. P. Presses \& Dles. Ferracute Mach. Co., Bridgeton, N. J. Yacht engines and boilers. Great variety. New cata
og free. Willard \& Co. 19 Canal St., Chicago.
Screw machines, milling macnines, and dril presse
be Garvin Mach. Co., Lsight and Canal Sts.. New York Emerson, Smith \& Co., Ltd., Beaver Falls, Pa.., wil ree to any address.
New catalugue of civil, mechanical, electrical and in ustrial boks, postage free, 5 cents.
berlain, 12 Cortlandt Street, New York.
The best book for electricians and beginners in elec icity is "Experimental Science," by Geo. M. Hopkins.

For the original Bogardus Universal Eccentric milu oot and Power Presses, Drills, Shears, etc., addres (TE Send for new and complete catalogue of Scientif nd other Books for sale by Munn \& Co., 361 Broadwa
New York. Free on apolication.

HINTS TO CORRESPONDENTS Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our ornormation and not for publicetion.
ineferences to former articles or answers should Rererences to former articles or answers should
give date of paper and page or number of question
Inquiries not answered in reasonable time should some answers require not a litthe research, and
someng we endeavor to reply to all either by lette
tho in this department, each must take his tom or in this department. each must take his turn.
uy ers wishig to parchase any article not adyertise
in our cor coumns will be furnished with addreesses o houses manufacturing or carrying the same.
Special Viver riten Inf ormation on matters of
personal rather than general interest cannot be
expected witho
 Bots referred
price.
maras sent for examination should be distinctly
marked or labeled.
(6543) D. T. W. asks: What is the ve locits of electricity, as in telegraphy? A. It depend an the delicacy of he receiving instrument and on the aint and imperceptible disturbance goes with the spee of light (about 186,000 miles per second), but considerable ime may elapse before.
(6544) Machinist, Memphis, writes: If in the lathe, got dead true on the outside, turned o $1 / 8$ or $1 / 4$ of an mch and the straps bored out to suit, wil it change the throw of the valve or not? A. The size of
the eccentric does not control the throw of the valve. The amount of eccentricity only is considered, whethe it be a pin or a large disk.
(6545) C. A. M., Cal., writes: In laying pipe line 40 miles long, using 2 inch and 3 inch pipe sing 20 miles of each ? Which will make thg the ion, the 2 inch pipe at the pump end and the 3 inch he outlet, or the 3 inch at the pump end and the inch at the outlet? The pump will lift the oil 200 feet fo he first half mile, then it will have a fall of 1,500 feet for $391 / 2$ miles. A. The 3 inch pipe should be laid at the pump end of the line. This will relieve the friction on herisingend of the siphon from the work of the pump, eg of the siphon. This will relieve the work of pump to a small extent and yield the largest possible de ivery at the discharge end.
(6546) B. H. T. asks : 1. Why does not nore surface of plate give more current in cell? Text difference in internal resistance. A. It does give mor current. Lowering the resistance implies at a constant voltage the development of more current. 2. What makes telegraph or telephone wire sing? A. The actio of wind upon them, on the principle of the Eolian har Governments have done considerable in the way a rule, anything in the nature of a substantial support received by any individual in pure science is derived from a connection with one of these institutions. There have been some government prizes, but these are of comparaively little importance
(6547) W. H. K. asks: Which will run he easier, a 28 inch or a 28 inch bicycle, both geared to 60 inch, weight carried the same, over ordinary roads? A. It is hard to answer this question authoritatively. wheel. The larger sprocket to recommend the larger an advantage, and for even gear the larger sprocket will go on the larger wheel.
(6548) D. R. W. asks: What is the best nown (solid) non-conductorof sound \& A. Indiarabber
(6549) H. A. asks how to clean and kind of paint is ased to paint boilers bnd, and what khine ? \mathbf{A}. The holler can be rubbed smooth with a piece of pumice stone and water, then painted with black japan ve
varnish.

T0	

INDEX OF INVENTIONS
Por which Letters Patent of the
United States were Granted
May 28, 1895,
and EACH BEARING THAT DATE

Bail, bucke. W. D. Nudy.
Baling pres, C. Neeb.
Band cutter and feeder.
Barrel heater. Menzeder, A. Jobinson..................
Bater. See Gavanic battery. Secondary bät

apparatas for mixine
Coat and atat book
Cot collt. D.
Cot.

Krang, varyinp iengt for driving cy cies. ete.:

ing W. R. Snead.............................
Drauht mechanism,
Dredding manchine bucket, . M. Seward........
Drier. See Tobacco drier.

THE SIMPLON TUNNEL.-DESCRLP-

TO INVENTORS AND PROMOTERS

BVANDUZEN STEMM PUMP Pumbs fin Kink worli.

 THE HYPNOSCOPE For physicianand dentistatimit

BUY
TELEPHONES

MACHINE WORK SOLICITED.

BOLT CUTTERS AND NUT TAPPERS
 Min Prperiviter EXCHANGE, $1 \frac{1}{2}$ Barclay St., New York We will save you from 10 to
of ant ants.
and makes. ODEL, EXPERIMENTAL and ELEC
TRICAL WORK. Physical and Chem-

 POSSIBILITY OF LIFE IN OTHER Vorlds.-A most interesting disaussion of this muchdeanated question by the sreat astronomer. Sir kobert

9A NEW PIPE WRENCH

Grips quickly and firmly, GALVANIZED
as well as other pipe, and will not cruat as well as other pipe, and will not Crush
it. Won't lock on pipe. Does not mar a nut or highly polished fittings. Other features. All dealers.
SAMUEL hall's Son, 229 West 10th St., New York

THE OBER LATHES

Parson's Horological Institute.
School for WWatchmakers engravers and Jewelers

SUPERIOR TO COTTON WASTE

WOODEN TANKS.

STANDARD
TRY
SOUARES.

Architectural Books

Useful, Beautiful and Cheap.
Any person about to erect a dwelling hnuse or staAe. either in the country or city, or any builder wishing,
to examine the latest and best plans for a church, school house, club house, or any other public building
of high or low cost, should procure a complete set of of high or low cost, should procure a complete set of
the ArCHIECTS' AND BUILDERS' EDITION of the SCIentific American.
The information these vorumes contain renders the
work almost indispensable to the architect and builder, and persons about to build for themselves will find the work suggestive and most useful. They contain draw-
ings in perspective and in color, together with floor plans, costs, location of residence, etc.
Two volumes are published annually. Volumes 1 to Too volumes are published ansually. Volumes 1 to
18, which include all the numbers of this work from
coner at this office or from Booksellers and Newsdealers.
at Price, stitched in paper. $\$ 2.00$ per volume. These vol-
umes contain all the plates, and all the other interesting matter pertaining to the work. They are of great permanent value. Forwarded to any address.

MUNN \& CO., Publishers, 361 Broadway, New York.

We manufacture Tents of every varlety and size.
for all concelt for all have beenin thy busikess kor fity-four years
and know bow to make them properiy. We have mape zents for the war D
We gafe now fuoting the ywest priceg ever heard
of, of thg to the low

GEO. B. CARPENTER \& CO. 202-208 So. Water St., CHICAGO

AGENTS WANTED

GAS ENGINE CASTINGS

The Berkefeld House Filter

 MADE TO FIT YOU,
 R $\$ 5$ HAND BONE, SHELL AND
 Now READY:

Seventeenth Edition of
Experimental Science

120 rasea nad 110 tuperb cut

 MUNN \& CO... Publishe Office of the SCIENTIFIC AMERICAN
36i BEADWAY, NEW YOEK.
 ROCH EMERY Sturtevant Mill Co., Boston, Mass. MILLSTONES. Made of Large Blocks of Emery Set in Metal. Fastest Grinders known. Can grind anythin No PICKING. Wane Shilp. Stay Sha Cheap as Benlil Frame.

 FISHER PATENT THO GRVITY GOVERNORS
 ReItcing paives.

 $\frac{\text { ALCO VAPOR LAUNCH }}{}$

"Pacific" \& "Union Gas \& Gasolin encines.

$10{ }^{\circ}$
-1IOU USE GRINDSTONES?

 2d Floor. Wilshire. Oleveland. 0. They All Like It. The Ladies Like It. Children Enjoy It Layman Preumatic Boats.
See Scr. Am. May
友
 Address H. D. LA YMAN,
851 Broadway, New,
 How To Make a Dynamo

A.W. FABER

LEAD PENCILS, COLORFDD PENCILS, SLATE PENS, 1 NKA, PENCIL CASES IN SILVER AND IN
GOLD, TATIONERS' RUBBER GODS, RULERS,
COLORS AND ARTISS 78 Reade Street, - - New York, N. Y.

MATCH * MACHINERY.

MANVEL WIND MILLS

 Hour ad aress calls. for
Wane ennravings.
WILIAMS MFG. Co. Kalamazoo,
$\mathbf{3 6}$ So. Mrarayst, New Mork
Mork.
SANITARY SOAP VASE

 Sanitary Soap Vents Wante Co.,
Aqueduct Bldg., Rochester, N.
SINTZ GAS ENGINE CO GRAND RAPDRS, MICE.,
Manuacture so the sintzisind

Experimental \& Model Work BJSHNELL'S PERPECT LETTER COPYING BOOKS

KODAKS
6.00 to $\$ 100.00$. The lightest and most pracifal cameras for hand
or tripod use. An illustrated manual, free with
every Kodak, tells how to develop and print the Eastman Kodak Company, 2. Send for 6

Premo Cameras

Are perfect in construction, workmanship and inish, and contain more modern im provements than any other Camera. We ROCHESTER OPTICAL CO.

MR. BOOKKEEPER, do you know what the Comp.
tometer is 1 t costs you nothing
to find out 1 thill holp you out
 best accountant and reliev
ner ousand mental strain.
Write Write for Pamphlet. FELT \& TARRANT MFG CO.
S2-56 ILLINOIS ST.. CHICAEO

The

American
 Bell Telephone Company,

125 Milk Street,
Boston, Mass.

This Company owns Letters to Emile Berliner Nowem ber 17, 1891, for a combined Telegraph and Telephone, cor Microphone Transmitters or contact Telephones.
 Three New Model
Smith Premier Typewriters

Nos. 2, 3 and 4

E YOU EXAMINED THEM?
Many Improvements Heretofore Overlooked by Other Manufacturer
Address THE SMITH PREMIER TYPEWRITER COMPANY, Syracuse, N. Y., U.S.A.

AEREISMMED

DO YOU WANT A LAUNCH?

```
That you can run
```

yourself.
That is Clean
and Safe.

 neither Licensed Engineer nor Pilot.

Pilot.
send 10 cent stamp for Illustrated catalogue of $\ldots \ldots \ldots$
THE ONLY NAPHTHA LAUNCH. GAS ENGINE AND POWER COMPANY, 185th St., Morris Heights, New York City.

THE M. \& B. TELEPHONE.
 131-133 S. Fourth St., Philadelphia.

 Now made in large quantities and
reduced to $\$ 1.00$. Takes six good
pictures each loading and The PHOTORET

隹 MAGIC INTRODUCTION CO., 371 Broadway, New York

Its Like This. WA VERLEY
 INDIANA BICYCLE CO

- MERRY Emery Wheels, Grinding Ma-

Patented Novelties Manufactured.

ICE-HOUSE AND COLD ROOM.-BY

CIDER \& WINE PRESS MACHINERY. apacity, 10 to 120 Bbls. inten hours.) Send for 50 -page Catalogue. FUlton, oswego Co., N. Y.

 - THE
SCIENHIC MERCN

ESTABLISHED 1845.

The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Year, Including Postage. Weekly--52 Numbers a Year.
This widely circulated and splendidly illustrated
paper is published weekly. Every number contains sixteen pages of useful information and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mech New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity.Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. Complete list of Patents each week.
Terms of silbscription.- One copy of the Scien-
Tific american will be sent for postage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of Three Dollars by the publishers; six months, $\$ 1.50$; three months, 81.00 . Clubs.- Special rates for several names, and to PostThe safest way to remit is by Postal Order, Draft, or Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address seldom goes astray, but is at the sender's risk. Address
all letters and make all orders. drafts, etc., payable to Scientitic Gmaricur Eumulement This is a separate and distinct publication from THE
SCIENTIFIC AMERICAN, but is uniform therewith in size, every number containing sixteen large pages full papers and accompanied with translated descriptions. The ScIENTIFIC AMERICAN SUPPLEMENT is published preserts, the includes recent paryers by eminent writers in Antse principal departments of Science and the Useful
Arts embracing Biology, Geology, Nineralogy, , Natural History, Geography, Archæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Eneineering, Mining, Ship Building, Marine Engineering, Photography, Technology. Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography. Medicine,
etc. A vast amount of fresh and valuable information obtainable in no other publication. and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPLEMENT, for the United States, Scientific American and one copy of the SUPPleMENT, both mailed for one year to one address for $\$ 7.00$.
Single copies, 10 cents. Address and remit by postal Single copies, 10 cents. Address and remit by postal
order, express money order, or check,
MUN \& CO., $\mathbf{3 6 1}$ Broadway, New York.

Ehildiny Edition.
The Scientific American Building Edition is Thirty-two large quarto pages, forming a large and splendid Maaazine of Architecture, richly adorned with
elegant plates and vther fine engravings; illustrating the
俍 most interesting examples of modern Architectural A special feature is the presentation in each number of a variety of the latest and best plans for private resi-
dences. city and country, including those of very moddences. city and country, including those of very mod-
erate cost as well as the more expensive. Drawings in perspective and in color are given, together with Floor
plans, Descriptions. Loce Plans, Descriptions, Locations, Estimated Cost, etc. The elegance and cheapness of this magnifcent work
have won for it the Largest Circulation of any Architectural publication in the world. Sold by all newsdealers. $\$ 2.50$ a year. Remit to
MUNN \mathbb{C} CO., $\mathbf{3 6 1}$ Bron

Fixport Tidition
of the SCIENTIFIC AMERICAN, with which is incorporated "La America Cientifica e industrial,"
or Spanish edition of the Scientific american is published monthly, and is uniform in size and typography with the Scientific Amerionn. Every number contains about 50 pages, profusely illustrated. It is the finest scientiflc, industrial export paper pubished. It circu-
lates throughout Cuba, the West Indies, Mexico, Central and South America, Spain and Spanish possessions -wherever the Spanish language is spoken. THE SctENTIFIC AMERICAN EXPORT EDITION bas a large
guaranteed circulation in all commercial places through out the world. \$3.00 a year, postpaid, to any part of the world. Single copies, 25 cents.
Manufacturers and ot hers who desire to secure
foreign trade may have large and nandsomely displayed forelg in misemen in this edition at a very moderate cost. Rates upon application.

MUNN \& CO., Publishers
361 Broadway, New York.
PRINTING INKE,

