

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

General Arrangement of Engine and Parts in Launch.

6 I. H. P. Single Cylinder "Union" Marine Engine.

stern Wheeler. 25 I. H. Po "Union " Engine.

Lannch 42×9 ft., with 25 I. H. P. "Union " Engine, Property of A. N. Stanton, Bridgeport, Conn
the marine gasoline engine and gas enaine boat.-[See page 811.]

Srientifir Shmerican.

ESTABLISHED 1845
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

o. 1. MUNN

A. E. BEACH.

tults a year.

Export Edicion of the scientific American.

NEW YORK. SATURDAY, MAY 18, 1895.

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT No. 1011.

For the Week Ending May 18, 1895.

 Price 10 cents. For sale by all newsdealers.ANTHROPOLOGY - The Distribution of the Blow Gun.-- curi-
ous research into tbe histury of a typical weapon of primitive

a GREAT INVENTION IN WEAVING

James H. Northrop, of Hopedale, Mass., is the au thor of a large number of new inventions relating to weaving machinery, for which patents have been granted within the past three or four years or nore Some of these improvements have been put into practi cal shape by Messrs. Draper, the assignees of Northrop and the results are such as to justify the prediction of an impending revolution in the econowics of the art of weaving.
One branch of the Northrop inventions consists in devices for the automatic filling of shuttles in single shuttle looms, whereby the frequent stopping of the machine for refilling, or in consequence of breakage, is avoided. The practical result is that one first class weaver, who is now capable of attending six looms, is attend sixteen looms, all of them running at the usual speed, so that the quantity of cloth produced is more than doubled without any increase in the cost. The Industrial Record says: "The invention is in practice in a mill where 400 of these looms are in operation, running at the rate of 190 picks per minute, the usual speed of a print loom. It is said that nore looms can be run by one operative, but we will be satisfied with sixteen. This is enough for the incredulous, and doubles the number of looms that a first class weaver is now capable of handling on print cloths. One-half the labor cost is saved in this particular alone. But in actual experience it has been found that more than this is saved on account of the greater production per loom due to non-stoppages for supplying fresh filling
"The labor cost in one yard of print cloth is abou one cent, and four-tenths of this is represented in the
cost of weaving. In Fall River, weavers receive 18 cost of weaving. In Fall River, weavers receive 18
cents a cut of 45 yards. The labor cost in two Lowell print cloth mills is 5.90 to 6.01 cents per pound, and that of weaving alone is 3.46 to 3.54 cents per pound. It is is in the weaving hence any saving here is a matter of some moment, especially when it attains the proportion of fully one-half. Calling the annual production of prist cloths by Fall River mills at $10,000,000$ pieces $\$ 900,000$, or nearly one-half the total dividends paid by all the mills of that city in the prosperous year of 1892, or nearly equal to all the dividends paid in 1891. In the manufacture of print cloths alone in this country a sav ing in the cost oi labor can be made of $\$ 2,500,000$ by this new loom. This saving in the cost of manufactur ing is not necessarily a loss to labor, for the latter can be but temporarily idle, as it will be wanted in some remunerative form in factory enployment due to the increased demands on manufacturing that lower to the consumer always brings about.

There are in the United States, as near as we can es timate, about 360,000 cotton looms, 75 per cent of which are on plain cloth, and running single filling boxes At least one-half of this full number of looms $(180,000$ are under 36 inches wide; most of them under 3 inches wide. These 180,000 looms and those operating them come directly within the influence of this North rop invention as it is to-day. Allowing six looms to a weaver, and we have 30,000 weavers directly afecte and likely to be reduced one-half in mur conservative estimate, should this loom come into gen-
eral favor. One female in four over 16 years of age, employed in our cotton mills, assuming that cotton mill weavers are females over this age, is sure to feel the potency of this invention

It is not for us or any one else to say how far the ideas or principles of this invention can be carried At present it seems to be limited to the use of one shuttle, and though in its present form it may not be able to get beyond this, it is not easy to say how sug gestive it may be of devices that will adapt it to a number of shuttles. If it can be made applicable to drop box looms, then it will affect the manufacture of ginghams, upholstery goods, etc., where different kinds or colors of weft are required. As it is, it is confined
to the cotton manufacturing industry, but it require to the cotton manufacturing industry, but it require no great amount of credulity to apply its usefulness to the needs of the woolen industry. This is one of the curiosities of textile inventions, their first development and application in the manufacture of cotton fabrics. This was so during that great era of inven tions in the latter half of the eighteenth century notwithstanding the insignificance of the cotton industry and the relatively great importance of the woolen industry, and it has been so ever since.
"The woolen mule was a thing that was thought to be impossible for fully thirty yearsafter the self-acting cotton mule came into being. The worsted spinning rame was a creation after the spinning franse for cot ton had long been in common use. The woolen loon oom, where complication in design of the woven fabric is desired, but there is here a suggestion that may b found as applicable to the woolen as to the cotton loom, and give the latter the lead."

MANY acres of land in Gloucestershire are devoted the raising of wood for walking sticks.

THE DESERTED VILLAGE.
The village life of old times has been the basis of many an idyl in prose or verse. 'A village represent the center of the isolated community, made isolated by difficulties of transportation both of freight and person. Before the days of MacAdam every mile of bowlder-infested, sandy and muddy roads exhausted man and beast alike who were concerned in the trans er of wagons over it. In England where, owing to th very large proportional population, traveling was ex ensively indulged in, the matter had become ver erious in the last century. The great lumbering tage coaches would be dragged over roads which in the contemporary literature are described as absolutely inspiring terror. But London was not then the ab solute metropolis of the country. All through the and there were prosperous villages, whose inhabitant led cultured lives and very rarely journeyed to the large cities.
Then MacAdam evolved his plan of making roads with broken stone, formulating the curious precep that no stone must be used which was too large to go into the mouth. He would take a piece of road fille with bowlders, and breaking them to fragments, would make the road supply all or a great part of the mate rial required for its own construction. William Cob bett, at the beginning of this century, representing the agriculturist, inveighs against the use of broad tires imposed by the authorities upon those who travel ed upon the new roads which then began to travers England in all directions. These roads enabled stage coaches to make ten miles an hour, and the population egan at once to centralize more than before, and we ind Cobbett again lamenting the growth of the 'Wenn," as he termed London.
When the railroad replaced the stage coach, the rowth of London and of the other great cities began in earnest. Meanwhile, in this country, the New England States had become filled with villages. The white painted gable houses with green blinds, the village green, with town hall, public school and church facing it, had become characteristic features of these settle ents.
For the better intellectual development of the na ives or inhabitants of the villages, lyceums were founded, which arranged for courses of lectures to be iven on various subjects. The life seemed, to a cer ain extent, ideal. There is in humanity a theoretica desire for repose and absence of strife, a desire which in many cases is purely theoretical, and whose expo nent was found in the New England villages and com munities of the same type in other States. The intel lectual element of these places was responsive to the life of the day, and it is surprising how many of our great est men have come from villages.
To-day the change is complete. The villages are be ing rapidly deserted. When factories began to be built of the large scale, they were placed in villages, but centralization has affected them also. They hav left the villages, and Lynn, Fall River and similar cities have become great manufacturing centers, each representing enough industry to maintain all the vilages in a State.
Some years ago the deserted farms of New England were made the subject of investigation by the govern ment. Farms, which long ago were the objects of care ful cultivation, and which seemed to the owners to represent the acme of progress, have been thrown upon the market at ruinous prices. They are gradually being taken up in part by French Canadians, who seem to bring with them some of the frugal and industrious raits of the old country French farmer. Now the deserted village takes the place of the deserted farm as an object of interest and of solicitude. The young people used to want to leave the farm, and did it. Now they want to leave the village, and are doing it. Steam railroads, supplemented by the electric road, cause that which is really an immense area to be subsidiary to ach large city.
Mechanical progress affects all classes, and the inentor touches the life of every class. The farmer and villager at first sight would seem relatively little af. fected by modern machinery. But improved tools nade farming more effective; steam was applied to its processes, cheapening them greatly; the railroads took the crude or raw products to steam mills, ending the work of the country grist mills. And now the railroad and trolley have taken the personnel of the farm and village in hand and have transported them to the city, and village life, such as it was even thirty years ago, is ended by the progress of mechanical art. The story of Concord, in Massachusetts, with its authors, Hawthorne, Emerson, Thoreau and the Alcotts, will hardly ever be told of any future village. The mechanic and the inventor have settled the question

It would be hard to find a better instance of the effect of mechanical progress upon the home life of a nation. It may even have an effect upon its literature, for the quality of books is certainly affected by environment, and the inventor, scientist and mechanic have determiced a new environment for the active portion of humanity.

Prof. Karl Ludwig.

A cablegram of April 27 announces the death of the eminent physiologist, Prof. Karl Ludwig, at Leipsic, Germany. He was born in 1816, at Witzenhausen. He studied medicine in Marburg and Erlangen. In 1841 he was made demonstrator, and in 1846 professor of anatomy at Marburg. In 1849 he was called to the chair of anatomy and physiology at Zurich. In 1855
he became professor of physiology in Vienna. In 1865 he took the chair of physiology at Leipsic, which he he took the chair of physiology at Leipsic, which he
held at his death. Prof. Lndwig was one of the held at his death. Prof. Ludwig was one of the
greatest physiologists of the world, ranking with Claude Bernard. He discovered the kynographic method for the study of blood pressure. Among the best known of his writings are, "The Gas of the Blood," "The Structural Conditions of the Heart, Liver, Kidneys, and Other Internal Organs," and "The Secretion of the Kidneys."

General John Newton

General John Newton, one of the best known engiGeneral John Newton, one of the best known engi-
neers in the country, died at his New York home on neers in the country, died at his New York home on
May 1. He was born at Norfolk, Va., August 24, 1823, and he showed from an early age a remarkable predilection for mathematical studies. He secured an appuintment to the Military Academy at West Point, from which he graduated in 1842 . He occupied the position of assistant professor of engineering while only a second lieutenant; he was later assigned to important engineering works along the Atlantic and Gulf coasts. He distinguished himself in the civi war by gallantry in the field and by able engineering work. On March 13. 1865, he was rewarded with the brevet of major-general of volunteers, and of briga-dier-general and major-general of the regular army. In 1866, General Newton, as lieutenant-colonel of engineers, was ordered to New York to begin improve ments, the greatest of which was the removal of the rock at Hell Gate. He resided in New York from this time until his death.
General Newton's wonderful engineering skill in removing these rocks, which had proved so dangerous to navigation, escited the admiration of engineers all over the world, and he received many honors. Hallett's reef was destroyed on September 24, 1876, and Flood Rock some years later, on Oct. 10, 1885. He also super intended the defenses on the Long Island side of the entrance to New York Harbor, the improvements of
the Hudson River, the fortifications of Sandy Hook, the Hudson River, the fortifications of Sandy Hook,
the channel between New Jersey and Staten Island the channel between New Jersey and Staten Island and various harbors on Lake Champlain.
On March 6, 1884, he was made chief of engineers in the regular army with the rank of brigadier-general, and at his own request he was retired on August 27, 1886. The next day he was made commissioner of public works of New York City, and for more than two years a wholesome esample was given of the administration of a great city department from which politics were absolutely divorced. General Newton declined a second term and retired to private life. He became president of the Panama Railroad Company, which office he held at the time of his death.

Charles H. Cramp.

Charles H. Cramp, the Philadelphia shipbuilder, is an interesting man. In almost every way he differs from the common order of man. Mr. Cramp's fame as a shipbuilder will soon be added to, when the American liners, the St. Louis and St. Paul, are added to the fleet of the American Line. The St. Louis will start upon her first trip in about three weeks and the
St. Paul not long afterward. England is watching for St. Paul not long afterward. England is watching for
this event with great interest. There is probably not a person directly interested in the great shipyards of England that is not already wondering how these two ships which have about been tinished in the Cramp yards will turn out.
Just now, at the beginning of a new epoch in our history of shipbuilding, Mr. Cramp becomes unusually interesting to the public. He is frequently in New York, and I saw him at the Waldorf the other day, the center of a group of friends. Mr. Cramp is known to
laboring men all over the world as a model employer. He has never had any trouble with his workmen, and most of the six thousand odd men employed in his yards to-day were preceded by their fathers and grandfathers, and in many cases by their great-grandfathers. This great firm was founded by William Cramp, the father of Charles, and the present head of the firm learned the trade in his father's yards just as any other apprentice would. Mr. Cramp grew up among these men, and has always felt as if he were one of them.
He has frequently said that his success was largely due to the loyalty and friendship of his employes. Every man employed in the yard feels a much greater interest than if he was a mere wage earner only interested in pany, he could not feel more loyal than he does. He knows that if he gets sick his family will be provided for. If he wishes to attempt to improve his financial for. If he wishes to attempt to improve his inancial
condition by going into business, the Cramps will help him. There are hundreds of shopkeepers in the vi-
cinity of the great shipyards who were helped to get
their start by Mr. Cramp, and many of these have grown to be well-todo. A number of those who have
held high positions in the municipality of Philadel phia were workmen in the Cramp yards. If one of his men runs for an office, the Cramps will help him in his canvass, and it makes no difference as to what party he belongs. Mr. Cramp is nearly seventy years of age but he does not look to be much over fifty, and he certainly has more vitality than the ordinary man of
that age. He always seems to be on the go, but never that age. He always seems to be on the go, but never
complains of being tired, and I have often wondered complains of being tired, and I have often wondered
if he were born to never know fatigue. With all the great responsibility and worry of detail that he is called upon to look after, Mr. Cramp's amiable disposi tion never changes; he is always cheerful and agree able.-Commercial Advertiser.

Character and Physical Conditions.
Perhaps, after all, in our pursuit of harmony in our lives, we are not paying enough attention to physical conditions. Science pretends to have made great proconditions. Science pretends to have made great pro-
gress in interpreting the relations of iody and mind We have, on the one hand, the advocates of physical culture as the reconciliation of our disordered faculties, and on the other the zealots who have a mind cure for every physical ill and disturbance. Training and diet for a specific and temporary purpose, like football contests or the ordeal of oratorical competition, we are study of the results anthing like hardly been attempted. There are certain popular notions a float on the subject, as that fish and celery are good for the brain. The moral retormers have forced us to consider the properties of tea, coffee, and alcohol, and the physicians unite in condemning or commending a tdifferent times the same article of diet in relation to the health of patients. But the effect of different kinds of food upon people in a normal condition, upon the power or quality of their brain work, upon their dispositions, upon husbands' treatment of their wives, is hardly considered. We blunder along till we reach middle life, experimenting without any scientific programme, and at last, when the game is almost over, begin to learn at last, when the game is almost over, begin to learn
what to avoid, and so mitigate the failures of our remaining years. We do not treat horses this way, or cows, or dogs from whom we expect any intelligent ervice in hunting.
We know that some plants are stimulants and some are narcotics; there is a belief even among savages that certain articles of food give courage and others make
the eaters chicken-hearted. There is govd reason to suppose thicken-hearted. There is govd reason to has an action as specific as what we call drugs have, and a specific relation to human quality and capacity. We calculate roughly that such a thing is indigestible, or that another article of diet increases nervousnessthe special disease of this period of time. But we do not study what diet will make a man kind, or truthful or a lyric poet, or an honest historian, or a disinterested
politician. We have got so far as to see that we must politician. We have got so far as to see that we must
discriminate about medicines, but it would be as rea sonable to expect a dozen persons with as many mala dies to go to the drug shop and swallow the same kind of doses as is the spectacle of a dozen people at a dinner table, all unequal in mental gifts and habits and in physical status, helplessly eating the same things. This demoralization of the taste is probablya sign of a deeper insensibility. We may not be able now o prove that a bad egg will produce a bad man; it may be that only a bad man will eat a bad egg; but as we know that a man's disposition is affected by what he eats, and that nuch of the evil in life comes from bad digestion, it is a fair inference that moral and intellectual qualities are transmitted in food. It is the gives itself science to make better men and women. It done little in the investigation of the subtile causes of the so-called hereditary qualities in our consuming re lations to the animal and vegetable world.-Harper's Magazine.

A Valuable Hint.

"My husband," said a physician's wife not long ago, chanced to see one day, standing on a shelf outside our kitchen window, sonne moulds of jelly cooling for the night's dinner. They were uncovered, as they were out of reach of cats, and in full view of cook's watchful eye; but he questioned me about them, and asked if it was our usual custom to leave jelly thus unprotected. was obliged to reply that, so far as I knew, it was. Then,' he said, 'don't you know that when we medical men want to secure minute organisms for investigation, we expose gelatine tothe air or in places where we have confined malignant germs? The gelatine speedily attracts and holds them. I'm afraid your favored gelatine does the same. Cool the jelly if you wusi, but cover it with a piece of close muslin.' And we have always done that since then."
It is to be feared that kitchen processes are sources of illness more often than is imagined. In many city houses the little kitchen annex were stands the refrigerator, and where various eatables are kept, is directly
against a drain. Yet here stand daily uncovered nilk,
butter, of ten custards and puddings, and variousother absorbents. The average cook is absolutely ignorant of sanitary cause and effect, and the eternal vigilance of the house mother is the family's chief safegaard. Boston Journal of Commerce.

The Monkey and the Sugar.

A tame monkey in India recently was given a lump of sugar inside a corked bottle. The monkey was of an inquiring mind and it nearly killed him. Sometimes, in an impulse of disgust, he would throw the bottle away out of his own reach and then be distracted until it was given back to him. At other times he would sit with a countenance of the most intense dejection, contemplating the bottled sugar, and then, as if pulling himself together for another effort at solution, would sternly take up the problem afresh and gaze into the bottle. He would tilt it up one way, and try to drink the sugar out of the neck, and then, suddenly reversing it, try to catch the sugar as it fel out at the bottom. Under the impression that he could capture the sugar by surprise, he kept rasping his teeth against the glass in futile bites, and, warming to the pursuit of the revolving lump, used to tie himself into regular knots round the bottle. Fits of the most ludicrous melancholy would alternate with spasms of delight as a new idea seemed to suggest it self, followed by a fresh series of experiments. Noth ing availed, however, until one day a light was shed upon the problem by a jar containing bananas falling from the table with a crash, and the fruit rolling about in all directions. His monkeyship contemplated the catastrophe, and reasoned upon it with the intelligence of a Humboldt. Lifting the bottle high in his claws, he brought it down upon the floor with a tremendous noise, smashing the glass into fragments, after which he calmly transferred the sugar to his mouth and munched it with much satisfaction.-Christian Advocate.

The Use of Compressed Air for Raising Wator.
By means of compressed air, says the Sanitary Plumber, water can be lifted from a well of any reasonable depth without working parts of any kind being placed in the well. The air may be compressed in suitable reservoirs by any convenient mechanical means-steam, wind power or air expansion. Air can be made to deliver water at a steady and continuou pressure from underground reservoirs placed at any depth desired, and can be made a much more import ant factor in the work of domestic water service than it has been hitherto. In fact, air pressure is the ideal means of moving water in some instances, and when its capabilities are better understood by the many it superior service will be made available to an extent not even anticipated now. A reservoir placed under ground takes up no room in the house, requires no unusual framing in the house to support it, ofers no chance of flooding the house and its furnishings, it will not freeze in winter, and it keeps the water cool in the hot months of summer. In warm climates, reser voirs with large surfaces advantageously exposed to the rays of the sun will heat water sufficiently for all domestic purposes and in any required quantities without the aid of a fire. Now, with all these methods to select from, together with the data for erection and operation which manufacturers are always glad to furnish to any one who applies, the veriest novice ought not to fail of obtaining satisfactory results under conditions which would once have been looked upon as extremely difficult, even to an experienced engineer

Maximum Air Pressures in which Men Can Work
According to a writer in Cassier's Magazine, the highest working pressures recorded have been close to 50 pounds per square inch; but with extreme care in the selection of men and corresponding care on the part of the men, it is very probable that this limit may be considerably exceeded
For the average pressure man, under average condi tions, the top limit may be placed at about 45 pounds the tinte of working varying from 4 to 6 hours per shift according to conditions. In the cases where higher pressures might be used, the shifts for the men should be restricted to two of 2 hours each separated by a considerable interval. As an example of heavy pressure work under favorable conditions as to ventilation, without very bad effects on the men, Messrs. Sooymith \& Company had an experience with a work on which men were engaged in 6 hour shifts, separated into two parts by half hour intervals for lunch. This work was excavation in open, seany rock, carried on or several weeks under about 45 pounds pressure The character of the material through which the cais son is being sunk, or upon which it may be resting a any time, hears quite largely upon the ability of the men to stand the pressure necessary to hold back the water at that point. If the material be so porous as to permit a considerable leakage of air through it there will naturally result a continuous change of ai in the working chamber, and a corresponding relief of the men from the deleterious effects which are produced the men from the deleterious effe
nearly always by over-used air.

AN IMPROVED MINER'S LAMP

A lamp strong enough to resist the action of burning gas within it, which is perfectly ventilated, and wbich gives a steady light in a current of air, is shown in the accompanying illustration, in which portions are broken away to show the interior. It has been pat ented by Mr. William J. Callaghan, of Connellsville, Pit. The lamp proper, or oil-holding reservoir at the base, screws into the upper portion, to which it is

CALLAGHAN'S SATETY LAMP.
and is now pushing such equipment as rapidly as possible. This is not only complimentary to the good sense of the Pennsylvania's management, but it is also a healthy sign of the increased attention that is being given by railroad managers to what we have frequent ly spoken of as the refinements of railroad management.
The most successful managers of large retail establishments vie with each other in adopting refinements of their service that eliminate every possible phase of trade that is disagreeable to their patrons. The same policy should prevail in railroad operating. Railroads policy should prevail in railroad operating. Railroads have transportation to sell, and much of it is retailed
to individual passengers who are apt to bestow their future patronage where the results promise to be most pleasant; or, at least, where there is a minimum of disagreeable features. The squalling, bellowing, screeching whistles used on many passenger engines are properly classed among the latter. Their rasping tones are annoying in the daytime and exasperating at night, when they frequently startle sleeping passengers, or entirely chase away the gentle god vainly being wooed.
The action of such roads as the Pennsylvania and Michigan Central in recognizing these facts, and adopt ing whistles with soft, pleasant tones for their passen ger engines, will surely have the effect of prompting other roads to do likewise or of drawing a larger proportion of patronage to themselves.-National Car Builder.

The Meerschaum Industry.

Mr. Cumberbatch, British consul at Angora, in his latest report, says that rich deposits of meerschaum are found 20 miles to the southeast of Eski Shehir, an important station of the Anatolian Railway. The Bel gian consul in Constantinople, who recently visited the place, states that it would be difficult to determine the exact area in which the meerschaum is to be found. Judging from the number of pits at consider able distances from each other, it must be extensive The localities where most work is carried on are Se petdji-Odjaghi and Kemikdji-Odjaghi. The meer schaum is extracted in the same way as coal. Pits from 25 feet to 120 feet deep are dug, and as soon as from 25 feet to 120 feet deep are dug, and as soon as considerable length, are made, but more than two galconsiderable length, are made, but more than two gal-
leries are seldom to be found in one pit. The stone as extracted is called "ham tash," or rough block, and is soft enough to be easily cut with a knife. It is whit with a yellowish tint, and is covered with a red clayey soil of about one inch thick. In this state the block are purchased by dealers on the spot, not by weight or by measurement, but according to approximate quantity, either per load of three sacks or per cartload, th price varying from $£ 5$ to $£ 30$ per load, according to quality. These blocks are dried and subjected to cer quality. These blocks are dried and subjected to cer tain preparations before being conveyed to Eski
Shehir. Some of them are as small as a walnut, while Shehir. Some of them are as small as a walnut, while
others attain the size of a cubic foot. Those which combine regularity of surface and size are the best The manipulation required before they are ready for exportation is long and costly. The clayey soil is re moved and the meerschaum dried. In summer expo sure for five or six days to the sun's rays suffices, but in winter a room heated to the required temperature is necessary, and the drying process takes eight to ten days. When dried the blocks are well cleaned and polished, then they are sorted into about 12 classes each class being packed with great care in separate cases, and each block being wrapped in cotton wool. The bulk of the meerschaum is sent to Vienna, where it is worked, and dispersed all over the world. Most of the finest specimens are sent direct to Paris. Certain American dealers have visited Eski Shehir with the object of obtaining the raw article direct instead of through Vienna, thereby saving the higher custom house duty pay able on the worked meerschaum. The quantity annually exported is put down at 8,000 to 10,000 cases. The various taxes levied by the Turkish government amount to about 37 per cent ad valorem.

How to Locate a Claim.
To make a quartz location after July 1, the prospector must sink raising the underflow of surface water for irrigation \mid hole at least ten feet deep to solid formation, must and other purposes, as it will puinp simultaneously from a group of pumps fifty feet apart if desired.

Chime Whistles on Passenser Enginea.
It is heing announced by some of the technical papers that the Pennsylvania Railroad has adopted chime whistles as standard for its passenger engines. The ract is that this road has been equipping its passenger engines with chime whistles for the past two years,
have at least one well defined wall, and must stake his ground so that the stakes can be found. The notice of location must be placed in a conspicuous place at the discovery shaft, where it can be seennot on some stump or tree in the neighborhood. He is allowed ninety days to do this work. If he relocates an old prospect hole, he is required to sink it at least ten feet deeper than when he first found it, and stake and record his location the same as though
it was an original discovery. If he runs a tunnel it must be at least ten feet long, so as to determine the fact that a vein supposed to carry the precious metal has been discovered.-The Mining Review.

A TOILET POWDER RECEPTACLE.

The illustration shows a holder for tooth powder etc., arranged to readily deliver a certain quantity upon a tooth brush, or where desired, without waste t has been patented by Mr. L. S. Upton Governor' sland, New York City. It has a conical bottom and oopper-shaped top, with an apex opening closed by a alve with inwardly extending stems connected to a head carrying a sleeve with an L-shaped slot, engaged y a pin on the end of a plunger. The plunger is held normally in the position shown by a coiled spring, and has on its outer end a thumb-piec.; by pressing on

OPTON'S POWDER HOLDER

which the valve is opened to pass the powder out of the receptacle, the plunger returning to normal position on the removal of the pressure, and at the same time seating the valve. The valve is removably connected with the plunger to permit of conveniently placing the powder in the receptacle.

A CHIMNEY FLUE PIPE OPENING COVER.

To prevent gases, smoke, soot or fire from passing into a room of the house from a pipe opening of the chimney flue, Mr. Axel A. Gustafson, of Axtell, Neb.. has patented the device of which several views are presented in the accompanying illustration. It has a dished cover, with an annular flat flange adapted to rest on the face of the wall, so that the cover closes the pipe opening, and in the center of the cover turns a screw rod, with a knob on its outer end, while on its inner end screws a nut in a disk which engages the inner surface of a cone-shaped expansion thimble. The thimble has overlapping side portions connected

GUSTAFSON'S SAFETY FLUE THIMBLE COVER.
with each other near the apex of the cone by a rivet which forms a pivot, permitting the base end of the thimble to readily expand or contract on moving the disk inward or outward by turning the screw rod. The device may thus be readily fixed in position in the pipe opening, and is removed without trouble when a pipe is to be placed in the opening.

Ravages of Snakes and Wild Animals in India. The number of deaths in India caused by bites f wild animals and reptiles is on the increase. The deaths from snake bites last yeai were 21,000 , and in the same period nearly 120,000 deadly snakes were killed. Wild animals caused the death of 2,800 persons in the same year. The tigers killed uearly a ;housand; leopards, 291 ; wolves, 175 ; bears, 121; and elephants, 68. On the other hand, nearly 15,000 wild beasts were killed, including nearly 1,300 tigers and more than 4,000 leopards. In addition to) the loss of human life, nearly ninety thousand head of cattle were destroyed. The bounties offered by the govermment seem ineffectual to decrease the number of wild animals.

THE "CLIMAX" BICYCLE WATCH AND HOLDER.
Whether one is "making time" on a wheel or leisurely following where fancy may lead over new paths, the convenience of having the correct time alvays at hand, to be noted without the trouble of taking a watch out of the pocket, or taking the hands from the handle bars, cannot but be appreciated by all bicyclists. The improvements which have made this possible have. therefore, at once sprung into gre, t popularity. The illustration represents a time-telling

the "Climax" bicycle watch and holder.
outfit of this kind manufactured by Messrs. Robt. H. Ingersoll \& Brother, of No. 65 Cortlandt Street, New York, and which consists of an excellent low-priced watch and a simple, light and easily applied holder. The watch is without fine adjustments, heavy wheels and fine pivots, being designed to stand any amount of banging and shaking without losing or gaining a minute a day. By means of the holder it may be attached in a moment to either the frame or the handle bar, as shown in Fig. 1, Fig. 2 representing a back view and Fig. 3 a face view of the watch clanped in the holder. As will be seen, the watch is held by spring fingers, an upper finger engaged by the watch ring straddling the stem and holding the watch firmly in the clutch of the lower fingers. By releasing the ring the watch is readily removed. With a pair of pliers this holder may be fitted to any case.

AN ARTIFICIAL SPECTRUM.

That the different colors of the spectrum may be reunited so as to produce white light has been known for a long time, but the method of obtaining all the
ion seems to have been quite recently furnished by Mr. Macfarlane Gray.
The artificial spectrum is obtained by means of a very simple device, a teetotum, a top, or any arrangement capable of communicating a rotary motion, around an axis at right angles with its plane, to a disk of white cardboard one or two inches in diameter upon which fractions of concentric circumferences have been drawn in black, one of the halves of the disk being completely black, us shown in Fig. 1. As we show in Fig. 2, this disk may also be mounted upon Newton's classical apparatus and the experi ment be performed in a continuous manner. Upon giving the disk a rotary motion whose angular velo city depends upon the age, visual acuteness, and es pecially the faculty of accommodation of the observer, it will appear to be covered with circumferences or fractions of concentric circumferences assuming all the colors of the rainbow, very faint, but sometime appearing with a richness of tone that depends both upon the illumination of the disk and the spectral richness of the light that it receives.
Mr. Marfarlane Gray explains the phenomenon as fol lows: Let L (Fig. 1) be the lens formed by the eye, the straight lines representing to an exaggerated degree (in order to facilitate the explanation) rays of different refrangibility. Let us suppose that the violet rays have their focus at V, and the red ones at R, and let us place the screen, E, at a constant distance from the lens. In order to obtain a sharp image of a violet colored object upon a black ground, it is neces sary to diminish the convexity of the lens, to flatten it, so to speak, in order to bring to E the intersection of the violet rays occurring at V. Conversely, for the red rays the convexity of the lens must be increased in order to bring to E the red rays that cross each other at R.
White light may be divided into two groups of rays occupying the extremities of the visible spectrum, the red and the violet, and, supposing their refrangibility o be uniform, they will intersect each other respect vely at the foci, R and V. The red and violet alone do not give white, but a combination of their respective groups does, and this suffices for the validity of the subsequent reasoning.
If the reader will please imagine that these rays are red and violet transparent screens producing white by their superposition, he will see that the screen will ap pear white at B, in the center of the lozenge formed by the rays. He will thus see that white light has not definite focus like red and violet. The image of white object upon a black ground will always extend beyond its real geometrical image to a degree equal to half the height of the lozenge at. B. A white point upon a black ground will therefore occupy a wider surface upon the screen than a black point would occupy upon a whiteground. This is the well known phenomenon of irradiation. When the violet is focused upon the screen, the violet objects are sharply defined without any marginal extension, but if at this instant a white point be substituted therefor, it will
logical action that the English call the "eye demon," but which we designate in France as the faculty of accommodation. It is this faculty that alters the convexity of the leus for producing upon the screen an image as perfect as the imperfect lens at its disposal permits.
This set forth, let us return to our top and call the two halves of the disk respectively the black half and the light half.
When the top spins, the accommodation is effected

ARTIFICIAL SPECTRUM.
ha. 1.-Disk for obtaining the artificial spectrum, with explanatory dia gram. Fic.2.-Method of performing the experiment
successively for the light and the black. After the black has been before the eye for a time, and this time is about a tenth of a second, seeing the rapidity of action of the accommodation, the joint of the network will be at E. the focus of the black. As the disk revolves in a direction contrary to that of the hands of a watch, the most peripheric white circular arcs will orm their image with red margins resting upon the black lines and making them appear red. The accommodation acts, but with so much rapidity and energy that it exceeds the mark. After a rotation of 45 de grees, new white lines appear with yellow margins covering the black lines and making them appear yellow. After a new rotation of 45 degrees, the margins are greenish and the black lines appear green. After a rotation of 45 degrees, the margins are blue or violet and the black lines blue. The various colorations appearing upon the disk are due, as a last analysis, to the slowness or the haste of the accommodation in its endeavor to put the eye in focus at every instant. It is a semi-objective phenomenon. When the velocity

colors of the spectrum without the use of any other of accommodation is recent and not so well known and is worthy of notice.
According to Engineering, it was Mr. Charles E. Benham, of Colchester, England, who was the first to obtain the artificial spectrum of which physicists have, for the last five months, sought with more or less success a satisfactory explanation. Such explana-
appear violet at the center and as if surrounded by a red aureola. In Fig. 1 the surfaces marked r are the red marginal rays and those marked v are the violet ones. The central lozenge intersected by the two groups is marked b. Here the light is white, and pure white at the center of the section. The network of lines may be assimilated to the well known toy soldiers mounted upon jointed strips of wood, but here the maneuvering is effected by a peculiar physio-
of rotation of the disk is adapted to a given eye and synchronous with the speed of accommodation, the colors are well defined, but they become confused if the top spins too swiftly, the focusing not being effected quickly enough. The colors which disappear for a fatigued eye are still brilliant for a younger eye of which the accommodation is better. The apparatus, then, might, in a certain measure, let us remark by the way, play the role of an "accommodometer"
by mounting the disk upon a proper sort of tachometer, the faculty of accommodation being connected with the appearance of the colors, and, consequently, with the angular velocity of the disk.
It is for simplifying the reasoning that the diagram is drawn for two series of rays solely. The intermediate colors in the same manner produce margins of intermediate colors that give yellow and green upon the intermediate bands.
The distribution of the colors evidently changes with the direction of rotation of the disk, and the exterior edges of the lines are fringed as were the interior edges in the opposite direction of rotation. Between the black masses and the white lines the mar gins of the white lines are red. Between the white masses and the white lines the margins of the latter are violet.
Such is the theory of the phenomenon as given by Mr. Gray. It does not, perhaps, present that degree of clearness and precision to which we are accustomed in the study of optics. The field remains open to investigators for varying the experiments and completing this first exposé.
We take the foregoing from La Nature, and subjoin two modified forms for the surface of the top, given by Mr. Charles E. Wolff, a correspondent of Engineering, who says, in a recent number of that publication : When the top first appeared, I made an obvious modification (shown in Fig. 3) to try and obtain a more continuous spectrum. This was quite successful, as might be expected. The next step was to fill up the white lines, producing a continuous spiral band of black, as shown in Fig. 4, which gives a continuous spectrum.
Now, if we suppose the colors to be produced by a sort of chromatic irradiation of the white lines over the black, this latter form should have been a failure, which is not the case.
Instead of a top, any one may try this experiment by making diagrams like the above on cardboard and using a central pin to spin the same like a top.
Writing to Nature on the curious phenomena exhibited by the spectrum top, in which black and white markings give, when revolved, an impression of colors, Mr. Dawson Turner describes an arrangement constructed by Mr. T. J. Walls, of Edinburgh, by means of which the effects in question may be shown upon a screen to a large audience. The markings are painted on a disk of glass, placed in a projecting lan tern, and revolved by a multiplying wheel. A great variety of effects are producible in this way by interposing colored glasses in the path of the beam of light. Thus, with a green glass, and in diffused gaslight, the dark marks appear mauve colored when suddenly stopped after rapid rotation, or when very slowly ro tated, but become of a dark blue when the gas is turned off. On rotating the disk in the usual way the lines upon it appear to be blue, green, and violet. With a blue glass in gaslight, the markings on the disk appear to be yellow when suddenly stopped, but a fine purple without diffused light. The colors given by the lines at a moderate rate of speed are red, gray, green, and blue. With a monochromatic red glass, the lines appear to be blue, gray, red, and dark red. The appearance of blue by red light is remarkable. Mr. Benham, the inventor of the top, thinks that the phenomena of color presented by it have nothing to do with the wave theory of light, but are purely sub jective. It has been suggested that they are due to visual fatigue on the part of the observer.

The Treatment of Colds.

Now that the time of year has arrived in which extra precautions must be taken against contracting acute catarrhal inflammations of the respiratory tract, it may be well to inquire into some of the causes which lead to the production of these diseases, and which lead to the production of these
As inost efficient methods of treatment.
As the warm days approach, alternating as they frequently do with a brief cold spell, the habit of laying off winter clothing becomes seemingly imperative. The dust and germinating animalcules which float about in the air are active local irritants to the mucous membranes of the respiratory tract, and the two agents go hand in hand for the production of colds.
The relationship between a cold and influenza is not marked. We have been so accustomed to call every little cold "an attack of the grip" that we run great danger, therapeutically, of hitting wide of the mark Grip is a distinct, emphatic disease, which, when one has it, he is not very apt to mistake for an ordinary
cold; while if one thinks he has the grip, but is not quite certain of it, the malady is pretty sure to be the ordinary cold.
In the treatment of colds the darnger lies not so much with the inflammatory condition itself as in the liability which arises from continued irritation or direct extension of the inflammatory conditions to lung struc tures. Many an incipient phthisis arises from a simple cold.
Once thoroughly inaugurated, these spring colds usually occupy about a week of time, with the aid of the various remedies employed. The dangers are
that we overcrowd remedies without regard to the pathological conditions presented. We must bear in mind that the system must become accustomed to a new condition of affairs, and that great prudence is necessary in exposing one's self to outdoor temperature without sufficient protection.
It is possible in the early stage of a cold, especially when such is of the nasal variety, by thoroughly irrigating the nose twice a day with warm water in which a little borax has been placed, to abort an attack. No syringe is necessary; but by simply immersing the nose in a basin of water, and making forcible inspiratory and expiratory movements, holdiug the breath at the epiglottis, the nasal passages may be thoroughly irrigated. Of course there are advantages in the syringe, which may be preferable from the stand point of neatness.
Aconite holds an excellent place in aborting colds, but care must be taken in its employment that fresh colds are not contracted. The dose usually employed should be a drop an hour, or half hour, as the severity of the case requires, which should be maintained un til free perspiration results.

Quinine may also be employed, as well as the coal tar derivatives, but these are not as efficient as a wel directed course of treatment by aconite.-Times and Register.

A CANNON TO BE LOADED WITH FIRE CRACKERS
The illustration represents a breech-loading toy cannon in which a fire cracker is used for the load, the fuse or stem of the cracker being carried upward in a channel of the breech block forlighting, to explode the charge. The improvement has been patented by Mr Milton J. Shiwer, of Freemansburg, Pa. The cheeks of the carriage stock are curved inwardly, and have slots which receive the trunnions of the cannon.
At the rear of the cheek extensions a breech block is formed which may be integral with the carriage or at

SHIMER'S TOY CANNON.

tached to it in any suitable manner. The cannon may be inclined to carry its breech upward to facilitate loading, as shown in the small view, but without be ing disconnected from the carriage, as the muzzle cannot be carried sufficiently downward and rearward to admit of the trunnions being displaced from thei bearings.

An Inconsistent Policy.

The short-sighted and inconsistent policy which eeks to close to young men all entrance to the trades, and at the same time allows, without protest, the great influx of foreign workmen, needs little comment. It is intrinsically selfish and unnatural, and being such cannot long continue. The trade school has come to stay. It has come in answer to a grea need, and must develop in answer to that need. The ight of American youths to enter the trades, and to equip themselves in the most economical manner for livelihood, cannot much longer be gainsaid or set aside. What might, under other conditions, become the tyranny of a class cannot long exist beside the free institutions of our country. On the contrary, the true interests of organized labor are to be found, not in futile opposition, but in active participation. The opportunity is at hand for the labor organizations of the country to actively influence and, to a certain ex tent, direct the trade school movement. By co-opera tion with the schools they can do much to realize the highest opportunity for usefulness that is open to them. By selfish and bigoted opposition they will do much to cripple and narrow their own power. A comprehensive system of trade training suited to the time graduate by the trade recganizations of the journey men, as well as of the masters, and his establishment with a definite place and a definite economic value in the industrial world. Such a system, while effectively preventing the admission of imperfectly trained work men, would afford ample opportunity to every natu rally qualified candidate. An arrangement of this
kind would open the doors of the trades to American
youth, without requiring the sacrifice of all opportunity for culture that is now demanded. Such an arrangement would mean to a large extent the Ameri canizing of the trades -it would mean the addition to our industrial army of young men who have had the opportunity of a good public school education, and who are fitted to assume the duties of citizenship with intelligence and patriotism, as well as to attain to the highest efficiency in the operation of labor.-Sanitary Plumber.

How to Fight Microbes.
A writer in the Evening Telegram very truthfully says that water, air, and sunshine are the best sanitary agents.
Within a few days the warm rays of the sun will begin their work of penetrating into the secret corners of the back yards and alleys where the snow and ice have kept in check for four or five months the disease-breed ing bacilli, and the work of freeing the millions of dis ease microbes which have lain dormant for so long will have been fairly launched.
Water and air are the greatest sanitary agents. The germs of many of the worst diseases are conveyed in drinking water, and it, therefore, becomes a duty to use pure water only. Fresh air is something we all may obtain without money and without price. Sunshine is easy to obtain under most circumstances. There is nothing which will kill disease germs so quickly as the application of fresh air and the rays of the sun. Although the germs of most diseases may be frozen solid during the winter, without resulting in their destruction, hot water will kill them under ordi ary circumstances.
Water can be rendered perfectly pure and safe by boiling and filtering. It is dangerous to drink water which has stood overnight in a closed room, especially in a room which has been occupied by persons or other living animals. Not only should the body be bathed systematically, but every nook and corner of the house, of the cellar, and the door yard should be closely scrutinized at this time of the year, and every particle of dirt of whatever character removed. It is impossible to tell how many microbes of disease may be lurking in a handful of dirt found in the corner of the wood shed or in the cellar or under the disappearing ice and snow in the yard.
Disinfectants should be used freely in all suspicious places, but even the best disinfectants will not purify the air without the aid of the sunshine, wherever it is possible to give the latter access. Copperas is a good and cheap disinfectant for many purposes. It is easy to obtain, and readily dissolves in warm or cold water. It should be used in the proportion of two pounds to the pailful of water.
Chloride of zinc is superior to copperas as a disinfectant, but is more expensive, and therefore not so available when large quantities are required. The pro portion is half a pound to the gallon. This is a very effective solution to use in kitchen sinks, house drains etc.; also in vessels used about the sick room. Corro sive sublimate in a solution consisting of one part of the salt to a thousand parts of water is one of the mos effective disinfectants known. It is a poison and should be handled with great care. Quicklime and chloride of lime are valuable to scatter around wet places, under buildings, in stables, etc. A solution of sulphate of zinc, one pound; carbolic acid, two ounces; and water, four gallons, answers everypurposefor washing soiled clothing taken froma sick room. After washing the bed linen and other clothing in this a thorough boiling will destroy all disease germs.
Fumigation will reach every corner wherc germs of disease are apt to lurk. The best thing to burn for this purpose, as well as the cheapest, is sulphur. But fumigation is not worth much unless all the windows, ireplaces, flues, keyholes, doors, and other openings are securely closed by having strips of paper pasted over them.

How to Find the Horse Power Expended in Climbing a Hill With a Bicycle.

An experiment which may be performed by any one riding a bicycle is the determination of the horse power of the rider, by a simple calculation after the ascent of a hill. The mechanical equivalent of a horse power, being 33,000 pounds raised through a distance of one foot in one minute, may be directly applied to machine and its rider. The only requirements besides a man and wheelare a stop watch and a steep, smooth hill of known altitude. The hill should be steep enough to prevent one from ascending with any great velocity, and thus have the wind resistance vitiate the result. The weight in pounds of machine and rider being almost always known and the time readily taken, the altitude of the hill can be found by a level and staff. It will be seen that the length of the hill does not matter, so long as the incline is steep enough to prevent fast riding when the whole energy of the man is expended in propelling him up the grade. The figures found, when compared with the ones above, give the horse power in. a pretty accurate way.
N. Monroe Hopeins.

the rarine gasoline engine and gas engine BOAT.

The gasoline gas engine, both from a theoretical and practical standpoint, is the most efficient of prime motors. This is particularly trueof the " Union" and "Pacific" engines, built by the Globe Gas Engine Company, for the reason that in their engines the hot gases of the exhaust, usually wasted, are used to heat the air drawn through the vaporizer and into the cyl inder. As heat is the essence of the power, the smalle the amount that is wasted, the greater the economy.
In the operation of the gas encine, as compared with the steam engine, there is an additional economy in volved in the fact that no fuel is used except when run ning, and, while running, the expense for fuel is in pro portion to the work the engine is doing.
We have already had occasion to describe and illustrate gas and casoline engines of the Globe Gas Engin Company, of Philadelphia. Our present article is de voted to a special department of their business, a de partment which is of growing importance-gas engine boats-of which this company and its Western connec tion, the Union Gas Engine Company, of San Fran cisco, have constructed a great many, which are ope rated with perfect satisfaction to their owners on the waters of the two American seaboards. Our illustra tions show different types of these boats, and also give views of two sizes of the engines. The latter are gaso line engines of the compression type, but which possess several rery distinctive features, some of which we can only allude to. Thus, much of their success is due to the atomizer, by which the gasoline is finely divided and mixed with the air previous to ignition.

Another important feature is the igniting device For this purpose an electric spark is used, produced by breaking a.n electric circuit containing a spark coil The current is supplied by a few salammoniac cells The spark is produced in the interior of the engine, so that no external flame or spark appears.
The usual mode of producing the ignition in a gas engine has been to employ either an open flame which, at the proper time, was drawn into the engine cylinder or a tube heated by an external flame or blow pipe has been em ployed for the purpose. Both of these inethod involved the employment of a constantly exposed flame. For marine purposes, the absence of any flame whatever is certainly an important feature. The ex ternal heat of the combustion tube is also a perpetual annoyance, as the tube burns out after a compara tively short period of running.
For marine purposes, the engines supplied may be of the single cylinder or double cylinder type. They are usually placed in the center of the boat. resting on a solid bed, and from them the propeller shaft runs aft. Forward, in the bow, is a gasoline tank. Imme diately aft of the engine is a lever, by means of which the motion of the propeller can be reversed, the en. gine, like all gas engines, rotating always in the same direction. The reversing gear operates without shock. For the marine engines a twofold governing device is applied. This cuts off or readmits the gasoline as required by the circumstances, so as to regulate the motive power, while it also, by opening or closing the exhaust valre, operates to prevent wasteful cushioning. The air applied to the combustion is automatically heated by the exhaust. This heating effects considerable economy and comes into operation after the engine has made a few revolutions
Returning now to the complete boat with its engine, it will be seen that we have illustrated different ex amples. Fig. 1 shows a small type of vessel without any cabin, in which can be clearly seen the genera disposition of the interior. Fig. 2 is an interesting example, being the police patrol boat used on the Schuylkill River, Philadelphia, as it flows by Fairmount Park. The boat is thirty and a half ieet long, six and a half feet wide and is driven by a Union gas engine of ten and a half indicated horse power. This little vessel can develon a speed of ten miles an hour, and ran 10.000 miles in one season without any repairs. One and a quarter gallons ot gasoline per hou are sufficient to drive it.
Fig. 4 is a Western boat built for use on the Pacific coast. It is a flat bottom stern wheeler, 40 feet long 10 feet wide and has a Union engine. The boat attains a speed of very nearly ten miles an hour. No belts are used in transmitting the power to the wheel.
Fig. 5 shows the launch Canvas Back, the prop erty of Mr. A. N. Stanton, of Bridgeport, Conn., which has been used among the Norwalk Islands on Long
Island Sound. Originally it was a steam launch. The owner then put in another form of ensine, but not being satisfied, changed to the Globe Company's Union engine, and since then has had perfect satis faction. The boat is 42 feet long, 9 feet beam and with an engine of 25 indicated horse power can make nine and a half to ten miles per hour.
Our illustration of the engines represents views of the double and single cylinder "Union" engines, which show the train of reversing gears and the gen eral disposition of parts. Below nine horse power the marine engines are single cylinder, while the double cylinders range from nine to seventy-five horse power.

The larger engine shown is 75 indicated horse power, built for the Kimball Lumber Company, and is in a lumber vessel 105 feet long. 22 feet beam, and is the largest gasoline marine engine in America.
One very valuable feature in connection with their use on board of boats is their governor. This operates to prevent racing, should the sarew by any motion of the boat be thrown out of water. It is believed that in the production of an absolutely fireless power-propelled boat an important advance has been made,
the "Union" gas engine being absolutely nonthe "Union" gas engine being absolutely non-
explosive, and in its operation having no possibility explosive, and in its op
of setting a boat on fire.

Irrigation by Wind.

It is interesting to observe the progressive development of an original crude in vention, and to study the added improvements which have led to its increased usefulness.
The bicycle is a convenient instance of the development of a crude idea, because its origin and its improvement are modern, and also because improvements in its construction are yet being made so rapidly that the bicycle of two years ago, or even of one year ago. seems antiquated compared with the bicycle of to-day, and it seems yet capable of improvements which may lead to startling results.
In 1816, in France, the bicycle may be said to have been born. It consisted of two wheels of equal size, one before the other, connected by a bar on which was a seat. The rider propelled himself by pushing on the ground with his toes. Apparently this was an un promising invention, but it contained the germ of the idea which has made possible a bicycle on which 413
miles have been traversed within twenty-four hours, miles have been traversed within twenty-four hours,
and on which messages have been carried from Chicago to New York, over 1,000 miles, in one hundred and eight hours.
In 1862, forty-six years after the first crude invention, tne pedal, or the wrench axle, or the crank applie i to bicycle, was patented in this country, and not until then did the bicycle appear to have a promising future Expert artisans experimented with it in all possible ways. Many improvements were made; only the fittest urvived. The hand propeller, the foot propeller, the unicycle, the bicycle, the tricycle, the ice cycle, the celeripede, the velocipede, and all possible forms were tested and were accepted or were rejected, and the first crude coustruction has been so much improved that the original inventor, if he were now living, would be amazed to see the possibilities which were latent in his crude invention. Such rapid and effective improvement in construction would not have been possible in any other age. It was made possible by the improvements which have also been made in other arts, and the facilities which now exist for the rapid develop ment of other crude inventions are much greater now than ever before. Given a clearly defined need for a new implement, and a crude invention of the implement, there are now ready to rapidly perfect the in vention expert artisans, with expensive appliances and with resources brought out by the wonderful develop. ment in other arts, such as the world never knew bement

And this brings us to our subject, "Irrigation by Wind Power in the West." There is there a vast nearly level, plain, with not a wind break from the North Fole to the Gulf, with but little wood or coal with considerable but not sufficient rainfall, with fertile oil and a necessity for elevating water for irrigation. Clearly, there is need there for a cheap, simple, effective invention for elevating water.
The State of Kansas has appropriated $\$ 30,090$ for ex periments in irrigation. Everywhere in Western Kan sas may be seen windmills of primitive form, horizontal ertical. or vertical geared. Holland has 12,000 wind mills, which average eight horse power, used to drain the polders. The States of the plains will soon apparently have more than that number used to irrigate the prairies. Steam pumps, gas engines, hydraulic rams, and pumps driven by animal power, and all of the known devices for elevating water are now finding experimental tests in Kansas. It is probable that valuable data in regard to comparative cost and efficiency of these different motors will be obtained from these experimental tests.
The work of elevating water for irrigation is very old. Singularly, arid countries in ancient and in mod. rn times have sustained dense populations. It might naturally be supposed that methods for elevating water having been used so long would now be little susceptible of improvement. It is, however, quite possible that an improvement is possible in this age which would not have been possible in cther ages, or likely in other countries than the States of the plains.
A crude invention, which is called the "Jumbo" wind engine, appeared in Western Kansas about ten years ago, and is now coming into extensive use; its ease of construction, economy in cost, capacity, in power and simplicity, seem to recommend it to those who observe its work. It resembles the paddlewheei
of a stern-wheel boat, with a shaft 12 or 14 feet long, with a diameter of 12 or 16 feet, with six or eightradial
arms. The lower half of this horizontal wheel if shielded from the wind, so that the air acts only upon the upper vanes. A crank upon one end of the shaf connects with a pump. Its power can be indefinitel ncreased at any time by increasing its length, which can be done by any one who is handy with tools. It is said that a "Jumbo" giving 100 horse power in a 15 mile wind can beput up at cost of $\$ 500$. The wind acts upon this sort of paddlewheel from all points of the compass except two. It seems to require no "gov ernor," but simply pumps more during a storm. No tower is required, and it is placed so that the radial arms will be clear of the ground. In fact, in Kansas where there are few trees and no hills, it is claimed that the wind currents have greater force at the surface han high in air.
Perhaps in this crude device for raising water for irrigation in a wind-swept country there is the germ of an idea which, when fully developed and perfected may become widely useful. If so, it will be quickly improved, for it is watched by many eager and anxious yes, and now the development of an implement re quires davs where formerly centuries were needed. The crude "Jumbo" of to-day may become the per fected irrigating machine of to-morrow in level and treeless sections of country.
One of these wind wheels, now running in Kansas. is 21 feet in diameter, 27 feet long, with eight fans. The largest water wheel in the world is an overshot whee in the Isle of Man, and is 72 feet 6 inches in diameter 6 feet in breadth, with a crank stroke of 10 feet. It gives 200 horse p wer. There may bemany wind power Ferris wheels in the states of the plains, bringing fer tility where is aridity.
Even in Louisiana, where there is a semi-tropical rainfall, the average exceeding 60 inches, it is found that the crops frequently suffer from drought, notwith standing the heavy occasional rains and the proximity of all the lands to au unlimited supply of water. Irri gation will remedy all this, and with falling prices and greater necessity, irrigation will come to be adopted in those States where, while not as essential as in th States of the plains. it will be wondrously beneficial in maintaining the necessary supply of unoisture for the growing plants, which under the semi-tropical skies ow so frequently suffer.
The capacity of Western Louisiana and Eastern Texas for rice production is practically unlimited, provided the water supply there constantly present, but some 20 or 25 feet, below the level of the prairies, be economically raised to the surface. Perhaps irrigation by wind may solve the problem in the South as wel as in the West.-LLa. Planter.

The Perception of Colors in Colored Light.
Experimenting on the perception of colors by light f various tints, Herr H. W. Vogel has fonnd some rery interesting results, which have been communicated to the Berlin Physical Society. Using oil lamps provided with pure red, green and blue shutters, Herr Vogel ob served that, when white light was rigorously excluded, all sense of the color of objects disappeared from the perception of the observers, who could distinguish nothing but shades of black and white upon the illuminated objects. It was further noted that a scale of colors illuminated by red light showed the red pigments as white or gray, which abruptly changed into yellow -not red-upon adding blue light. Hence a color appeared which was not contained in either of the sources of illumination. Red and yellow patches appeared to be of the same color, so that they could hardly be distinguished from one another; but the difference at once appeared upon the addition of green instead of blue light. The kind of sensation experienced also depends very much upon the intensity of the illumination, as is easily seen in and about the region of the spectrum near the G line of Fraunhofer. This region appears violet when of low luminosity ; blue when it is stronger; and may even appear of a bluish-white with strong sunlight. So that the oftenmade assertion that with normal eyes a definite color ensation corresponds with a definite wave length is not tenable. Herr Vogel arrives at the conclusion that our judgment of the color of a pigment is guided by our perception of the absence of certain constituents. Thus a red tint is only recognized as such when light of other colors is used, and we perceive its inability to reflect these. The observations bear directly upon some phenomena of photography and photometry.

New Process of Extracting Gold

A new process of extracting gold from auriferous ores has been devised by Mr. C. Lorsen, and is described in the Technical World. He electrolyzes a solution of bromide of potassium, and thereby ubtains an alkaline solution which contains hypobromide and bro mate, which is capable of dissolving gold. The ore is treated with an excess of this solution by rotating cylinders. The solution is then filtered, the gold precipitated by passage over a mixture of iron and roal, and the solution, which now contains bromide of pot assium mainly, is once more electrolyzed, and again used for extraction.

A POWER PUMP WITH VARIABLE CAPACITY.
More than one objection can be urged against the usual way of regulating the capacity of a power pump by starting and stopping. There is always a certain amount of wear and tear in starting machinery of any kind, and in a pump the action of air and water are both to be considered, in addition to the purely mechanical features. A pump in good working order, do ing its work properly, is apt to continue to work well; whereas if it had to be often started and stopped, the case might be different.
A power pump, the capacity of which can be regulated with the greatest nicety, has been patented by Mr. F. L. Stone, of Brockton, Mass. In this pump front and rear views of which are shown in the illus trations, the crank disk is provided with a radially slotted wing to which the base of the crank pin is fitted. A screw supported in bearings in the slideway fits a threaded opening in the crank pin block. One end of the screw is provided with a spur wheel, which is engaged by a spur wheel on a shaft journaled in the crank disk parallel with the screw. The inner end of the shaft is provided with a bevel wheel, which is engaged on diametrically opposite sides by bevel wheels placed respectively on a central spindle and a sleeve
passing through the tubular crank shaft of the pump.
for communicating motion from the crank pin to the piston rod renders the pump very compact, and, at th ame time, avoids friction, thus saving power.
This pump is being introduced by Mr. Frank F. Phinney, Box 1181, Boston, Mass.
A series of tests with this pump have been conducted at the Worcester Polytechnic Institute, the results of which are said to have been very satisfactory.

Tools on Locomotives.

Mr. H. D. Lynch, storekeeper, Providence division N. Y., N. H. and Hartford Railroad, writes as follows o the Railroad Gazette:
The recent topical discussion at the New York Rail road Club on the question of locomotive tools developed nothing precisely in a line with what we are doing here. As I have had considerable experience on a locomotive, I have had pretty good opportunities to judge of the condition of locomotive equipment when eft wholly in the care of the engineman, and think our practice may be of interest.
The efficiency of a locomotive, upon the road, is greatly enhanced by having a complete set of the requisite tools, in good condition. To attain this end with the least possible expense, our people at this poin have deemed it necessary that the engineman of every
tern being lighted two or three times each week. One day each month the contents of all red lanterns are emptied into the tank. The lanterns are then filled with fresh oil.
We have not bad occasion to issue a new lantern hammer, chisel, engine or valve oil can for the past four months, as daily inspection throws defective articles out for repairs.
Train nu mbers for headlights were a constant source of annoyanceand expense-whenever a locomotive was placed on a strange train, the numbers of that train could not be found. The men had been in the habit of keeping them in di vers places, from the headlight to the back end of the tank. We now have a complet set, well painted, in a box, on each locomotive.
Our issues of new coal scoops are confined to heavy, fast passenger and freight locomotives. After a scoop has had three inches worn from the blade we trim it up and issue to surburban and switching locomoives
When a locomotive comes into the shop for general repairs, everything in the shape of tools is taken off, sharpened and repaired at the expense of the locomotive from which it came and delivered to the store keeper to be put into stock. When a locomotive leaves the shop she is furnished with a set of tools, in good

STONE'S POWER PUMP, WITH VARIABLE CAPACITY.

The outer end of the sleeve is furnished with a hand beyond the sleeve is also furnished with a hand wheel By means of these hand wheels either of the central bevel wheels may be turned.

When it is desired to change the stroke of the pump, the screw in the slideway is made to turn in one direction by revolving the inner hand wheel, thus moving the crank pin in one direction, lengthening the stroke; by turning the outer wheel the crank pin is moved in the opposite direction, shortening the stroke of the pump. By increasing or decreasing the stroke of the pump its capacity mayberegulated, and this may be easily accomplished while the pump is in operation.

By means of this construction the pump is made to throw much or little water, according to the requirements. When the adjustment is effected while the machine is in motion, it is only necessary to hold one or the other of the hand wheels, allowing the adjustment to be accomplished by the rotation of the crank disk.

In addition to the stroke-adjusting mechanism of the pump, a new parallel motion is provided, which obviates the necessity of ways and long connecting rods, and insures a direct pull on the piston rod of the pump. The parallel motion consists of a right-angled lever mounted on links pivoted to an arm projecting upwardly from the pump cylinder. The shorter arm of the right-angled lever is pivoted to links swinging in bearings attached to the base. This arrangement
locomotive, immediately upon arrival at the engin house, must deliver the following articles, in g
One red signal lantern, six fusees and eight torpedoes attached, one red lantern, one white lantern, one ngine oil (stock) can, one valve oil can, one screw wrench, eighteen inches, one screw wrench, twelve nches, one box train numbers, one hand hammer, one hand chisel, one set screw wrench, one pail (tools and box of numbers in pail).
Engineman of departing locomotive, thirty minutes previous to departure, will upon presentation of check, showing amount of oil required, be furnished with a set of equipment, in good condition; he being held personally responsible for the safe return of the same Any oil returned in the cans is credited to the loco motive from which it came
Locomotives in service the entire twenty-four hour must exchange equipment when they draw oil.
At outside engine houses, where two or more loconotives are housed overnight, sets are left in a secur place under the watchman's care.
We find it the only method that insures a set of equipment, in serviceable condition, on every locomoive that leaves the house; and it is an efficient check on the issues, as we are enabled to locate the losses nd breakages to a man, and with a saving of forty per cent in signal oil.
Constant exchanging of equipment insures each lau
condition, with movable parts well greased, in which condition they remain for a longer time than one would expect. Any request fur an article must be accompanied with the old article or such informa. accompanied with the old article or such informa-
tion as will enable the storekeeper to recover the tion a
same.
Paramount in the care of a locomotive should come that of her danger signals. Who among your readers that has served on the "foot-board" but can recall instances, when running light, when the only protection for the rear was that of the light from the open firebox door. Six and eight times we have had to trim ights in going fifty miles. One nightin particular that comes to my mind we had been detailed to bring a disabled locomotive to the shop and she broke down on the way. Our third man, a wiper, went back with the red light, the only signal we had excepting the torch. He had been out about ten minutes when we, torch. He had been out about ten minutes when we,
under the locomotive, heard him up in the cab. He had come in to fix the light. it having gone out.

Mrs. Mary Brown, one of the last remaining pensioners of the war of independence, died near Knoxville, 'Tenn., April 15, at the age of 91 . In 1824 she married Joe Brown, a soldier of the revolutionary war, he being then 65 years old and she but 20 . She was in Knoxville, March 12, to draw her pension of $\$ 12$ a month, and though feeble seemed able to last nany a mont

THE LATMAN PNEUMATIC SPORTING AND OUTING BOAT.
The old time Celtic coracle, with wicker framework and covering of hide, has its modern successor in the
and as the body of the boat takes the water the launch is made. By sitting comfortably on the bottom of the boat and paddling with the feet, a progress of two or three miles an hour can be made in any direction.

THE LAYMAN BOAT USED IN DUCK SHOOTING.

Layman pneumatic boat, a wonderfully ingenious and successful craft which is acquiring wide popu. larity among sportsmen and those fond of aquatic sports, as well as with ladies and children for use on the seashore. The sportsman who desires to kill can find no better ally than this noiselessly propelled craft, while those who spend the summer on the seashore or by lake and river side can have endless pleasure in floating bubble-like on the breakers or in exploring th inmost recesses of lake and "unknown river."
The Layman boat resembles in contour a horse collar. It is made of India rubber cloth. The irregular ellipse determined by the sides has as bottom a strong sheet of the same cloth, from whose forward portion two boots or leg cases depend. The bottom of the boots are provided with collapsing paddles, which open on the back stroke and ciose on the forward stroke, as does a duck': foot. The small end of the oval is the bow. A stiff rudder strapped in one position is at tached to the stern. The office of this is to keep the bow in front-it is not used for steering.
For its shape the boat depends upon inflation with air. The oval sides represent two tubes, the lower one of large cross section, the upper one of smaller. The lower one is divided by cross partitions into three compartments; the entire upper tube forms a fourth compartment. To prepare the boat for use, the sides are inflated with air. This is best forced in with a blower, five minutes sufficing to inflate it. It can be inflated in three minutes by the lungs alone. When inflated, it at once stiffens up, as the sides take their characteristic oval shape, forming virtually a frame. As they distend, they bring the floor to a level, and the boat is ready for use
Putting the feet into the cases and holding the boat up by hand loops, the boatman walks down the shore,

Several people can crowd into the same boat, 400 pounds being the capacity of the large sized one. Loops are provided for awning stanchions, to give the last requirement for comfort. It will be seen that for the duck hunter it pre sents several advantages. It admits of a most effectual blind being used, one of which is shown in one of the cuts The in one of the cits. The propulsion feet, so that both hands are free for the cun. Its noiseless working gives every chance of approaching closely to the ducks. Places hitherto inaccessible can be reached by its means, and game can be secured which otherwise would escape.
One of the cuts illustrates a passage through Hell Gate, East River, New York, which was made without difficulty by a party including a lady. The experience is described as delightful, the waves of the steamers adding to the excitement. No water was shipped, the boats proving perfectly dry and prodification is shown in seaworthy. An interesting modification is shown in one of the cuts in the wading pants, made on the general lines of the boat. These are heavy Mackintosh pants, attached to whose waist

passage of hell gate, east river, n. y., in the layman boat.
portion is the pneumatic boat. When deflated the wearer is prepared to wade about or walk on land. If deep water is to be entered, a few minutes of preparation inflates his boat and he is ready for work afloat A strap which is secured beneath the knees gives the proper position for boat work.
The fishing scene on Narragansett Bay is reproduced from a photograph from life, showing the inventor and family enjoying themselves à la Isaac Walton. near Bristol, R. I.
The cuts show the capabilities of the novel craft. It makes the user thoroughly amphibious. When afloat, a considerable load can be transported, as many as three children with an adult finding room in it. In the cut showing the use of the blind by duck shooters is also clearly shown the standing and sitting positions of the occupants. The boat, when deflated, is stowed away in a small valise, as shown in the same illustration. As regards weight, the boats vary from fifteen to twenty pounds. Owing to their compactness when deflated, they form an admirable tender for small yachts, and afford an effectual life preserver for use in cases of accident. Experiments have shown its absolute safety. Three of the compartments may be punctured and the fourth one will keep it afloat. A complete repairing outfit accompanies it in case any accident should happen. Owing to the strength of the fabric it is rarely torn.
We are indebted to Mr. H. D. Layman, of the International Pneumatic Boat Company, 851 Broadway, New York, for courtesies extended to our editor and artist in the preparation of the article and engravings.

How to Copy Engravings.

Many workers find a great difficulty in successfully copying engravings, so as to reduce the prominence of the lines and cross hatchings. These, when magnified by the lantern, spoil the picture. But it is possible to tone them down in such a way that they will not be objectionable. There are several methods of doing

FAMILY PARTY IN LAYMAN BOATS IN NARRAGANSETT BAY.
this. The best one is very easy to manage, so as to effectually break up those lines which appear so prominent in skies and foreground. Cover the engraving which is to be copied with a thin and finely ground piece of glass, the polished side down ward. This glass must be exceptionally clean, and to insure this it should be brushed over with ammonia or nitric acid, afterward well water-washed. When the glass is in position it will be seen that the engraving, riewed through the glass, has the appearance of a pencil draw ing. No lines are visible, but a general softness has taken their place. Of course it would be perfectly use less to photograph the print in this condition. To re store vigor to the important parts of the picture, go over the ground glass surface with a brush dipped in cil. painting. as it were, every portion except the sky and the immediate foreground, where the objectionable lines usually are to be seen. This operation will give the desired blackness, thus rendering the print capable of producing a first-class negative. If this method be adopted, the result will prove most satisfactory, for it will be impossible to distinguish the obnoxious lines.Photography.

For Transparencies.
For lantern slides or transparencies, which yield tones of a peculiarly pretty warm black, varying with the particular plate used, but always of an agreeable kind :

Pgro	3 grains
Sodium sulph	
Bromide of ammonium	3 "
Carhonate	6 "
Caustic potash.	5 *
Water	1 ounce.

Electric Cars as Life Savers.
Strange as it may seem, a Brooklyn newspaper has printed a communication which proves that more lives have been saved by electric cars in that city than have been destroyed, and in comparison with the former the proportion of the latter is so small that it is insig nificant. D. J. Lapley, a citizen of Brooklyn, says :
" For some reason the newspapers have had a good deal to say in condemnation of the trolley car and its record of 'one hundred fatal accidents' in Brooklyn. It seems to me that the case is not sized up judicially, and that most of the blame is misplaced. Nearly every fatality of this class has resulted from contributory negligence or gross carelessness. or even from suicidal purpose. The trolley hasno monopoly as asource of danger. Children who are allowed to run the streets with out being properly cautioned, and grown people who, from intoxication or any other cause, tempt fate reck lessly, are always liable to disaster, fatal or otherwise. lessly, are always liable to disaster, fatal or otherwise
a larger number of people have been drowned by A larger number of people have been drowned by
falling into the water from the piers, since the ad falling into the water from the piers, since the ad
vent of the electric motor, than the trolley has to its credit, yet the papers have failed toharpon the deadly dock.

The trolley, by lessening the defilement of the streets, has so ameliorated the sanitary condition of number of lives it has destroyed. It has furnished a quick and comfortable transit to the outlying wards, which has reduced the prevalence of grip and pneu monia among the suburban passengers more than onehalf. Many can recall the wintercars, with their slush soaked straw and foul odors, and the tiresome and dangerous delays in the snow, when the passenger were forced to walk in the storm, or even to assist the wretched horses by pushing. Many a man has gone down to his grave from a cold contracted on such a trip. The trolley has saved thousands of lives by enabling the mechanic and clerk to move their little ones from the unwholesome tenements of the city to the pure air and sunshine of the country. It has added, in dozens of ways, to the sum of human welfare. Why, then, does the press persistently attack a system which ac complishes so much good that it has become a great public necessity ?"

Coal Consumption on Torpedo Boats.
For the following interesting particulars respecting the coal consumption of the 27 knot torpedo boat destroyers, we are indebted to a correspondent of the Glasgow Herald. He states that the cruiser built by Messrs. Thornycroft, on a three hours' run just made maintained a speed of 27.97 knots, practically 28 knots, or for the whole time 84 nautical miles; and while running this distance burned in her three water tube boilers $17 \frac{1}{4}$ tons of coal. The rate of combustion is 68 pounds of coal per square foot of grate area per hour although in some trials it has reached 79 pounds; but then the power per square font of grate area is very high, 24 indicated horse power. The boats of this class carry 60 tons of fuel at a pinch, and this would enable them to go at full speed for a period of over nine hours, during which they would travel fully 250 nautical miles. The coal consumption is equal to 4 hundredweight per sea mile ; that is to say, during the 2 minutes 9 seconds taken to a sea mile 4 hundredweight of coal are burned. A ton of coal, therefore takes the boat five sea miles. But it would only beon a rush that such speed would be maincained. Now other tests have been made at about half the speed13 knots-and here, instead of five miles, the ton of coal carried the destrover for a distance of about 38 uautical miles, so that the total distance at 13 knots with the 60 tons of coal would be nearly 2,000 miles. This shows the great cost of doubling the speed. Th coal per horse power at 13 knots was $1 \cdot 61$ pounds.

The Invention of the Telephone
In a recent address Prof. Hughes says it is 30 years since his first experiments with a working telephone. In 1865 while at St. Petersburg fulfilling a contract with the Russian governuent for the establishment of his printing telegraph instrument upon all their important lines, he was invited by Emperor Alexander II to give a lecture before the roval family, which he did. As he wished, however, to present not only his own telegraph instrument, but all the latest novelties, Prof Philip Reis, of Friedericksdorf, . Frankfort-on-Main, sent to Russia his new telephone, with which Prof. Hughes was enabled to transmit and receive perfectly all musical sounds, and also a few spoken words though these latter were rather uncertain; at moments a word could be clearly heard, and then from some unexplained cause no words were possible. This instru ment was based, Prof. Hughes states, upon the true theory of telephony, and contained all the necessary organs to make it a practical success. Its unfortunate
inventor died in 1874 , al most unknown, poor and neg inventor died in 1874, al most unknown, poor and neg-
lected, but the German government has isince tried to make reparation by acknowledging his claims as the first inventor, and erecting a monument to his memory in the cemetery at Friedericksdorf.

Bespemer, the Inventor, and his Treatment by

The Commercial Bulletin (Boston) gives the follow ng interesting incidents in the life of Henry Bessemer the distinguished inventor. His treatment by Great Britain, where he was born, conducted hisexperiments, and finally produced one of the greatest inventions of the age, is not creditable to the country of his nativity.
The inventor of the celebrated "Bessemer process" is the most modest of men, shunning rather than court ing observation. A few years since he was sometime to be seen taking a "constitutional" in the neighbor hood of his unpretentious abode at Denmark Hill, in England, but the venerable gentleman with the benevolent face, in the old-fashioned frock coat and voluminous, many-folded choker neck cloth, is now rarely seen even by his immediate neighbors.
The British public, the British government, and British manufacturers did their very best at one tine to crush one of the most useful men ever born in
Britain, and failed ignominiously. Sheffield laughed at him, and Woolwich gave him the official cold shoulder; but Sheffield and Woolwich would be crip pled indeed at the present time were it not for "Besse iner steel." Yet, even now, althongh foreign poten tates have showered crossos and stars upon him, the English government has not conferred upon him any honor more important than an ordinary knighthood, and this in spite of the fact that he has created one o the largest and most important industries in the world.
Some fascinating calculations, made by Sir Henry himself, prove that one year's production of Besseme steel might be represented by a solid column sixteen and a half times the height of St. Paul's Cathedral and as thick through as an ordinary gasometerabout 100 feet.
Henry Bessemer, son of the late Mr. Anthony Bessemer, was born in Hertfordshire in the year 1813. His earlier years were devoted to art, and we find that he was an exhibitor at the Royal Academy at the age of 20. At this early age he had discovered a means by which impressions of the designs on coins, medals, and other reliefs could be reproduced in any numbers on
cardbrard. Some of his work in this line is still extant cardboard. Some of his work in this line is still extant, and when specimens come into the market they bring high prices.
This led him indirectly to a more important invention. He discovered that the government of the time was robbed to the tune of $£ 100,000$ per annum by unscrupulous persons, who were in the habit of removing the embossed duty stamps on legal and other documents and using the same again. Young Bessemer invented the useful littlecontrivance by which the stamp is embossed on the paper or parchment of the document itself, and submitted it to the then chief of the stamp department at Somerset House.
The potentate in question saw the advantage of this system at a glance, and soon afterward the authorities expressed their willingness to make use of it. A pretty little story is connected with this invention. When his model was rompleted, Bessemer showed it tothe young lady to whom he was then engaged. Her first comment upon it showed that she was well fitted to become ment upon it showed that she was w
the ife of an inventor. She said :

Yes, I understand this; but surely, if all stamps had a date put upon them, they could not at a future time be used again without detection."
This proved a very valuable suggestion, for Bessemer oon hit upon the idea of a steel die, with a space for a movable date, and in that form his invention was adopted by the authorities. Will it be credited that he never received a solitary farthing from the gover ment for his services or the use of his invention?
Such is. nevertheless, the fact, and when he hinted mildiy at legal remedies he was told by the Solicitor to mildiy at legal remedies he was told by the Solicitor to
the Stamp Department that he was entitled to no compensation, inasmuch as he had presented his invention to the government gratis! This was at a time, too, when he was by no means well off, when, indeed, he lacked the necessary money to set up housekeeping with the clever young lady whose brilliant suggestion had resulted in a perfect stamping machine! He received many generous prom ises from varions ministers, another, and to this day he has never been compensated in any shape or form.
A man of vast wealth now, Sir Henry Bessemer can afford to regard the troubles of that period of his life with comparative indifference-though he has since had more ample reason to cherish a dislike for all British governments and politicians. But his disappointment in this instance taught him a very salutary lesson. When he made the great discovery of his life -that by which it is possible to convert pig iron into teel by a simple and inexpensive process-he kept his discovery a secret. To some extent it is a secret to this day. The importance of the discovery can hardly be overestimated.
Before the Bessemer processcame into use steel could not be bought under $£ 50$ a ton, and its price prohibited
its use in numberless departments of industry where it
is now considered essential. At that time, too, only 51,000 tons of cast steel were produced in Sheffield in a year. In 1892, 33,546 tons of steel were manufactured in the world every day according to the Bessemer pro cess, the selling price per ton averaging $£ 8$ perhaps.
Everybody knows that steel is supersedingiron in all departments where toughness and durability are considerations. In the building of ships and bridges and in the making of girders for buildings, of locomotives, rails, steam boilers of all kinds. steel is now universally used. It is chiefly due to Sir Henry Bessemer that one is almost as safe on a modern ocean steamship as on land, and that the modern structure of steel is nearly as imperishable as the ancient Pyramids.
Such a discovery, it might be supposed, would be hailed with enthusiasm by those interested in the iron trade of Great Britain. Nota bit of it. Bessemer met with every possible discouragement. The steel manufacturers of Shefficld were dead against him from the first, and the government ignored him. One does not expect to find unusual enterprise in a governmental department, so it is not surprising to learn that the British Admiralty could only be induced to adopt the Bessemer steel in the building of war ships when it had been in use in building merchant ships many years. Even the engineer of the London and Northwestern Railway deciined to have anything to do with Bessemer steel. Encouragement, valuable encouragment, Bessemer did receive, however, from the late Mr. Platt, M.P., head of the famous Oldham firm, who gave him $£ 50,000$ for a fifth share in his patents.
On the Continent, too, his merits were immediately recognized. Krupp, the great gun man ufacturer, was one of the first to pay him royalty on his patents. The Emperor Napoleon evinced the keenest interest in his invention, and would have decorated Bessemer with the Grand Cross of the Legion of Honor if it had not been explained to him that British subjects were not allowed to receive decorations from foreign governments except by special permission. The Emperor of Austria conferred upon him a knighthood of one of the most distinguished Austrian orders, and the King the most distinguished Austrian orders, and the King
of the Belgians, when he was in London, drove out to of the Belgians, when he was in
Denmark Hill to call upon him.
The British government had to follow suit in some fashion, and a knighthood was conferred upon him in 1879. In 1880 he was presented with that highly prized distinction, the freedom of the City of London, "in recognition of his valuable discoveries, which have so argely benefited the iron industries of this country, and his scientific attainments, which are so well known throughout the world."
Anericans have done theirbest to show their respect for this great man. In Indiana there is a flourishing young town called after him.
When the gold Albert medal of the Society of Arts was presented to him at Marlborough House by the Prince of Wales himself, Bessemer humorously con fessed that, though he prized such distinctions, he was no less pleased with the $£ 1,057,748$ which he made by his patents.
Bessemer recently recovered from a severe illness, and is at present, in his 83d year, busily engaged in answering the great mass of correspondence which ac cumulated during his illness. Doubtless a large pro portion of this correspondence consists of begging let ters. He is one of the most charitable men of the day hough he does not like it to be known, and many a larg benefaction from him finds its way anonymously into the coffers of the hospitals and orphanages of London.
It is a characteristic of the man that he should take a particular pleasure in his invention of a machine for the manufacture of nails, for the simple reason that this invention relieves hundreds of young girls in what is known in England as the "Black Country" and Wolverhampton of the degrading toil of forging nails by hand. In filthy, reeking dens these poor young things passed their lives in "unwomanly rags," en gaged in unwomanly toil. But Bessemer has altered all that.

A Russian Student's Hair.

An Odessa correspondent of the London Times says : "An event has happened which has caused quite a consternation among the students attached to the university here. Prince Tounanoff, a member of an old and historical family in this country, has just received an order expelling him from the university here and directing him to leave the town within forty-eight hours. The extraordinary reason for this Draconian decree is that he declined to wear his hair short. He has been refused permission to go to St. Petersburg to present a petition, and now by his expulsion from this university he is not permitted to enter another in Russia; therefore his bright hopes and his aspirations to employ his talents for his country's benefit are wrecked and his career in Russia is ruined. The severity with which the university students in South Russia have lately been treated is viewed with dismay. Their grievances are left unredressed and petitions are use less. In these circumstancesfresh disorders may be ex pected to break out at any time.'

THE EERPOLLET AUTOMOBILE TRAMWAY IN PARIS.
In Paris, as in most large cities, it is very difficult for any corporation to get permission to build tramway lines where the motive power is other than that fur-
nished by horses. The Serpollet system, however, is not open to the usual disadvantages of ordinary steam and cable tramways, so that the Compagnie Generale des Ommibus was allowed to equip its Madeleine-Asnieres line and its Porte Clignancourt-Bastille line with cars propelled by motors of this system. The fuel used may becoal briquettes, anthracite coal or coke. In cities coke is usually preferred. The boiler is of rather curious construction and is placed on the front platform, the long vertical tubes admitting of the heat being utilized to its full extent. The boiler really consists of two parts, the lower part composed of horizontal tubes heated directly by the fire and the upper part made of vertical tubes which are heated by the burning gases. The motive power is derived from a twocylinder engine which is located between the two axles. Motion is transmitted to the axles by means of chains and gears, one turn of the axles being equivalent to three turns of the engine. The machinery is arranged to permit of its being run in both directions. The lubrication is automatic, so that the engine driver is not troubled with oiling during the trip. A pump is provided to automatically supply the boiler with water.
All the machinery is carefully protected from dust and mud by sheet iron cases, which are also arranged to suppress the odor of the hot grease. In winter the tramway car is heated by the exhaust steam. The car is provided with two brake systems, which are entirely independent of each other and which can be applied from either platform. Both of the cars which we illustrate are the well-known double-deck pattern and accommodate about fifty persons. The travelers do not experience any inconvenience from the heat, and the disagreeable odor of the gas is reduced to the minimum by the long chimney, which produces a powerful draught. The gases are so diluted, before they pass from the chimney, by a large body of ascending air that nearly all the odor is lost. The motion of this tramway is very easy and curves are passed with ease. The reduction of dead weight in this motor is very great, and on slopes it is possible to carry the steam pressure to 225 or 300 pounds to the square inch, so that the speed may not be diminished. We illustrate a car of the Serpollet automobile system crossing the Place de la Concorde in Paris and a car on the Porte ClignancourtBastille line which is adapted to carry fifty passengers and is capable of carrying a trailer car for fifty persons. For our engravings we are indebted to La Revue Technique.

Wonderful Growth of the Electric Railway in the United States. These five years have indeed done wonders in the domain of street railroading in this country, and have even set our transatlantic friends to work following our example, says Joseph Weltzer in Scribner's for May. To give some idea of the extent to which electricity has displaced the horse, and, on the other hand, been instrumental in creating new roads, we need only cite the fact that at the present time there are over 850 elec-
tric railways in the United States, operating over 9,000 miles of track and 23,000 cars, and representing a capital investment of over $\$ 400,000,000$. What stupendous figures, when we consider that in 1887 the number of such roads amounted to only 13 , with scarcely 100 cars

AT the present time the Australian aborigines areth lowest known species of humanity. They have little or no reasoning faculties, and their only idea of a higher power is through fear. They are chocolate-colored, wear little clothing, and their weapons are of wood.

The Modern Bicycle.
Under average circumstances rice is grown at a net ost of $\$ 1$ per sack of 180 to 200 pounds. There is good demand for it at one cent a pound for feed. It is eaten greedily by all kinds of stock. There are objections to feeding rice whole, but when ground it gives excellent results. The sooner rice is adopted as the staple stock feed, the sooner will this country come into possession of the comforts of good butter, good eggs, best beef, finest pork and fat cattle, horses and mules. When these are once produced steadily there will be a market

The real miracle is the machine itself, especially the wonderful strength and resistance of the wheels. It would seem absolutely impossible that a whee thirty inches in diameter, with a wood rim and wire spokes so light that the whole structure weighs only twenty ounces, should sustain without permanent distortion the weight of four men standing on its side, with supports at four points only under the rim, and no hub support whatever. It also seems incredible that a cycle capable of carrying a man of 160 or 175

STEAM CAR OF THE SERPOLLET AUTOMOBILE SYSTEM.
with reliable demand. It will, moreover, result in a good market for rice, as none but clean, pure rice will be offered on the market. To-day the New Orleans rice market is being crowded with rice much of which can be sold at home for feed at better prices than it will bring on the city market, from the fact that poor grades of rice are a drug on the market.
This season Southwest Louisiana will import 1,000 cars of corn and oais at over one cent a pound cash, and for no better feed than rice, which is shipped to get money to buy corn. Already, says the Jennings Times, many of our best farmers have stopped buying corn or oats, substituting rice at less cost. If all wouid adopt this practice, supplementing with what corn and oats can be grown on the farm, Southwest Louisiana would save at home annually $\$ 100,000$ more or less for would save at home annually $\$ 100,000$ more or less for
feed stuffs. Already has the importation of hay been

STEAM CAR OF THE PORTE CLIGNANCOURT-BASTILLE LINE.

 ere certain to follow. pounds in weight can be made so light that the whole structure weighs less than 9 pounds. Yet this has been done; even at the roadster weight of 22 or 24 pounds, the cycle carries a greater load with safety than has eve been put on any other vehicle.The influence of the cycle on social life is already great, and will probably constantly extend, as it provides an outdoor sport and amusement for women which did not previously exist in any form in America. American women are not walkers, but the cycle is perhaps even better suited to wo man's use than man's, and seems destined to add an out-door element to the life of woman the world over which was not possible without the "winged wheel."
Our American cycle factories are now equipped with the finest plant which can be constructed, and are which can be constructed, and are
fully equal to the best armories-or even superior, as they are the later construction-and the magnitude of the operations and vast numbers of workmen employed warrant any expenditure which promises to cheapen the production or improve the product. But all this was inevitable. Granted the cycle and its great use, the vast cycle factories with their magnificent equipments, marvels of ingenious toolmaking and wonderful methods of construction

The miracle of the bicycle lies in its birth, death and resurrection; in its incredible load-bearing power in proportion to weight; in its displacement of the hors as a means of pleasure, and in the selection of its me chanical details of compressed air support, tubular raming and chain driving. All of these are details often before introduced in machines, but never before permanently retained. That these cast-offs are unde niable power savers is convincingly proved by their Finally, the achievement of the bicycle is to increase the human powers of locomotion so that the slow-footed man is made one of the swiftes of all running creatures. -Robt. Perkins, Eng neering Magazine.

Under the Shadow o Mount Everest.

 Mr. Henry Ballantine author of "Midnight Marches Through Persia," and a more recent book on Nepal, "On India's Fron tier," gives a most inter esting description of his reception at the Nepal court by the Maharajah. Khatmandu, the capital of Nepal, is on the southern slope of the Himalayas, about 400 miles north of Calcutta. and almost within the shadow of Mount Everest. The traveler found the Maharajah a prince of very decided character and large intelligence, interested in a great deal that was going on in the world outside of his remote kingdow. Mr. Ballantine had with him "a copy or two" of the stopped by substituting home-grown hay and rice Scientific American, one number of which hapstraw. Now, let farmers and others stop importing grain feed, using rice instead. The demand for rice as eed is growing, and it is doubted by some whether there is enough rice left in this country to supply the demand. Some rice can be fed whole to at least some extent. During harvest rice is fed in the bundle with satisfactory results. Egyptian, or bull, or Japan rice can be sown on old land foul with red rice, and by cut ting early all can be saved, making a large gield and excellent feed.-Westlake News.pened to be of the issue of July 30, 1887, containing illustrations of some fine Holstein-Friesian cattle. These the prince much admired, and wished him to have arrangements made at once to get out a few for him. The prince spoke Hindostani, but the pictures of the Scientific American speak a universal language, and the prince seemed very much interested in looking at all the illustrations which appeared in the papers, but the cattle pictureseemed to appeal to him the most of any of them.

Our Debt to Inventors-Shall we Discourage 'Them ?
Dr. R. H. Thurston, director of Sibley College, Cor nell University, contributes to the May Forum an able aud interesting article under the above title, from which we make a few abstracts :
"In a single generation, it is agreed among statisticians, the inventors have promoted the effliciency of human labor, and have diverted to the use of man such enormous amounts of Nature's energies that production has been increased fifty to seventy-five per cent more rapidly than population, and wealth has been correspondingly augmented. A day's labor produces two-thirds more in agricultural implements, or in carriages, and a half more in machinery, and eighty per cent more in boots and shoes, than in 1860. One dollar has been made capable of buying fifty per cent more of cloth, a quarter more of every kind of staple
food; five men do the work of eight, and both wages food; five men do the work of eight, and both wages
and the purchasing power of the dollar have increased together. Labor can to-day produce twice as much in a given time, and secure more than twice as large a share of the product, as in the days of the origin of our patent law. In the time of Watt and Fulton, six weeks were required to cross the Atlantic, and the in ventor and the mechanic and the engineer now send the steamship across in six, and will soon make the vosage in five days. They transport a ton a mile at
sea with the combustion of the amount of fuel represented by a single one of the millions of letters in the modern foreign mail bags. They have reduced the cost of transporting wheat from New York to Liverpool from twelve cents a bushel to four cents, and of meat from absolute commercial impracticability to one cent a pound. They have given the world nearly a halfmillion miles of railroads, and transport $150,000,000,000$ tons a mile each year. Without protection of the in ventor's rights to his own absolute creation and brain property, we should to-day not have the aid of the fifty or seventy-five willions of horse power of the steam engines of the world and their equivalent aid-that of three or four times the working power of the whole population of the globe.
"The telegraph and the telephone, those great 'monopolies' so mnch inveighed against at the mograndestillustrat only presented the word worn sci ence in promoting commerce and the industries of production; they promote also, directly and indirectly, duction; they promote also, directly and indirectly,
and in a thousand ways, the intelligence and culture of the race. Morse and his colleagues among inventors of the race. Morse and his colleagues among inventors
gave the world, as a contribution to education and a
stimulus to moral growth, inestimable profit upon all its patrons have paid into the treasury of the telegraph companies-to be redistributed to the world. The telephone, however ' business-like' its management, is a gift from the inventor of vastly greater worth to the world than all the dividends ever declared by the tele phone companies. Edison, and Thomson, and the General Electric and the Westinghouse companies, representing contributions to the world of invention and the mechanic arts, as a limited tribute, have given handsome profits to the world of users of their inven tions and products.
"The steam engines of James Watt, of Frederick Sickles, of George Corliss, which constitute the foundation of the whole system of modern industries, and fur nish, practically, the whole sum of the mechanica power which has built up existing material civilization, were given to us by their inventors in response to the inducements held out to them by tie patent law-itself the most important invention of all.

It has been universally admitted that the United States has owed to the simple and inexpensive and effective action of the patent law system, as well as to the freedom of its political institutions-the two form ing units of a whole-the mighty march of its develop ing units of a wholi-the mighty march of its develop
ment and civation. The blessings of the patent law ment and civilization. The ble
have been inconceivabl y great.
"But a spirit diametrically opposed to the spirit in which the patent system was conceived and enacted has within a few years sprung up, and its malevolent influence has been promptly seen and felt in the tone of legislation and in the decisions of the courts. The old feeling of indebtedness and of gratitude to the in ventor and to the exploiter of inventions has become tempered by criticism and by a caviling spirit, which seeks to deprive these greatest of benefactors of the race of the intellectual property which they create and the material benefits which they, in comparatively slight degree, share with the world. In many ways both legis lation and the decision of the courts are curtailing their rights and depriving them of the just share, which was formerly cheerfully granted to them, of the gains made by the world through theirinventions. The inventive genius and his wholly beneficent work are now too often looked upon with suspicion. jealousy, and a mean opposition, which are in strange contrast with the legislative and judicial act early in the century, and which pervaded the whole people of the United States from the time of Watt to the time of Corliss, of Fulton, of Stephenson, of Howe, and of Morse.
"The killing of the goose that lays the golden egg is contemplated even by 'statesmen' and by the court with complacency. They would nullify the patent ystem and put a summary end to this era of progress. They would terminate the period of supremacy of their country in all the industrial arts.
"When the United States loses its regard for the igh ts and privileges that were justly and fairly accord ed to inventors in our earlier life as a nation, and, in stead of gratitude and generous reward, gives them grudgingly less than a fair and liberal shareof the pro fits which they so lavishly secure for the world, a long tep will have been taken toward that decadence which, historians are accustomed to assure us, inevitably, ooner or later, comes to every people. The im mediate nd complete repeal of every obstructive law and the nauguration of a new period of good-will and generous encouragement of that highest of industries is the right way and the only way to insure permanence of that growth in material prosperity which has for a hundred years, and until the present moment almost, been the most marked characteristic of our history.
"The promotion of the arts and manufactures by suitably rewarding inventors and providing that they sall be permitted to collect profits, as in all other de partments of business, as large as the business wil yield, and in due proportion to the value to the coun ry of the invention or discovery, is one of the most mportant features of an enlightened public policy and it is the duty of every intelligent and patriotic citi zen, and especially of every one in any manner con nected with any department of engineering, of manu nd to or of the mechanic arts, to exert every power of the patent system, to increase the facilities of the Patent Office, and, especially, to insure to the invento of new and valuable devices a liberal period of posses ion of the products of his genius.'

Canadian Natural Gas Lines.

The Detroit Gas Company has made arrangements with the Ontario Gas Company for a new pipe line be tween the natural gas fields of Kingsville and Walker ville and a third pipe line across the river to Detroit. Although that city was supplied by only one line las winter, it was considered safer to have three lines than two in case of a break. The expense of construct ing the line from Kingsville to Detroit will be $\$ 200,000$ and it is expected that the work will be finished by next October.

RECENTLY PATENTED INVENTIONS.

 Engineering.Steam Condenser and Oil Separa Tor.--Edward Rowe, Indiana, Pa. This is a simple con struction more especially designed for condensing ex
haust steam from engines, returning the water of con densation to the feed pump, at the eame time purifying the water to prevent incrustation of the boiler. The in vention consiste principally of a series of connected vee sels, of which the first receives the steam, and each vesse has air tubes for the circulation of air to condense the steam circulating in the vessel, no water jackets or other
circulating devices being neceasary. The impurities of circulating devices being neceasary. The impurities of the water of condensation are skimmed off in a separate
tank to which the water of condensation flows before passing to the feed pump.

Railvay Appliances.

Car Fender. - Charles E. Montell, White Plains, N. Y. According to this improvement frame is attached to the car platform, and to this frame is pivoted an auxiliary or receiving frame, there being a
bed of yielding material attached to the upper portion of bed of yielding material attached to the upper portion of
the fixed frame and the outer front portion of the receiv ing frame. There is a sprocket wheel and chain connec tion between the two frames, whereby the forward frame may be lowered by the motorman pressiug upon a lever This frame has wheele adapted to travel on the rails or on the surface. When the receiving portion of the fender
strikes an object in the path of the car, the object is strikes an object in the path of the car, the object is
thrown back into a cushioned section, and the forward thrown back into a cushioned section, and the forward
portion of the fender rises, forming a pocket which will safely hold a person thus taken up from falling out.

CEnTER BEARING FOR RAILROAD prises a bottom plate to be fastened to the truck bolste and a top plate to be fastened to the car body, a center
pin in the bottom plate engaging the top plate, while a slide or lock bar locks the center pin in position to hold the topand bottom plates in a united position. With this improvement the car body may be conveniently lifted o
the truck without lifting the body very high, and acci the truck without lifting the body very high, and acci-
dental displacement of the car truck and body is pre. vented. The center pin does not pass through the truck bolster, weakening the latter, as is so frequently found
in the usual practice.
Continuous Drambar.-James Seath Terre Haute, Indiana. This is an attachment for railwa application readily to any form of drawbar. Combined with a yielding drawbar having straps attached to its op posite sides is a thimhle secured to the straps, a draught rod passed around the thimble being adapted for con-
nection with the draught rod of another coupler, and the nection with the draught rod of another coupler, and the
thimblehaving a sliding movement between the members of the draught rod. The device can be used with single or
with multiple buffing springs, or it may be used in con with multiple buffing springs, or it may be used in con-

Car Air Pipe and Steam Pipe Coup-uing.-Robert L. Munson, Silver City, New Mexico ouplings of the hook and catch type, in which automatic interlocking connection is made and the engaged coup ings may be detached from either side or the roof of the car. The improvement provides for the simultaneous
coupling of air brake pipes and steam heat pipes, the coupling of air brake pipes and steam heat pipes, the of couplings for the air and steam pipes, thus effecring aving of time and labor.

Mechanical.

Wrench. - Frederick J. Bourn and William R. Hale, Gualala, Cal. This is a wrench espe ially adapted for uze on vehicle wheels. It will simulta
neously clamp the hub of the wheel and the lock nut of the axle, so that when the wheel is removed the lock nut and its washer will be held in their proper relation to the hub, and will not fall to the ground or be lost, and on beng again returned to position the nut will engage wit iling or lubricating of the axle.

Mining, Etc.
Amalgamator. - George W. Downs, aving apparatus having amalgamating plates, and pro vides a simple form of portable amalgamator, conve niently operated by hand power, to readily save the floa gold in river or beach sand. It comprises a casing with removable sides in which are journaled wheels geared to ether, each wheel having amalgamating wings so ar
canged that the sand rolls down from one wing on th next following wing, while a hopper at the top of the aces of the wings of the first wheel.

Agricultural

Hay Rake.--Isaac G. Lunday, Hubbard, Texas. This invention covers an improvement in which is free to move backward without danger of injur
and and the invent ing any of the parts, the rake head and teeth turnin reely, and whereby, with a simple arrangement of leve mechanism, the ground pressure of the teeth can be in stantly regulated. The machine is of simple and inex disposed near the driver's seat, facilitating the easy ope ration of the machine

Miscellaneous.

Bicycle Attachment - Charles A. Coey, Fairfeld, Wash. This is a simple and inexpensive wheel o be ron with speed aud safety, by an inexperi-
enced rider on the ralls of an ordinary railway track. It
consiste of a third wheel, with concave rim, connected
with the frame of the bicycle by removable and adjustable braces, constituting a rigid framework for spanning he track, while being very light. The attachment may e quickly applied to or removed from an ordinary bi cycle, and
Roller Skate.-Richard H. Lahey Canadice, N. Y. A skate which may be readily and and easy support, has been devised by this inventor. It is provided with a ratchet device to prevent the wheels from turning backward, and a brake which is actuated
sutomaticaliy or by a hand line or cord. The foot rest sutomatically or by a hand line or cord. The foot rest
conisiste of a front portion and a heel portion, the two consiste of a front portion and a heel portion, the two portions being sildable in relation to each
Tap and Faucet.-Jacob Siebert, Jr. Yonkers, N. Y. This is an inprovement in faucet taps barrel, and provided with a valve opened by the aid of the faucet introduced into the tap aud through which the liquid is to be drawn. The invention simplifes the construction, and provides a tap in which the faucet may be readily inserted, and when the faucet is manipulated to secure it in the tap, the valve of the tap will be multaneously and automatically opened, the valve be
ing also automatically closed when the faucet is withrawn. The improvement is also designed to preven
any possible leakage between the valve chamber and the receiving chamber for the faucet.
Flue Stopper.-Louis J. Haberkorn nd Edward O. Beckman, Chatsworth, III. This device inside of the head having one end fixed a collar on the end an arm projecting through the slot of the head, with means for locking the arm in the slot. It may be conveniently applied and locked in place in any sized thimble or fue body, effectually preventing smoke from
entering a room. It also has a scoop section which will entering a room. It also has a scoop section which win and when the stopper is removed the soot will not be spilled upon the floor
Machine for Raising Liquids.Richard Wegner, Neu-Britz, Germany. This is a siphon pparatus working on the principle that the variations in he volume of air conflined in a vessel, in the presence of the assistance of a plunger or pump. A burner making constant flame in a closed vessel causes a partial vacuam, and the suction pipe for raising the liquid enters this communication between the interior of the vessel and he uutside air when the vessel is ioat-controlled mechanism closes the communication when the vessel is essen-
tially empty, and there is an outlet for the discharge of tially empts,
the liquid.
apparatus for Separating Hhavy
rom Liget Materials.-Frank Pardee, Hazleton, Pa

For the separation of coal from slate, and ores and other
materials from impurities, this invent with inclined bottom, in which is a dirt receptacle and chute, a frame parallel to the bottom being supported to be swung by means of a belt and pulleys, whereby the heavier material is carried up and delivered into the
chute, and the lighter material travels downward. The chute, and the lighter material travels downward. The material is carried through water, and simuitaneously
subjected in the water to a shaking motion, a traveling motion, and a tioating action, to effect the separation.
Wire Fence Stay.-Solon M. Thompon, Whitesville, and William H. Bulla, Empire Prairie,
Mo. For the staying of the strands in wire fences at points between the main posts, these inventors have devised a novel and simple form of bent wire braces,
adapted to be removably connected with a series of fence wires, to hold them spaced apart and stiffened, and also afford ground conductors for electricity. The brace or stay comprises two nearly parallel members connected together at or near their ends and having an eye at each wires, and a locking rod passing through the eyes.
Pencil Sharpener.-Oliver J. Lane, Chicago, Ill. 'The body of this device has a transverse
hroat or aperture, the upper side or back of the body havingside flanges, and a slotted curved bit beingivoted between the side flanges and extending through the
throat. A screw extends through the bit slot into the upper side of the back, the head of the screw bearing on he upper convex side of the blade. A pencil of any size way be quickly and properly sharpened with this device. Lamp Wick Trimmer.-William Chandler, North Bend, Canada. In lamp wick trimming hears this inventor has devised improvements wherebs the shears will retain the charred wick or snuff that has action rendering the device more efficient in use, making altogether a superior device which will be cheap to construct. The blades are preferably formed of sheet steel or by drop forging, or they may be cast, and both blades
are curved and flanged, the guard flanges extending are curved and flanged, the guard flanges ext
around the curved outer terminal of both blades.
Combination Kitchen Cabinet. John Tischer, St. Joseph, Mo. This inventor has combined in one article of furniture a table, safe, flour bin,
sifter, kneading board, knife and fork trough, together with a sink, soap box, and various compartmente for the storage of pote, pans, etc., to facilitate kitchen work. With this cabinet, all the things required by one working in a kitchen will be at hand, and dishes may be washed and placed in the cahinet without crossing the room or oving away from the tray
Combined Couch and Storage Caest.-Robert A. Caruthers and Charles P. Savage,
Waco, Texas. According to this improvement the main couch section Accor ang hinged covr for a he main and this section has wheuls to run on suitable tracks connected with the body, and adapted vhen in closed position to be moved longitudinally in either direction, $\left.\right|_{\text {pos project bed beyd the end of the hollow body, afford- }} ^{\text {and }}$
ing ready access to the interior. The head piece is
hinged at one end to the end of the body, the sides of the head section forming a longitudinal continuation of the sides of the body when swung downward on its hinged

Screen Door.-Albert Schreiner, South Evanston, Ill. This door has a panelattached to
its free vertical edge and located at an angle to the door, its free vertical edge and located at an angle to the door,
the panel extending from cop to bottom of the door, and a horizontal panel connecting the door and vertical at the top, a caster being carried by the vertical panel is designed to prepened and closed. of insects into the room when the door is opened.
Invalid's Table.-Max Lesser, Duncansby, Miss. This is a simple form of table arranged to use the table when eating, drinking, reading, etc. without the assistance of a nurse or others. Projecting from a support are vertical rods on which slides an ad justable bracket carrying the table, there being an adjusting me
table.

Bed.-Alonzo R. Turner, Spragueville, N. Y. According to this improvement the bed bottom cross at right angles, each section having parallel side members and two upright undulating bow springe formed on each end. Supports for each spring section project $i^{\text {nwardly }}$ from the side rails of the bedstead frame and engage the upper ends of the
of the spring bed bottom.

NEW BOOKS AND PUBLICATIONS. Theoretical and Practical Ammonia
Refrigeration. By Iltyd I. Red

REFRIGERATION. By Iltyd I. Red
Wood. With 25 pages of tables. New
York: Spon \& Chamberlain. London:
E. \& F. N. Spor. 1895. Pp. v, 146. Price Every day the importance of a knowledge of the laws
of ammonia ice plants is increasing, and this acceptable little manual is to be recommended as appearing at good time. It seems to be written throughout in
very practical way, and to be decidedly to the point. I ompact size and moderate price will insure it wide ap preciation.

SCIENTIFIC AMERICAN

bUILDINGEDITION

MAY, 1895.-(No. 115.)

TABLE OF CONTENTS.

1. Plate in colors, showing a residence at Glen Ridge, N . J., recently erected for W. T. Taliaferro, Esq. Per in the Colonial style. Mr. Chas. E. Miller, architect, New York.
2. Perspective elevation and floor plans of a cottage a Tenafly, N. J., erected for Chas. Vogt, Esq., at a ost of $\$ 5,800$ complete. Mr. W. L. Stoddart, arclitect, New York. An attractive design. dwelling at Kennebunkport, Me. Three perspective elevations and floor plans. A most picturesque
residence, with many artistic features. Mr. Henry P. Clark, architect, Boston, Mass.
3. A log cabin chapel recently erected at Black Rock, Conn. Perspective elevation and ground plan. Mr. Bruce Price, architect, New York.
4. A cottage at Park-Hill-on-Hudson, N. Y., recently erected for Geo. L. Rose, Esq, at a cost of $\$ 12,000$
complete. Two perspective elevations and floor complete. Two perspective elevations and fioor
plans. Mr. A. F. Leicht, architect, New York. A well executed design, showing many excell features.
5. A house at Orange, N. J., recently completed for 'Thomas L. Smith, Esq. Mesprs. Child \& De Goll, architects, New York. A pleasing design in the Colonial style.
6. The Yonkers Public School, No. 8, at Bronxville,
7. A dwelling of modern design, recently erected for strong, Esq., at Montclair, N. J. Two perspective elevations and floor plans. Cost complete, $\$ 6,000$. Mr. Christopher Myers, architect, New York.
8. A house at Indiana, Pa. Perspective elevation and fioor plans. Cost complete $\$ 3,100$. Architect, Mr. in the Colonial style. in the Colonial style.
ed for Frederick S. Gage, Esq. Perspective elevation and floor plans. Mr. E. R. North, architect, Montclair, N. J
9. View of Capistrano Station, California
10. Deeign for a fireplace.
11. 'The brick power statio
12. 'The brick power station of the Brooklyn City Rail14. Miscellaneous Con

Mountains.-'To prevent the park in the Catskill doors, illustrated.-- Quarrying by means of fire.-A new lawn sprinkler, illustrated.-Art in metal tile roofing, illustrated.-An improved hot water
heater, illustrated.-A macadamized road through heater, illustrated.-A macadamized road through
swampy land.-Tinners' hardware and roofers' swampy land.-Tinners' hardware and roofers'
supplies, -Screen doors, illustrated. - Stair fini h. supplies.-Screen doors, $i l l u s t r a t e d .-$ stair fini h-
ing, illustrated.-A hoist for use over hatchways, ing, illustrated.-A hoist for use over hatchways,
illustrated.- Ventilating the school room.-Gas burning range, illustrated.
The scientific American Building Edition is issued monthly. $\$ 250$ a year. Single copies, 25 cents. Thirtytwo large quarto pages, forming a large and splendid Magazine of Architectrre, richly adorned with
elegant plates and fine engraving, illustrating the most elegant plates and fine engravings, illustrating the most
interesting examples of Modern Architectural Construcinteresting examples of
tion and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation
of any Architectural Publication in the worla. Sold by of any Architectural Publication in the worla. Sold by
all rewadealers. MUN \& CO., Publisireb,
S61 Broadway, New York.

PBusiness and Personal.
The charge for Insertion undor this head is One Dollar a line tisememts must be receeived at pubbication opfice as cariv as

"C. S." metal polish. Indianapolis. Samples free.

 Marine Iron Works, Chicago. New catalogue P res. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. I make tine Model Castings in Aluminum andTwining Campbell, Liberty St.. Paterson, N. J.
Handle \& Spoke Mchy. Ober Lathe Co, C agrin Falls, O . Screw machines, milling machines, and drill presses. Tbe Garvin Mach.Co., Laight and Canal Sts.. New York Tbe best book for electricians and beginners in elec ricity is " Experimental Science," by Geo. M. Hopkin Machine macblne tools. Pattern making, Designing, Experimen tal work; technical asslstance if required. Best faciliies, very reasonable prices. P. Prylbil, 512 524 West4l

System of transmission of motive power on an entirely spondence is solicited with a contractor or engineer for the manufacture or sale of the United States patent, serial No. 536.014, fled January 24,
"Aubert," P. O. box 73 , New York Clity.
Rz-Send fornew and complete catalogue or sclentifc New York. Free on apoliration.
退
HINTS TO CORRESPONDENTS
Names and A ddress must accompany all letters,
or no attention will be paid thereto. This is for our
infor or no attention will be paid thereto. This is for our
information and not for pubilication.
Bererensers should former articles or ansern
give date of paper and page or number of question give date of paper and page or number of question.
Inquirica not anseren measonable time should
romeated tcorrespondente vill bear im mind that some answers require not a little research, and,
though we endeavor to reply to all either by letter
or in thi departent.each must take his turn.
oy ers wishing to purchase any article not advertised

 expected without remuneration.
Sciementif. Anerican suppements referred
to may be had at the office. Price 10.cents each. to may be had at the office. Price 10.cents each.
oks referred to promptly supplied on receipt of
price.
Ninerals sent for examination should be distinctly
marked or labeled.
(6523) A. H. P. writes: Please answer which can be umed on a stern or side wheel steamboat. I mean some paddle that can go in the water and come out with less resistance than old style stationary padale entific American, of a cut of a sound steamer that was so equipped. A. The feathering paddle wheel is an old
(6524) H. C. P. asks: What is the weight (avoirdupois) of a box $5 \times 8 \times 4$ inches of pure gold. length over all of the new steamship St. Louis? A. The weight of the box of gold as stated, $111 \cdot 44$ pounds
avoirdupois, of gold dust about 36 that amount. The st. ouis is 554 feet over all. See Scientific America ugust 51,1894 , for illustrated descriphon
(6525) C. S. writes :
(6525) C. S. writes: 1. I have a private telephone line about $23 / 4$ miles long, on which are four make, as described in the Scientific American some years ago, called the bipolar telephone; the receivers and magnetic call bells I bought of an electric company. I first put up the line only one mile long, and since adding two more instruments and lengthening the line, the call speech is about as good as before, which is quite satisthink the instruments would work as well if the line were lengthened one or more miles, and another instrument added 9 A. The telephones probably would; the bells would not. 2. Would it improve the working of
the telephones if the ground wire at the terminals were connected to good ground plates instead of lightning rode bells. It all depends on how good a ground the lightning rods have. 3. The line comes in contact with a good many branches from trees. Would it improve by rimming the trees so as to leave the wire perfectly free? A. This would tend to improve the service. 4. Would it
transmit the sound louder and clearer to add stronger, transmit the sound louder and clearer to add stronger, larger, horseshoe magnets or batteries 9 A. Not necessa-
rily; it might or might not. The best conditions can rily; it might or might not.
only be found by experiment.
(6526) W. M. B. asks : 1. Please mention a good book (late as possible) giving rules for size
and length of wire, amount of iron in flelds and armature, etc., in constructing a motor or dynamo to be run by given current, or to furnish given current ${ }^{\text {P }}$ A. We recommend and can supply Sloane's "Arithmetic of
Electricity," $\$ 1$ by mail. 2. Can two small motors in series, 15 volts 10 amperes each, be ron with direct curren of 114 volts, and how must I connect same \& A. You will require about 7 ohms resistance in circuut with the
dynamos. 3. How must I put the red oxide of lead on storage battery plates ? What good book treats of suhjects ? Is there any solution into which I might put the plates to harden the red lead without injuring its efficiency A. Make it into a paste with dilute sulphuric
acid. Roughen well the surface of the plate. There is no such solution. For storage battery management, we cumulators," by supply, "The Management of Ac cumulators," by Salomons, price
"Voltaic Accumulator," price $\$ 9$.
(6527) D. J. S. asks if there is anv rule height, viz., if a drop hammer on a derrick weighed 3600 pounds, and bas a drop of 15 feet,what would be the

B
B
B
B

weight of the blow? A. There is a definite rule forfinding the force of the fall of a weight, as a pile hammer by gravity, or the force of a blow, as with a hand or steam hammer. See Scientific Ayerican Supplikitrnt, No. 862, on "Impactor the Force of a Blow," in which the details of computation for various percussive forces are described, 10 cents by mail; 3,000 pounds $\times 15$ feet $=$ 54,000 foot pounds, and if the fall of the weight is arrested within three inches after contact, the impact force equals $54,000 \times \frac{k_{3}^{2}}{3}=216,000$ pounds static load, less the loss by friction of air and slides on the falling welght.
TO INVENTORS. An experience of nearly gift y years and the preparation of more than one nundred thousand application for pa- equaled facilities for procuring patents every here. All contempiating the esecuring of patense entice for prices, whico are low. In accordance with the tumes and our ex tensive facilities for conducting the business, Adaress way, New York.
INDEX OF INVENTIONS Por which Letters Patent of the Unised Statee were Granted May 7, 1895,

and EACH BEARING THATP DATE.

Beat
Beat
Bic
Bill
Billia
Boat
Boil

Can in
Car co
Cor
Cor
Cor
Car,

Dish cleaner, C. F. Black.
Display cease. S. Splove
Display device. LVon Or
Door opener, L Dunn.

nngry enaine. Steating engine. Gas eng ne. Ro-

aid

 cind

 Forer
 Haic seeemap., itral.

 ,

Waiter coboeil

 designs.

ƏfDdertisements.
ordinary rates.

 VODD OI METRL YORRERE ootandHandPower Mactinipery - Wood-working Mactes
 s95 Water St., seneca Falls, N. Y.

 CRN ADVTATETON INVENTORS

Oil MIell Supply Go

VANDIUZEN STEAM PUMP Pumps finy Thind of Livion Mompsay inn of Liguio
 F W G WOOD ENGRAVER'S IINE

 HYPNOTISM My oritival metion \&2zine pip pam
gimericau.

No More Dull Shears ! 9 Thi Dind NA NHEARB and

 AMERICAN GAS FURNAGE CO. CHEAP AND PERERECT FUEL GAS GAS BLAST FURNACES,

 ARMSTRONG'S * PIPE * THREADING
 CUTTING - OFF MACHINES

Parson's Horological Institute. School for TWatchmakers ENGRAVERS AND JEWELERS.

THE NEWSPAPER AND THE ART

"OTTO"
cas and casoline ENGINES.

No Boiller, No Danger
The Otto Gas Engine Wks., lecoprd, Philadelphia

WOODEN TANKS

Prices, from $\$ 8$ to $\$ 35$. Send for circular, to Backus Water Motor Co., Newark, N. J

CFESTABLISHED 1845
The Most Popular Scientific Paper in the World Only $\mathbf{\$ 3 . 0 0}$ n Year, Including Postag
This wisiely circulatell and splendidly illustrated teen pages of useful information and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, Cbemistry, Electricity,Telearaply, Pbotograpby, Archltecture, Agriculture, Horticulture, Natural History, etc. Complete list of Patents each week. TIFIC AMERICAN will be sent for one year-52 numberspostage prepald, to any subscriber in the United States, Canada, or Mexico, on recelpt of Three Dollnus by the publishers; six months, 81.50 ; three months, 81.00 .
Clubs. - Special rates for several names, and to Postmasters. Write for particulars. Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address all Letters and make all orders, drafts, etc., payable to

Scientitic Gmerican Sínptement This is a separate and distinct publication from The
ScIENTIFIC AMERICAN, but is uniform therewith in size, every number containing sixteen large pages full
of engravings, many of which are taken from foreigat papers and accompanied with translated descriptions. The Scientipic American Supplement is pubished
weekly, and includes a very wide range of contents. It weesly, and includes a very wide range of contents. In
preserts the most recent papers by eminent writers in allthe principal departments or Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Archeolog, Astronal History, Geography, Arcboolory, Astronomy, Cbemis-
try, Electricity, Light, Heat, Mechanical try, Electricitt, Light, Heat, Mechanical Engineering,
Steam and Railway Enfineeriog, Mining, Ship Bullding, Marine Engineering, Pbotography, Technology, Manufacturing Industries, Sanitary Engineering, Arriculture,
Horticulture, Domestic Ecconomy, Bogra Horticulture, Domestic Ecconomy, Biography. Medicine,
etc. A vast amount of fresh and valuable information obtainable in no otber publication.
The most important Engineering W orks, Mechanisms, and Manufactures at home and abroad are illuastrated
and described in the SUPPLEMENT. and described in the Su
Canada, and Mexico. 85.00 a year; or one copy of th SCIENTIFIC AMERICAN and one copy of the SUPPLE-
MENT, bot mailed for one MENT, bot h mailed for one year to one address for $\$ 7.00$.
Single copies, 10 cents. Add ress and remit by postal Single copies, 10 cents. Address and remit by postal
order, express money order, or check,

Thuxdtug Exition.
The Scientific American Building Edition
issued montbly. 82.50 a year. Single copies, 25 cents. Thirty-two large quarto pages, forming a large and splendia Makazine of Architecture, ricbly adorned witb
degant plates and other fine engravings ; illustrating the most interesting examples of modern Architectural Construction and allied subjects.
A special feature is the prescntation in each number
of a variety of the latest and best plans for private residences. elty and country, including those of very mod erate cost as well as the more expensive. Drawings in perspective and in color are given, together witb Floo
Plans, Descriptions, Locations, Estimgtec Cost, etc. Plans, Descriptions, Locations, Estimated Cost, etc.
The elegance and cbeapness of this magnifcent wort have won for it the Largest Cireculation of any
Arcbitectural publication in the world. Sold by all

2Expoxt Edition

of the Scientipic American, with whleb is incor Orated "LA AMERICA CIENTIFICA E INDUSTRIAL." isbed monthly, and is uniform in size and typograpby Fith the SCILNTIFIC AMERIOAN. Every number concientifc, industrial export paper published. It circu lates throughout Cuba, the West Indies, Mexico, Cen tral and South America, Spain and Spanish possession -wherever the Spanish language is spoken. THE SC uaranteed circulation in al commerial places throuph world. Single copies, 25 cents.
fig Manufacturers and otbers who desire to secure announcements publlsbed in this edition at a vers moderate cost. Rates upon application.
MUNN \& (\%O., Prablisher

GAS AND GASOLINE ENGINES,

FROM I TO 10 HORSE POWER, FOR ALL POWER PURPOSES.
Tris OININ GAB TINGINE OO.
222 CHICAGO StREET, BUFFALO, NEW YORK

On the Crest of the Alleghenies. To those contemplating a trip to the mountains in
search of health and pleasure. Deer Park, on tbe creat
of the Allegheny mountains. 3,000 feet above the sea level, ottiers such varied attractions as a delightful
atmosphere during both day aud nigh., pure water, smooth, winding roads throurh the mountains and val-
leys, and the most picturesque scenerg in the Allegheny range. The hotel is equinped with all adjuncts con-
ductive to the entertainment, pleasure and comfort of
its guests. its guests.
The surr
The surrounding grounds as well as the hotel, are
lighted with electricity. Six miles distant on the same
mountain summit mountain summitit, Is Oakliand, the twin resort of Deere
Park, and equally as well equipped for the entertainPark, and equally as well equipped for the entertain-
ment and accommodations of tits patrons. Bint hotels
are upon the main line of the Baltimore and ohio Raiload, have the advantages of its splendid Vestibuled
Limited Express trains between toe East and West Season excursion tickets, kood for return passage untii
October 31, will be placed on sale at greatly reduced October 3il, will be placed on sale at greatil reduced
rates at all principal ticket offcees throughout the coun-
try. One way tickets, reading from St. Louis, Louisville, Cincinnall, Columbus, Chicago, and any point on
lhe B. © O. system to W ashington, Baltimore. Philadeleither Deer Park, Mountain Lake Park, or Oakland, and the time limit will be extended by agents at either
resort, upon application, to cover the period of the
The season
June 22nd.
For full information as to hotel rates, rooms, etc.,
adrese George D. Desbields, Manager, Deer Park, or
Oakland, Garrett

展| THE |
| :---: |
| THBEMM |
| SPECIALTIES |
| STEAM |

FOR SALE. Inventon oovered by, two patenta
 DEAFNESS

NAFEW-LOVELL OHECK PROTECTOR

 SAMULL NAREW COMPA SAMUEL NAPEW COMPANT,
Cortlandt St... New Yo
U. S. A., Manuracturers.

1EAFNESS BURED! THE EAR ORATUR on shithatry scci,

 THE INQUISITION IN MEXICO-A most interestiog hivioriciu paper, being a narrative of
mhe experiencesf Miles Hhilipp, one of the members
of at tradink and discivery expedition to A frica and

The Only Accurate Judge of a Cow

BABCOCK MLLK TEST
 creamery package mfg. co. 1 to 5 W . Washington St., CHICAOO

IITTLE GIANT BOLT GUTTERS

CONTRACTS WANTED.
 SKATENT STEEL
ARETEE BEST.
 DRY BATTERIES.-A PAPER BY L. K

 dealert
 EXPERIMENTS IN AERONAUTICS.-

AGE and frumall newsdealers.

EWELL DRILLS
All latest improvemenats. Catalague free.
F. C. AUSTIN MFG. CO.
CHICAGO,

[^0]A REVOLUTION!!!
a new COTTON GIN and WOOL BURRER.

Inventive genius has at last produced a machine that

 UNIVERSAL COTTON GIN \& WOOL BURRER CO., Room 60
FISKE BUILDING 89 STATE ST., BOBTON.
 U USE GRINDSTONES?

 FUNDAMENTAL PRINCIPLES OF

GIOVANNI MINA, Piano Organs. REPAIRING aud
TUNNG.
19 SULLIVAN STREET, NEW YORK.
A Valuable Book

 volume of the kind ever placed before the public.
Tbe work may be regarded as tbe product of the stud

 Instructions for working many different processes in
the arts are iven.
 Those who are in search of independent business or
emplopment, relating to the home manu facture of am.
ple articles, will find in it hundreds of most employment, relating to the home mannefactureof sam
ple artices.
sorgestions.

MUNN \& CO., Publishers, SCIENTIHIC AMERICAN OFFICE. 361 Broadway, Now York

Crescent Bicycles.

Minslrated Catalogue Free on Applicaiton.
WESTERN WHEEL WORK, \{ $\begin{gathered}\text { NEW } \\ \text { CHicacion }\end{gathered}$

 elegant porcel
durable
anclsb.
U. S. GU, Sole Manufacturers,
 OMER Hand Lathes HIGH CLASS. LOW PRICES Send for Catalogue. W. W. OLIVER

The

American

Bell Telephone Company,

125 Milk Street, Boston, Mass.

This Company owns LettersPatent No. 463,569, granted to Emile Berliner November 17, 1891, for a combined Telegraph and Telephnne, covering all forms of Microphone Transmitters or contact Telephones.

We Tall Men and
You Short Men
can shake with the medium-sized men. Wictors are made to fit any size this year. The same old story-Victors way ahead.

OVERMAN WHEEL CO. Makers of Victor Bicycles. boston. NEW VORK. DETROIT.			
	gAN PRANCISCO.	Paranc cons: LOS anobles.	Portland.

FIVE MODELS-LadIES'AND MEN'S. MONARCHM CYCLE CO.

VOLNEY W. MASON \& CO. FRICTION POLLETS, CLLTCHES, and ELEVATORS
 $\overline{\text { CLARK'S PATENTED-}}$ Rotary Upholstery Brush.

BUY TELEPHONES

 Our guarantee and instruments are iso
WEST'ERN TELEPHONE CONSTRUCTION CO.,
440 Monadnock Block, CHICAGO. 40 Monadnock Block, CHicAGO.
Largest Manufacturers of Telephones in the United States
 NICKEL Electroplating Apparatus and Material.

The New Model Remington ${ }^{2}$ Typewriter:

MATCHLESS CONSTRUCTION. MATCHLESS CONSTRUCTION,
UNEQUALED DURABILITY,
UNRIVALED SPEED. Unrivaled Speed. Many Notable Improvements. sind fon ilustrated cataloguk. Wyckofp, SEAMANS \& BENEDICT, 327 BROADWAY, NEW YORK.

Hygienic Refrigerator.
 The BEST for Obvious Sanitary Reasons.

 Compartments All Removable and Entirely Separated.Manufactured and goid by found at hest dealers in all larke cities.
THE HYGIENIC REFRIGERATOR CO., 35 Hanover Street, Boston, Mlass.

 NEW - MAIL Highest Possible Grade.
Men's
and
Ladies for 1895 .
Pat-
terns.
\bullet Wm. Read \& Sons, 107 Washington St., Boston MANUFACTURE OF BICYCLESS-A

The Bullet.

A roll film camera that hits the mark every time. Reloaded in Daylight.
The Bullet is fitted with our new automatic
shutter. One button does it all-sets and releases shutter. One button does it all-sets and releases
the shutter and changes from time to instantaneous.
Achromatic lens. Handsome finish An Illustrated Manual, free with every instru-
ment, explains its operation and tells how to fnist ment, explains its operation and tells how to finish
the pictures- but " wee do the rest t when you prefer. EASTMAN KODAK CO. Camera Catalogue Free. Rochester, N. Y.
They All Like It. The Ladies Like It
So Do The Men. Children Enjoy It. Layman Pneumatic Boats. Place your order in time to
be filled for this oesain
Free-Orr Descriptive cata-

Are perfect in construction, workmanship and finish, and contain more modern improvements than any other Camera. We
make several styles and guarantee them all ROCHESTER OPTICAL CO.
22 SOUTH STREET, ROCHESTER, N. V.

[^0]: M1NTIP Vapor engine and POWER COMPANY
 8 Erie Stacet, Gran
 8 Erie Sta
 Gasoline La

