

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART. SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACICRES.

1. Large oven furnace. 2. Rotary blower. 8 and 4. Experiments with the blast. b. The gas-producing plant b. Large melting furnace. 7. Furnace for tempering inow ing maciine cutters. 8. Soft metal furnace.

THE AMERICAN GAS FURNACE COMPANY'S GAS PLANT aND HUKNAUEid.-[Dee page za.」

Srientifir Ammerian.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE RCIENTIFIC AMERICAN.

The scientific American Supplement

Building Edition.

MUNN \& CO., Publishers, $\begin{aligned} & 361 \text { Broadway, New York }\end{aligned}$

Tr Readers are specially reausted to notify the
NEW YORK, SATURDAY, JANUARY 12, 1895.

TABLE OF CONTENTS OF

SCIENIIFIC AMERICAN SUPPLEMENT

No. 993.

For the week Ending January 12, 1895. Price 10 cents. For sale by all newsdealers.
I. CHEMISTRY.-Origin of Nitric Acid.-By Dr. T. L. PHIPSon.-A debated question in chemistry examined at length, with a theory
$\begin{array}{ll}\text { II. ClVIL } \\ \text { ERNEST } & \text { ENGINEERING.-Concrete } \\ \text { L. RANSOME. } & \text { Construction. - By Mr. }\end{array}$ and general concrete work.
The Simplon Tunnel.-A gigantic project.............................
tion of the longest tunnel in the world, with full data.............
III. CYCLING.-The Automobile Bicycle.-A bicycle with gasoline engine to propel it.- -3 illustratio
IV. GEOLOGY.-Recent Glacial Studies in Greenland.-Valuable contributions to contemporaneous geology and to old-timeglalial The seventh Winter Meeting of the Geological Society of
America.-Report of the proceedings at the Baltimore meeting... HORTICULTURE.-Serrastylis Modesta.-An orchid of ne mechanical engineering.-The Engine Room of a Great Steamer.- An illustrated description from the popular and scienI. miscellaneous.-A Gossip on Tobacco.-All about the weed.-Its good and bad qualities.-3 illustrations................. VIII. PHYSICS.-Professor Victor Meyer's New Method of Deter-
mining High Melting Points.-Ingenious application of the air thermometer to pyrometry...
The Amster Tachymeter.-An apparatus for measuring the . RAILROAD ENGINEERING.-Beak Locomotives.-A novelty in French railroad practice.-A locomotive constructed to reduce
X. TECHNOLOG Y.-The Manufacture of Salt.-By Thomas Ward. -An excellent contribution to applied chemistry.-How salt is

JAMES H. GRIDLEY.

It is with the deepest sorrow we record the decease on the 25th ult., at Washington, of Mr. James H Gridley, the active manager of the branch offices of the Scientific American in that city.
Mr. Gridley was born in Boston, Mass., January 15, 1833. His family removed to Providence, R. I., when he was quite a lad, and there he received his early education. In youth he was more than ordinarily intelligent and quick to learn. Among his early acquirements was stenography, and his knowledge of this art, a rare accomplishment in those days, gave him a position as stenographer and clerk with Fowler \& Wells, phrenologists, New York. In 1854 he was in Cincinnati, learning the art of mechanical drawing in the patent offices of Knight Bros.; subsequently he had practical experience in a machine shop. 1858 finds him in Washington as a mechanical draughtsman and stenographic reporter in Congress.
In 1860 Mr . Gridley entered the Scientific Ameri CAN office in Washington, where his sterling abilitie found immediate employment and recognition. His conspicuous talents soon caused his promotion as manager, a position which he continued to hold with out interruption until his decease, always enjoying the confidence and esteem of his employers. The business interests of Messrs. Munn \& Company in Washington, it is known, are very extensive. Of these, in all their details, Mr. Gridley had the man agement, yet such were his superior qualities as a business man that in all these years there was neve an example of irregularity or confusion. No one could have been more devoted to the interests of those for whom he acted than was Mr. Gridley. He was im plicitly relied upon, and discharged every trust with zeal and ability.
The number of employes under his management was quite large. He had the happy faculty of so directing their efforts as to yield the best industrial re sults, and yet every individual revered Mr . Gridley a a friend and associate.
As the head of a large establishment like ours, the number and variety of important questions relating to Patent Office law and practice, that constantly arose
for decision was marvelous; but Mr. Gridley disposed of them with rapidity and almost unerring judgment. He was necessarily brought into frequent intercourse with the various officials of the Patent Office, from the Commissioner down, and it may be said, without affectation, that he invariably commanded the respect and esteem of those with whom he had dealings. Mr Gridley's position often brought him into communica tion with the heads of the various government depart ments, with governors, senators and representatives He is remembered by all for his kindly disposition and satisfactory business methods. His domestic relations were all that could be desired. He had a lovely home and here, after the business cares of the day wereover, he was accustomed to enjoy the refining influences of music and literature. He was one of nature's noble men. To us his loss is irreparable.
'Green be the turf above thee,
Friend of our better days
None knew thee but to love thee,
None named thee but to praise."

PARALLEL BOUNDARIES.

To the Editor of the Scientific American
In your issue of December 15 I find an article on page 371 relative to the migratory character of parallels of latitude, in part as follows:
"From the Lake of the Woods to Vancouver's Island, the 49th parallel has been established as the boundary line between the United States and British America, for a distance of more than 1,200 miles. Simi larly, the north line of New York, Vermont, and a par of New Hampshire is the 45th parallel for more than 250 miles. The shifting of these two boundary lines, consequently, brings alternately under the jurisdic tion of the United States and Canada two strips of land 60 feet wide and 1,200 and 250 miles in length.
"Together they contain 11,000 acres, or land enough for a hundred good sized farms. Tinis land was all on the Canadian side in April and May, 1890, and in May 1891, all on the United States side in Nov., 1890, and again in Dec., 1891.'
Without occupying any of your space commenting upon the usefulness of this discovery, if it is one, I think you need have no apprehensions relative to its effect upon boundary lines that may have been origin ally referred to some parallel of latitude, as was the line between Pennsylvania and New York fixed by decree upon the 42 d parallel.
This line was located on the ground by commission ers in 1787 , one of whom was the celebrated David Rit tenhouse (a surveyor then without a peer in this country or any other), with all the precision avail able at that time, and monuments placed at every mile.
After a lapse of nearly a century, many of these monuments were more or less displaced or lost, and portions of the line became somewhat obscured. Commissioners for both States were authorized about the
year 1875 to investigate this subject. The commis sioners on the part of Pennsylvania proposed to go back to the original decree and fix the line upon the 42 parallel of latitude, with all the precision of mod ern science.
The following extract from the report of the New York commissioners will show the position taken by that State :
"Since this boundary was fixed by methods always mployed ir, laying out boundaries described as paral lels, and since the work was of the best quality of it day, therefore, according to all precedent and lega ruling, there can be no doubt that the line marked on the ground by our commissioners in 1786-7 is the bounding line between New York and Pennsylvania; and every effort therefore should be made to restore this line."
In such cases the practice is to use landsmarks and all available testimony to recover as many points on the line as possible, and then to connect these with traight lines.
This method was adopted in the final settlement of the boundary between the United States and Great Britain, and in all other cases with which we are familiar.
Thus we see that boundary lines, whether between States or nations, when once established on the face of the earth, agreed upon by all the parties interested and monumented, none of the gymnastic performance of the magnetic needle, variations in isogonic lines, or ny modern discoveries as to the migratory characte of parallels of latitude, will ever disturb them there after. Even the joint action of two States is not suff cient to move a boundary line that has once been es tablished, until such action has been ratified by an act of the United States Congress.
Any one desiring to pursue this subject farther will find ample satisfaction in the final report of the New York commissioners, to which the surveyor's (Maj Clarke) report is appended, 1886. What map of New Hampshire shows any part of that State limited by the 45 th or any other parallel of latitude?
N. Spofford,
urveyor for Massachusetts on her northern boundary
Haverhill, Mass., Dec. 31, 1894.

Japanese Athletics.

Athletics hold an important but subordinate posi ion in the schools of Japan. Once a year there is a gathering of all the students in a district to engage in athletic contests. In those seen by Mr. Hearn, and described in "Glimpses of Unfamiliar Japan," six thousand boys and girls from all the schools within a distance of twenty-five miles were entered to take part. A circular race track, roomy enough for an rmy, allowed four different kinds of games to be per formed at the same time
There were races between the best runners of dif ferentschools, and races in which the runners were tied together in pairs, the left leg of one to the right leg of the other.
Little girls-as pretty as butterflies, in their sky blue hakama and many-colored robes-contested in races in which each one had to pick up as she ran three balls of different colors out of a number scattered over the turf.
The most wonderful spectacle was the dumb bell exercise. Six thousand boys and girls, massed in ranks about five hundred deep; six thousand pairs of arms rising and falling-exactly together; six thousand pairs of sandaled feet advancing or retreating together at the signal of the masters of gymnastics, directing all from the tops of little wooden towers; six thousand voices chanting at once the "One, two, three," at the dumb bell drill: "Ichi, ni-san, shi-go, rokushichi, hachi."
The games besan at eight o'clock in the morning and ended at five in the evening. Then, at a signal, fully six thousand voices pealed out the national anthem, and concluded it with three cheers for the Emperor and Empress of Jman. The Japanese, intead of shouting when they cheer, chant with a long cry, "A-a-a-a-a-a!" which sounds like the opening tones of a musical chorus.

Wreck of an Engine.

A serious accident occurred recently to the great engine in the blast furnace of the Carnegie works at Braddock, Pa. The engine was used for four years to furnish the hot air for two of the great furnaces. The engine was disabled by a mass of iron falling on it from a height of twenty feet. Several of the pipes were crushed, and the engine " ran away" and was broken to pieces by the violence of its own action. The fly wheel, which measures thirty feet in diameter, flew apart, and pieces of it weighing two tons were hurled more than a block away. The engine house was demolished. The loss is about $\$ 15,000$, and it will necessitate closing the furnaces for an indefinite period.
The output of the furnaces was about 250 tons per day, and over 300 men employed in this department will be thrown out of work.

Nut Planting.
To the amateur planter, says a writer in Garden and Forest, no class of the larger seeds of trees and shrubs causes more disappointments and elicits as many questions as do the various kinds of fruits known as nuts. The cause is generally a lack of knowledge, of proper treatment or carelessness. It does not seem to be generally understood, although the fact has been stated over and over again in horticultural journals, that many of these seeds retain their germinative power for a comparatively short time after maturity, unless they find the proper conditions for their preservation. The acorns of the white oak, Quercus alba, for instance, often crack and sprout and show the so-called root before the fruit falls from the tree. If these acorns are gathered and allowed to dry for a few weeks before planting, it is unlikely that any of them will grow. planting, it is unlikely that any of them will grow. The same result follows in nature, if they fall on ground
which is hard and dry and continues so for some time afterward, but if the ground is moist, the radicle or incipient root will soon enter it and be secured from drying, unless the soil itself should be deprived of moisture. What is true of the white oak is true of other species, although often in a much less marked degree. Some of the black oak group, for instance, bear acorns which are slower in germinating and appear to preserve their vitality better under adverse conditions. It is destructive to the vegetative power of all acorns to collect them in the autumn and keep them uncovered in an ordinary dry room to be planted in spring. But any of them may be preserved for months if simply packed or mixed with moist, but not wet, sand, soil or moss, and kept in a cool temperature, such as would prevail under a light covering of leaves or soil in the open air. Similar treatment must be given to hazel nuts, chest nuts and to beech nuts. In all cases care should be taken to mix in plenty of soil, or to place the nuts in layers so that they do not touch each other, and any tendency to heat and consequent moulding should be guarded against. Butternuts, walnuts and hickory nuts will not grow readily, or at all, if allowed to become thoroughly dried or cured, although the kernel may preserve a fresh appearance for years after germinative power is lost. They will, however, keep their vitality much better and longer than acorns under the same conditions.
As a rule, direct planting in the open ground as soon as the seed is collected is to be preferred, wherever practicable, for most kinds of nuts and acorns. Among objections to this system are (1) the liability of the larger nuts to destruction by squirrels, of the thinner shelled ones by mice and some other rodents, or by birds; and (2) the action of frost in heaving the nuts out of the ground. Where the depredators can be guarded against, the heaving action of frost may be obviated by a covering of leaves or boards laid over the seed. Some growers aim to plant after hard freez ing weather has set in, because there is then less liability to disturbance by animals. In this system of planting an extra quantity of seed is required to allow for failures or mishaps, just as is the rule with many field crops.
Walnuts, hickories and oaks generally form long tap roots, and some persons consider it an advantage to have the seed planted where the trees are to remain permanently, as it is generally found expedient to cut the tap root when transplanting. When the seed is planted where the tree is to remain, experiments have shown that these undisturbed trees make a much faster growth, in their early years at least, than those whose main roots have been cut.

The Penny Juggler.

A writer on the streets of old Paris gives in Blackwood's Magazine the description of a wonderíul juggler, who must, however, have performed the following trick by skill rather than by deception :
He asked the crowd for pennies, that is, pieces worth t wo sous; he put five of them into his right hand, played with them, tossed them a few times in the air, and then suddenly flung them straight up to a height which seemed above the housetops.

He watched them intently, as they rose, and as they turned, and began to fall, he opened, with his left hand, the left pocket of his waistcoat, and held it open, perhaps two inches:
Down came the pennies, not loosely or separated from each other, but in what looked like a compact mass. He gazed at them fixedly, shifting his body slightly, so as to keep under them-he scarcely had to
move his feet at all-and crash! came the pile into his waistcoat pocket.
He repeated the operation with ten pennies, and finally he did it with twenty. Yes, positively with twenty! It almost took one's breath away to hear the thud. Never did he miss, and never did the pennies break apart or scatter. They stuck to each other by some strange attraction, as if they had become soldered
in air. There was evidently something in the manner in air. There was evidently something in the manner of flinging that made them hold together.
After wondering each time at the astonishing skill of the operation, I always went on to wonder what
that waistcoat pocket could be made of, to support legislation which shall embrace a detailed managesuch blows. The force, the dexterity, and the pre- ment of the forests. If such legislation were devised cision of the throwing-some sixty feet high, as well as I could guess-and the unfailing exactness of the catch were quite amazing. The pennies went up and came down in an absolutely vertical line.

The Forests of the National Domain.

The small company of forward-looking people who, in the face of almost universal apathy, had been for years urging the necessity of some rational system of management for the forests on our national domain, felt greatly encouraged ten years ago when President Arthur was moved to mention the subject in one of his annual messages. We have no systematic forest policy yet, not even the beginning of such a policy, but we yet, not even the beginning of such a policy, but we
are no longer surprised or unduly elated over the fact that men in places of high authority consider the matter worth talking about, at least. President Cleveland, like his immediate predecessors, in his message to Congress, which assembled last month, strongly advised that some adequate protection should be provided for the areas of forest which had been reserved by proclamation, and he also recommended the adoption of some comprehensive scheme of forest management. He condemned the present policy of the gov ernment of surrendering for small considerations immense tracts of timber land which ought to be reserved as permanent sources of timber supply, and urged the prompt a bandonment of this wasteful policy for a con servative one, which should recognize in a practical
way the importance of our forest inheritance as a vital way the importance of our forest in
element of the national prosperity
The House of Representatives, too, has taken prompt action upon Mr. McRae's bill, entitled, An Act to Protect Public Forest Reservations. The provisions of the bill are simple. It authorizes the employment of the army to patrol these reservations, as has been done effectively in the Yellowstone Park and in the Yosemite Valley, and it empowers the Secretary of the Interior to make regulations in regard to their occupancy, to utilize the timber of commercial value they contain, and to preserve the forest cover from destruction. It also empowers the Secretary of the Interior
to cut and sell timber on non-reserved lands under the to cut and sell timber on non-reserved lands under the same rules as those made for the forest reservations, shall not be injurious to the public interests. The bill had some unfortunate features, but any system which regulates the use of public timber is better than the indiscriminate plunder that has been going on hituerto, and the authorization to use the military for
protective purposes is altogether commendable. The protective purposes is altogether commendable. The
bill was amended, however, so as to strike out, if we understand it correctly, the provisions relating to nonreserved lands, and it restricts the sale of timber on reservations to trees that are dead or mature, thus trained skilled forest practice, instead of authorizing worse than all, it grants free supplies of timber from the reservations to miners and settlers.

It is to be hoped when this measure comes be ore the Senate that its original features will be re stored. In its present form it does little more than to expose the timber on the reservations to new dangers.
We are judging, it is true, from newspaper accounts, and the published text of the bill may show that the amendments are not so bad as they seem. If military protection is assured, that is one step forward, but if such protection is made possible only when the War Department shall consider it worth while, it is a very short step, indeed. No doubt, any measure which gives the assurance of efficient policing of the reservations, or efficiently controls the cutting of public timber, is to that extent a gain, but we certainly want something more definite and decisive than the McRae bill as it now stands.
And, while measures of this sort are being prepared and pressed for passage, why shall we not take immediate steps to examine this magnificent forest property done, so that we can obtain facts to guide us in fram ing future laws, or, at least, to enable us to administer them intelligently? Seven years ago 'we argued the withdrawal of all these lands from sale until a comprehensive report should have been made by some com-
mission capable of deciding what lands to sell and mission capable of deciding what lands to sell and what to hold forever in forest, and we then proposed
that, pending such a report, they should all be put that, pending such a report, they should all be put
under military protection. Why not provide for such a commission now and begin the investigation at once? This work would not interfere with the adoption of any protective policy, and certainly we can get no laws which go farther and deeper, and furnish a comprehensive system of forest management until e have secured possession of forests to manage. The appointinent of such a commission need not be de-
ferred until the passage of a protective law. Its creation would be entirely independent of other action. The work of the commission certainly would not obviate the need of forest protection. It would be in quite another field to furnish facts as a basis for future
at once, the very first thing done by the officials created under it would be to make just such a forest sur vey as a commission would make. This means that the appointment of such a commission as we contemplate would not disturb the administration of any law, but would in every way be in harmony with it, and help to carry out its spirit.

The nation holds these magnificent forests in trust for future generations. We certainly cannot know too much about their extent, their value and their character, and we cannot learn these things too soon. No Congressman who opposes other forest laws need object to the inauguration of such a survey, because a commission can do nothing except to disseminate knowledge and furnish facts as a foundation for future action. Even if every recommendation of the commission should be rejected, we can think of nothing which would be a more powerful stimulus to public opinion than a comprehensive report upon our forest resources. The discussion which would be aroused by such a report, with its accompanying recommenda tions, would be an educational force of the highest value, and our only hope for legislation, immediate or in the future, depends upon the creation of such a public sentiment as will compel action.-Garden and Forest.

Problem in Railroading.

The big siege mortars now being put in place at Fort Point have occasioned considerable difficulty in trans portation. Even after arriving here trouble was ex perienced in hauling them through the city, and the commanding officer at the Presidio seemed imbued with fear that the roads there would be ruined by the transportation of the big dogs of war. Bringing them across the continent was a job. They weigh $1,341,000$ pounds. The mere weight was not of so much impor tance, but the size of the pieces made it hard work The ordinary railroad car is ten feet wide, but the circles on which the mortars revolve are solid circles of cast steel, fourteen feet in diameter and two feet thick. They could not lie flat on acar, because they could not go along without jamming or knocking other cars off the track. Furthermore, there is a rule which forbids cars to be loaded higher than fourteen feet from the top of the rail. It looked at first as if it were nearly impossible. It was the Pennsylvania road that had to do the thinking out of the scheme, for that road had the task of carrying them to Chicago This is the way it was done:
A slot was cut in the bottom of a gondola car, such as is used for earrying coal. This was made wide nough to let in edgeways the circles which belong to each gun. Of course that weakened the car, and long timbers had to be bolted on the floor of the car and to the cross piece in order that it would not collapse. The two circles which were to go on each car were hoisted by a steam derrick and suspended in the slot at just the right height. To tell the truth, the car was technically loaded seven inches too high, but practi cally there was no violation, since the height of 14 feet 7 inches was reached at only one point in the center of the car, and no brakeman would be required to stand there. The lower rim of the axle has sufficient clearance at the bottom-half an inch above the track level would have been enough-but about four inches was taken. The big circles were suspended at that height, while the structure that was to hold them wa built of pine timbers 6×8. These were bolted with tie bolts as securely as possible.
Six cars were so arranged, and the six mortars, with other gear, were loaded on ten other cars, which were ot specially treated. The train thus carried half the load of twelve mortars on one trip. The route was on the Pennsylvania to Elizabeth over the tracks of the Central road, thence to San Francisco via the Chicago Rock Island, and Pacific, the Union and Central Pacific roads.

Six mules that had for four years hauled cars in the lower workings of the Spailand coal shaft, near Lacon, Illinois, were brought to light recently, says an ex change. In all that time the mules had seen no light tronger than the flicker of the Davy lamps the miner carried. The sun was in its zenith when they reached the surface. The astonished mules closed their eyes to hut out the flood of light and kept them tightly clos d while they were led to the pasture lot, a mile distant and turned loose. There they stood trembling as if afraid something evil was about to befall them. Presently they half opened their eyes and peered round in amazement. When they had become accus tomed to the sunlight they elevated their heads. To ward sundown they broke into a chorus of joyou brays. After a quarter of an hour of that music they took to kicking, jumping, whirling around the tee totums, and rolling on the sod as if they had gone mad. The sun and pure air were more to them than ood, and they refused everything put before them to eat.

A NEW MEASURING AND REGISTERING DEVICE. The accompanying illustration represents an im proved device for measuring, registering, and adding a series of measurements and may be used for measuring lumber and for similar work. The device has been patented by Mr. George Krueger, of Johnstown, Pa. A cord or tape line attached to the knob, to be seen at the side of the instrument, is connected to control a wheel which connects with a number of graduated gear wheels, which in turn control a registering device. To operate the mechanism the cord or measuring line

DEVICE FOR MEASURING LUMBER.

is drawn out over the surface to be measured. The length of line drawn out is recorded by the system of gear wheels on the several dials on the face of the instrument. These dials are graduated to indicate measurements from zero to 100 feet board measure (viz., one foot w.ide by one inch thick). Each dial can be made to record the sum of the measurements of boards of the same length, the unit of length being marked on each dial. Thus one dial may be used for 18 feet lengths, another for 16 feet lengths and so on. A knob is arranged on the top of the instrument to move along a scale graduated to indicate lengths of 18 feet, 16 feet, etc., and when the knob stands at, for instance, 18 feet, all measurements taken will be indicated on dial 18. The device will also record the total length in feet of all measurements this being registered on the outer and on the central dials. The central dial registers from zero to 1,000 feet and the great dia up to 25,000 feet. The inventor claims for his patent perfect accuracy, and a gain over similar devices in simplicity, durability and general convenience o manipulation.

AN EFFICIENT FORCE PUMP.

A simple and efficient pump, for forcing a continu ous stream of water at great pressure, has been pat ented recently by Mr. William R. George, of Staunton, Illinois. The accompanying illustration represents a central longitudinal section of the improved pump and gives a clear idea of its construction. The outer casing is made in four parts. The upper part provides a sealed air chamber with an ordinary spout and handle. Below this is a compartment having a closed upper end and a central tube passing through it to form a passageway for water and for the plunger rod. The space at the top of this compartment around this tube forms an annular air chamber, and this serves as an air cushion which assists in ejecting the water. Below this compart ment are two separated pump barrel sections of different diameters. At the bottoms of these are two upwardly opening valves of the ordinary ball pattern. A tubular plunger of two diameters corresponding to the diameters of the two pump sections of the two pump sections
works, as may be seen in works, as may be seen in
illustration, in the two lower illustration, in the two lower
pump barrels. The action of pump barrels. The action of
the pump is , very simple and consequently is not likely to ret out of order. It will be seen that as the plunger is raised a portion of the water above it will be forced out,
 PUMP. and when the plunger is low and when the plunger is low-
ered oped the valve of the upper part of the plunger will be lower end of the pump plunger is twice the area of the upper part, and the volume of water therefore forced upward is sufficient to canse the water already in the pump barrel to be ejected, thus keeping up a constant flow of water. The air cushion, it will be seen, causes
the water to be ejected with great force, and this makes this form of pump especially valuable in
where a hose is to be used in connection with it.

Electricity in Sugar Manufacture

Electricity and bacteriology are the two youngest sciences. They are destined to promote human health and wealth to a far greater extent than has been dreamed by those not familiar with the rapid progress which has been made recently in those sciences. Bacteria, microbes and bacilli are the causes of chemical changes upon which our existence de pends; they cause health and they also cause disease and death. The influence of electricity upon the vital forces of plants and of animals is not well understood. Its effect upon chemical changes and trans formations is only partly comprehended. An elec trical current destroys, disintegrates and decomposes. It also builds up, develops and perfects chemical comit also buils up, develops and a green leaf separated from a plant de binations. A green leaf separated from a plant de
composes carbonic acid. Sugar forms in the stem of the cane from material furnished by roots and leaves An electrical current passed through a solution breaks up strong combinations and forms new combinations How far these results are due to the same cause we cannot tell. The development of electrical science has been so rapid that electricians have not had time to become old. Its progress is so rapid that an expert electrician would find it difficult to keep informed in regard to its new applications to industrial art in all lines, for it applies directly or indirectly to nearly all lines of human effort. The progress of electri cal science is a matter of days or of hours. Th electric lamp is the original star of destiny. I lights up the way to startling discoveries which will affect all industrial arts. The electric current pro duces power, light, heat and chemical effects, all of which are required in sugar manufacture. A wire which passes easily through a keyhole can carry hundreds of horse power to almost any distance. A car bonized fiber of cane produces an illumination. The electric furnace gives heat which is more intense than electric furnace gives heat which is more intense than
coal. The strongest chemical compounds are separ ated and new compounds are formed by electrical ac tion. It seems not at all impossible that electricity may play an important part in future sugar manu facture.
It has been recently discovered that caustic soda is cheaply produced by passing an electric current through a solution of salt. Chloride of sodium-that is, common salt-is a strong combination, but as sodium has also a strong affinity for the oxygen contained in water, and as chlorine has also a strong affinity for the hydrogen of water, the oxide of soda is easily formed by passing an electric current through a solution of salt, forming muriatic acid and caustic soda instead of salt and water.
As the fiber of cane is a valuable paper-making material, and as caustic soda is largely used in cleansing the fiber, it seems that this application of the electric current may be useful to the sugar industry, to the salt industry and to the paper industry; for as salt is one of the cheapest commodities, and as the fiber of ane is practically almost a wa iste product, and as sugar houses have dynamos for generating current the caustic soda which is required in reducing cane fiber to paper pulp may be produced upon the planta tion.

Another application of the electric current in sugar manufacture may be found in clarifying cane juice or sirup. It has been found that a current of electricity at high pressure or voltage inverts sugar, but that a a pressure or voltage which is sufficient to decompose water, the electric current does not invert sugar. Water in the juice is decomposed, oxygen and hydrogen being set free to act upon the impurities in the juice It is said that fifteen European beet sugar factorie will adopt electrical clarification next season.-La. Planter.

The Bearing Power of Various Soils.
Mr. E. L. Corthell, of the Western Association of Architects, gives in a recently published text book the following data as to the bearing power of foundations In clay soils the resistance is from 2 to 8 or 9 tons per square foot, with allowance for friction. In sand the data vary much in different kinds. Sand mixed with loam will not bear more than 5 tons per square foot. Nine and one-third tons per square foot were placed on fine gravel and sand at Urk Viaduct; masonry piers on cylinders 4.8 inches diameter; friction neglected. In India, on coarse sand, not over 9 tons are used. In experiments 20 tons have been placed on sand without settlement. Referring to friction, the author says: Side friction varies from 200 pounds to 600 pounds per square foot. Blackfriars Bridge, on clay, is put at 5 tons per square foot, settled; new London Bridge, 5 tons per foot on piles $=80$ tons per pile, settled badly. Other weights are given of American buildings. Thus, Washington Monument is 9 tons per square foot, inside edge. These data vary
mixture of loam or gravel with the sand; the latter appears to give the highest results. -Architecture and Building.

THE "DIAMOND" SHEARS AND SCISSORS SHARPENER.
The simple and useful little device for sharpening scissors which we illustrate has been put upon the market by the Diamond Cutlery Company, whose offices are at No. 64 Broadway, New York City. The

IMPROVED SCISSORS SHARPENER.

device consists of a nickel-plated metallic case provided with inside grooved runways for holding a special diamond cut file. The top of the case is cut by a groove which holds the scissor in position and guides it when t is passed over the file.
The inside grooved runways holding the file are ar ranged at such an angle as to file the edge of the scissor at a proper bevel, and they permit the file to be adjusted when one portion becomes worn

AN IMPROVED ORE CRUSHER.

The illustration accompanying this notice refers to an improved form of ore crusher, which it is claimed can be operated with less power than is required to run the ordinary forms of such machines. The crusher has been patented by Mr. August H. Schierholz, of 421 California Street, San Francisco, California. The patent provides for a circular pan for holding the ore supplied with a feed spout. The sides of the pan are nclined, and these are provided with openings covered with wire screens which allow the crushed ore to pass out into a discharge spout. At the bottom of this pan circular die is arranged on which the crushing roller travel. These rollers, two in number, extend on cppo site sides of a central driving shaft and are connected with this shaft by a simple and powerful system of gear wheels, as may be seen by reference to the illus tration. Power is applied to the horizontal shaft to be seen in the lower part of the illustration, and this shaft transmits its motion to the vertical drive shaft carrying the rollers, so that the crushing rollers are made to revolve both on their own axles and about the vertical shaft. It will be seen that they will move regularly about the circular die, thus crushing the ore. The frame of the rollers is provided with a common orm of scrapers which move over the face of the cir cular die, thus keeping it free from clogging material At the upper end of the central vertical driving shaft

sCHIERHOLZ ORE CRUSHER.

a reservoir is arranged, and connected with this is a water pipe supported at the upper end of the driving shaft. The nozzle of this pipe revolves with the shaft and is carried around and delivers a steady stream of water on the screens over the openings in the side of the pan. This serves to wash the materials through the screens into the circular diseharge spout, and keeps the screens free from clogging matter.

A NEW LOG LOADER

The illustrations herewith refer to a new contrivance for loading logs on high-wheeled trucks, which is intended to do away with the use of hand windlasses and similar machinery. The device has been invented and patented by Mr. William Brough, Jr., of Warren, Tyler County, Texas. 'The general plan of the device may be readily understood from the illustrations. In the cut presenting the two views, Fig. 1 shows the position of the device with the log raised in position for hauling and Fig. 2 gives the side elevation of the truck, showing the position before loading. The truck is provided with high wheels and a common form of wagon tongue. Directly over the axis of the wheels is a roller or support which serves as a fulcrum for the sweep. At the lower end of this sweep is attached the hain and grapple used in hoisting. At its upper end another chain is attached and this passes around a revolving wheel fastened to the top of the tongue, as shown in the illustration. The end of this chain is attached to a ring which slides along the tongue and may be fastened to a clip at the end of the tongue or yoke. When the device is to be used, the sweep is turned back and the grapple is made fast to the log to be raised. The team is then hitched to the end of the chain and driven forward, thus pulling the chain and moving the sweep, which in turn moves the roller, winds up the chain on the fulcrum and raises the log into position for the fulcrum and raises the log into position for far enough to raise the log to the desired height, a pin is slipped through a link of the chain just in front of the wheel, which pre vents it from slipping back. A rod may be used to operate the sweep in place of the chain though the chain is generally found preferable. It will be seen that the contrivance is exceed ingly simple and durable.

THE BATTLE OF THE YALU RIVER.

The greatest naval battle of modern times was fought between the fleets of China and Japan on September 17, 1894, while Chinese transports were attempting to land troops at the mouth of the Yalu River. When the Chinese fleet sighted the Japanese fleet it steamed out to meet it. The formation of the Chinese fleet when in the open water was that of an accentuated crescent, while the Japanese were in a single line, with the Matsushima in the Admiral Ito, after the firse few round center. Admiral Ito, after the first few rounds ships to bring their guns to bear first upon one flank, then upon the other of the enemy. Chinese fleet then formed in a single line, the The aim was bad. The Chinese admiral soon saw that dis- his position was desperate and ordered the formation The Chinese of the line broken. He sent three ships against the

Japanese line at full speed. It was about this time that the Lai-Yuen, the Chih-Yuen and the ChaoYung were sunk. The Chinese cruiser Chih-Yuen, commanded by Captain Tang, closed with one of the enemy's ships with the intention of ramming, but was herself then attacked by four Japanese ships, which closed around her. The Chih-Yuen, under this combined fire, was ripped up by shots under the water and went down with all on board. This is the feature of the battle we illustrate. The flagship Matsushima had been the object of the Chinese attack throughout the fight. A Chinese shell struck and dismounted a quick-firing gun, and the commander and the first lieutenant were killed, 120 of the crew were also lost. Admiral Ito transferred himself and his staff to the Hoshidote, and in a short time was in the thick of the fight. The total loss of the Chinese, including the cruiser Kwang-Kai, which was blown up while making her escape, was five vessels.
The quick-firing guns gave the Japanese an immense advantage, scattering showers of splinters, occasionally setting the Chinese ships on fire and riddling everything that was not protected by armor. In the course of the action one of the smaller Japanese ships was seen with her propellers out of the water and her bow nearly under. Another was seen to be on fire, enveloped in flames and apparently sinking.
The Yoshino and Matsushima were burning fiercely. The former, after receiving two shots each from the Ting-Yuen and Chen-Yuen, was enveloped in a cloud of white smoke, which lay heavily on the water and completely covered the ships. The Chinese vessels waited for the cloud to clear and got their port guns ready, but before the Yoshino became visible their fire was diverted by a Japanese vessel of the Matsushima type, which came on at a distance of 2,200 yards on the port quarter. The guns laid for the Yoshino were fired at the newcomer, with the result that she began to burn. Whether or not these three Japanese ships received mortal injury was uncertain. In the latter part of the battle the Chinese ironclads ran short of common shell and continued the action with steel shot. This was ineffective, as the Japanese vessels had no armor. The two ironclads fired 197 rounds with 12 -inch guns and 268 rounds with 6 -inch guns.

About 4 o clock the Ting-Yuen was badly on fire forward, the smoke impeding the working of the fore turret. Beiore 5 o'clock the Japanese had ceased firing, and the distance between he fleets was rapidly increasing.
In regard to the conclusions to be drawn from the battle, it may be said that the Chinese battleships

proved formidable. The Chinese ironclads stood the Their upper not a shot penetrated a vital part. The barbette pro tection of the 12 -inch guns was most effective, few men being wounded within the barbettes. Two barbette turrets were intact after the action. This fact, however, coupled with the fact that the 6 .inch guns at both ends of the ships, which were only slightly protected, were also undamaged, seems to indicate that the destructive effect was due to the enormous number of projectiles from the quick-firing guns rather than to the skilled direction of the shots. The maneuvering of the Japanese first division excited great admiration. Taking advantage of their speed and the long range of their guns, they always kept at the distance which suited them, maintaining perfect order throughout the fight, attempting nothing sensational and never coming within destructive range of the heaviest guns. For our engraving we are indebted to the London Graphic.

nchman's Views on the Safety Bicy it Now is and its probable Future.

Mr. Henri Desgranges, in the Revue des Revues, gives a very able review of the present state of bicycle riding and bicycle manufacturing in France and also in other countries of Europe and in America, of the evolution which has led to the production of the bicyle of to-day, and the possibilities of further improve ment. We reproduce the leading thoughts of his article without comment, and hope it will be interesting to our readers to become acquainted with the views of a Frenchman on this important subject.
Mr. Desgranges first recalls the various steps in the development of cycles preceding the introduction of the safety bicycle, and then speaks of the great difficulties and the intense competition on the part of makers of the old type machine which opposed the progress of the safety in France. The new machine seemed to be a very frail thing, its frame was weak, its appearance rather awkward, and improvements were coming very slowly. Still, every day some material modification was being made. At the time of the aces, Bordeaux-Paris and Paris-Brest (in 1891), the le a beautiful machine at last, was thenceforth ready to fly to the conquest of the world.
Now even the most obstinate adversaries have been won over. Those who yesterday were indifferent are enthusiasts to-day. There is scarcely anybody in France, whether rich or less fortunate, and in any position of life, to whom the safety bicycle has not afforded some moments of pleasure, while to many it has been a source of real happiness
The safety bicysle has completely revolutionized our conceptions of distances. The word mile has lost its prestige; heretofore a man could make about 4 miles an hour, now he can cover $12,15,20$ miles and more in the same time. This possibility has for tourists an nvincible attraction, an irresistible charm To go still quicker and farther. that is the inspiring aim. To produce speed by one's own strength, without anybody's aid, to be one's own motor, these are thoughts which fire our imagination and feed the bicycle passion.
Cycling as a sport is still more interesting, from a moral point of view. Quite a large number of our young men, who formerly were addicted to stupid habits, and the seeking of nonsensical distractions and vulgar pleasures, are now vigorous, healthy, energetic, and for the sake of this extraordinary machine submit themselves to an ascetic rule of life, and, induced by taste and passion, acquire habits of temperance, the imperative desire of quiet and regular living, and, most important of all, the steady exercise of self-control, by resisting their appetites and doing, without hesitation, all that is required for effectual training.
I know there are higher aims in life. One may plan greater things as a programme of one's existence Other contests are nobler and more beautiful than the contest of a race. But whatever may be the motive which actuates you, it is good and refreshing to think that in our country men are able, even for an apparently trifling purpose, to show by their actions that they do not believe the essence of life to consist in merely eating, drinking and sleeping well.
This is a thought which cannot be too much emphasized. The safety bicycle is training for us a generation of strong and healthy men, of vigorous athletes, of energetic strivers for success and improvement; it is a mighty agent in the physical and moral regeneration of our people; there certainly are not many things and ideas which deserve the same praise.

Then look at the important interests and the num ber of workers connected with this flourishing industry How many men owe to it a living and prosperity !
Again, what immense progress has been made in the manufacture of cycles! Ky constant efforts the original type of the machine has been gradually transformed. Assiduous work and indefatigable endeavors have been necessary to bring the safety to the almost absolute perfection which it has now to
basis for the solution of the problems of the day before Of the various parts of the machine, the frame, the skeleton of the cycle, is, perhaps, the one which ha been modified most radically in the course of several years. The bad machines with a straight body, which may still be seen in some of our provinces, were the first venture. They were, however, lacking in rigidity and numerous modifications were introduced to remedy this defect. Although some of the "improved" frames were rather strange and ridiculous departures from the original idea, yet a gradual progress was being made toward the present frame, whose characteristic, regular, elegant and logical shape appears to be definitively settled
To the solid tires succeeded the hollow rubber tires making bicycle riding more comfortable. The desire of greater speed led to the introduction of pneumatic tires, and this part of the safety also, from its origina clumsy and unsatisfactory shape, has developed into a light, practical and reparable tire.
These, however, are only the essential modifications. It may be said that every part of the machine was every year subjected to radical transformations. The hollow rim, the ball bearings, and the tangential spokes are important factors in the history of cycle manufacture. Considerable progress has also been made in the construction of the pedals by reducing the proportions of the parts.
It has been the constant aim of manufacturers to diminish the weight of the machine. Every year there has invariably brought a decrease in weight and a corresponding increase in speed. The normal weight of a machine four years ago was about 45 to 50 pounds, and the owner of a bicycle of 35 pounds always cautiously dismounted when he had to cross a paved road. At present, a bicycle of 35 pounds is a big heavy machine, capable of being used on rough roads and supporting a weight of 125 to 140 pounds without danger or any excessive strain. A rider of average weight can pro cure a safety weighing 30 pounds with all accessories A young man may take long rides on a machine of 25 pounds. The racing machines of our sportsmen average from 20 to 23 pounds.
It seems, however, that the weight of the machines emains approximately stationary at the above indi cated figures. Is it not necessary that the rider should feel that he is propelling something, and does he not require a certain coefficient of resistance for the effort he is exerting? There certainly will be made change in the distribution of the weight in the safety; means will be contrived for reducing the weight of the wheels, but the frame, the cranks, the fork, or, in brief, the body of the machine, will remain substantially un altered.

In order to produce a safety ready for use, special machinery of high quality is required. The leading manufacturing firms of France have invested enormous sums

The value of the machinery in a large factory may be estimated at several hundred thousand francs, and the number of machines necessary for the manufacture of cycles is an imposing one. Each of the parts of the safety \bullet bicycle requires several machines for its production. For the frame, which to the uninitiated appears to consist simply of eight tubes, there are machines serving to cut the tubes to the desired length, others to bend the tubes, machines for drawing the tubes, and others for flattening certain parts of the cycle, such as the sockets of the fork. The assembling of the parts of the frame must be made with rigorous exactness, and for this purpose patterns are used for each type of safety. Powerful blow-pipes are employed for brazing the pieces of the frame. In addi tion to the above mentioned machines, the production of the frame necessitates the use of machines for dressing the outer and inner surfaces of the tubes, for cutting and punching or upsetting the heads of the fork.
The other parts of the safety are equally complicated. The wheels necessitate apparatus for giving the rim the desired cross-sectional shape, for bending the rim, and cutting the sections thereof. These sec tions are then assembled similarly to those of the frame to form a continuous rim. The spokes are cut to the required length, provided with a screw thread, and flattened at one end where they engage the journal. After all these preliminary operations. the wheel can be completed by assembling the parts. Each of the above operations is performed by means of one or more special machines.
The most important feature is the manufacture of the ball bearings. The automatic machines, which produce all the axles and journals without requiring any attention, are admirable masterpieces of modern genius. The piece roughly dressed is put into the machine, and after a definite time comes out perfectly finished. After the nickel bath, the axle may be used

There is besides a multiplicity of machines for making the balls, for turning the sprocket wheels and cutng their teeth, and lathes for turning the axles, cones and sockets of the ball bearings. The manufac-
en under tension necessitates the use of additional machines.
A factory with all these machines in operation is very interesting sight, suggestive of prodigous life and activity.
The making of each individual part of the machine also is quite a complicated affair.
The tubes of the frame are connected by means of sockets first cast and then turned on a lathe. These sockets are perforated in the exact directions of the axes of the tubes. The bore is then enlarged suffi ciently to receive the ends of the tubes. The outer surface of the socket is then dressed with a file and the parts of the frame are assembled upon a support or pattern. Pins are used to hold the tubes on the sock ets, and by brazing, the frame is made continuous The file and emery are then used to clean the frame after which it is enameled.
Axles and cones are turned in a bar of steel, on en gine lathes which automatically bring the variou tools into engagement with the bar. The powerfu files employed cut steel as if it were wood, and entire carloads of metal shavings are produced every week at the big factories.
In order to avoid delay, the several parts of the machine are manufactured simultaneously in different workshops.
In a large factory almost all the parts of the ma chine are made upon the premises. Exceptions ar the tubes, the balls, the saddles, the chains, for the pro duction of which special machines are required which would be of doubtful ad vantage in a bicycle factory.
There are other facts connected with the manufac turing of cycles which are of great interest.
The number of workmen employed in a large factory is several hundred, receiving various wages, which sometimes are high. Men having to work on certain delicate parts earn more than sixty dollars a month Each section or workshop has its own foreman, a former workman, who knows how to deal with his men without offending them. These foremen ar skillful workers, and have a fair amount of technical knowledge. Some of them have gone through the government schools.
Our readers (says Mr. Desgranges) will perhaps be surprised that a bicycle factory should turn out more than 15,000 machines annually, and spend more than $\$ 20,000$ a year for advertising in Paris and in the provinces, and should be a customer capable of enriching the printer who makesits catalogues, posters and pam phlets.

First.-Ten years ago the scale of bicycles did not amount to 2,000 a year ; the annual production in England was perhaps 3,000 machines.
In 1893 no less than 5,000 velocipedes have been sold France, and about an equal number in England. In 1894 more than 60,000 bicycles have been nianu factured in France, and the same in England. In the United States last year nearly 110,000 machines have been sold.

Before the race Paris-Bordeaux, in 1891, the produc tion in France was far under 10,000. The number of 60,000 , which has been exceeded this year, includes at least 30,000 machines manufactured by the two largest French factories. A bout a dozen factories produce about 2,000 to 3,000 machines; a good number is capable of an annual production of 4,000 or 5,000 machines. We have no information about Germany, and scarcey know the name of the most important firm, Opel. Italians, Spaniards, and the states of South America are as incapable of constructing a safety bicycle as an agricultural machine. They are still infants in such matters.
Second.-Number of workmen
The firm of Clement employs nearly 500 men during the business season, that is, from March till September. The number of workmen in the entire republic of France certainly reaches 25,000 . Taking into account the industries connected with cycle manufacturing (India rubber, nickel, aluminum, saddlery), it is not an exaggerated estimate to assume that 200,000 men would be thrown out of employment in France if the manufacture of safety bicycles was stopped suddenly.

Third.-There are at least 300,000 cyclists in France; the same number was given for England two years ago, at present there probably are at least 400,000 cyclists in England. In the United States there are more than 500000 bicycle riders.
Many interests are centered in a large factory. The newspaper press is a powerful ally, and catalogu
shed in several editions are largely circulated.
Ant was most efficacious formerly but now bepin lose its power, consisted in the races and the racers. What make does So-and-so ride? This used to be the first question, but now common sense and public opinion have done away with that, and if in the provinces this kind of advertisement still meets with success, people in Paris know that a good racer will always ride well on a good machine.
Such is cycle riding and cycle manufacturing consid-
ered along their essential lines. As above stated, the 69,552 tons, against 70,903 tons in the same period last safet, bicycle as a whole, with its characteristic
features, is a definitely solved problem. In this indusfeatures, is a definitely solved problem. In this indus-
try truly French? We must admit that in this as in many other matters we have imitated our English neighbors. If now we are able to fly with our own wings, how many ideas have we had to take from wings, how many ideas have we had to take from abroad! Our machines are identical with English ma-
chines as to shape and general arrangement of parts. chines as to shape and general arrangement of parts.
It is the same conception of the machine with modifi cations that are trifling and not sufficient to enable anybody to discern the part which belongs to each nation in this common achievement.
Americans, however, clearly have a different conception of the safety bicycle from ours. It might even be said that the difference between their machines and ours results principally from the want of exchange between the two countries. We have not yet found a practical way of creating a market for our goods in America, and the first American machines arrived in Paris but two or three months ago.

What we have seen indicates, as we have said above, two entirely different, although not opposite, conceptions. The Americans have made their machines as if they had never seen ours, and have impressed upon them the stamp of their national individuality. Our machines clearly prove that we had not known the American bicycles. We find in the latter a particular regard for comfort and practical usefulness, and an undeniable tendency toward a uniform type of machine. Some parts may hurt our æsthetic feelings, and we would almost call them rather heavy, just as we feel inclined to think a negro woman ugly, and as the negroes very likely consider us ugly,
There is no doubt, however, that the introduction of safeties of American make will bear fruit in France. There will be an exchange of ideas and views that will be profitable to all, and doubtless will lead to new modifications of the machines.

Will there be a complete revolution? We do not believe that, and it seems to us that the safety bicycle in future will substantially resemble its present type.
The safety bicycle will always be based on the direct utilization of man's strength, and we believe this is an essential condition of its existence. Obese and lazy people dream of safeties provided with petroleum motors, resembling invalid carriages, and constituting a negation of effort and action. The day the safety bicycle will enter upon this road. it will be doomed to die.

Let us leave to impotent dreamers petroleum cycles, electrical cycles, safeties with which the rider exerts
no effort and spends no power, and let us keep for ourno effort and spends no power, and let uskeep for our-
selves those adorable little machines which one must needs love with their charms, and particularly with their virtues of invincible attractiveness.

The Anaconda Mines.

The largest copper smelting property in the world is at Anaconda, Montana. During the past eleven years the magnitude of the plant and its results have been steadily increasing, till now the employes are numbered by the thousand, and the business aggregates over a million dollars a month. About 4,000 tons of ore are daily treated at the smelters, which are in continuous operation. The works constitute a little town in themselves, comprising a large number of different divisions, each subdivided into details corresponding with the requirements of the process of taking the ore from the car and turning it out merchantable copper. The concentrator alone is of vast proportions; the smelter and furnaces cover acres of ground; the eighty tank houses, power houses, storerooms, offices, etc., occupy a large area, and, in connection with this, is the proposed greater converting plant, to cost over a million dollors and intended to be the largest and most complete institution of the kind in the country. The company's thousands of men are also employed in the Anaconda mine, near Butte, and adjacent mines, in their coal mines, fire brick, coke, etc., the payroll exceeding that of any other mine in the United States.
From 1885 to 1892 inclusive the Anaconda Mining Company has extracted from the mines in Butte district over $450,000,000$ pounds of copper. Everything is on a gigantic scale and constitutes an important factor in the great industrial interests of the State.
An agreement is reported concluded between the Anaconda and Calumet and Hecla companies, under the terms of which the former company undertakes to reduce their production to the level of the latter com-pany-say to about $5,500,000$ pounds per month. As in due month of October the Anaconda Company pro 1,500 tons per month. The production of the other three leading Montana companies in October was $6,100,000$ pounds, and that of the other leading Lake Superior company-the Tamarack- 900,000 pounds, these figures about representing the extent of their present capacity. It is believed that the Rio Tinto Company have agreed not to increase their production. Copper shipments to Europe continue on a reduced scale, being about 4,000 tons for November
ear. As 22,000 tons less have been shipped in the five months from July to November this year than last, it is evident that the private stocks of American copper held on the Continent must now be less than at this date in 1893, the public stocks in England and France
showing an increase of 6,068 tons. Consumption both showing an increase of 6,068 tons. Consumption both
in this country and in Europe must have been much larger this year than last, and seems likely to improve

Profitable Fish Farms.

The practice of raising food fish for market has be come of late a very profitable industry, and in some parts of the country is being carried out on an extensive scale.
The equipment of a fish farm, as it is called, is a very simple and inexpensive operation. Land which would be valueless for ordinary farming may be used for the purpose, the only requirement being a plenti-
ful supply of good running water. The best site for a ful supply of good running water. The best site for a
fish farm is a hilly or mountainous district where the fish farm is a hilly or mountainous district where the
water runs swiftly and is interrupted by waterfalls, water runs swiftly and is interrupted by waterfalls,
since this serves to aerate and refresh the water. The fish farms are usually provided with three ponds, each of which is reserved for fish of about the same size. As the fish grow, they are changed from one pond to another. The fry is usually bought at the State or other hatchery, and placed in the first pond. The food for the fish is the principal expense. There are a variety of prepared fish foods on the market, but
it has been found that the fish fed with prepared food have a decidedly beefy flavor. A plan very generally adopted is that of planting the ponds with an abund ance of fresh water shrimp. These grow very quickly and soon provide a plentiful supply of wholesome food. It will be seen that the fish require little attention, and the consequent income from such a crop is almost clear profit. In the season the product of fish farms sells in the market at $\$ 1.00$ a pound, and out of season, if the sale be permitted by law, a much higher price may be realized.

The Return of the Columbian Relics
The steel cruiser Detroit left New York October 18 or Cadiz, Spain. The Detroit carried the precious Columbian relics which had been loaned to the United States government for the purpose of exhibition at the Columbian Exposition by Spain and the Pope. These relics were exhibited in the convent of La Rabida and were continuously guarded by United States soldiers. The Detroit was selected as a suitable vessel to return the relics to Spain and Italy. The Detroit arrived at Cadiz, Spain, November
14. Stories were circulated that ill treatment was 14. Stories were circulated that ill treatment was
received by the officers of the Detroit from the Spanish authorities, but they were refuted by United States Minister Charles L. Adams, who, in a dispatch to the Department of State, dated November 17, says: "I take pleasure in reporting the cordial and generous reception tendered the Detroit and her officers by the civil, military and naval authorities at Cadiz. In addition to the customary honors and courtesies extended the vessel on her arrival, the disembarkation of the historic relics was made the occasion of a great public demonstration, in which all of the local authorities took part." From Cadiz the Detroit proceeded
Italy to deliver the exhibits loaned by Pope Leo. Italy to deliver the exhibits loaned by Pope Leo.
The Detroit was launched October 28, 1891, from ways of the Columbian Iron Works and Dry Dock Company, of Baltimore. The keel of the Detroit was laid March 16, 1890, the cost being $\$ 612,500$, exclusive of armament. She is 257 feet long, the extreme breadth is 37 feet, and the mean normal draught is $141 / 2$ feet. The main battery consists of 9 five-inch rapid-fire guns. The secondary battery is composed of 6 sixpound rapid-fire, 2 one-pound rapid-fire guns and 2
Gatling guns. There is an open gun deck. There is extended through the principal part of the vessel a center line vertical bulkhead, which not only helps
to support the water-tight deck, but adds "backto support the water-tight deck, but adds "backbone" to the vessel.
Especially interesting is the coffer-dam protection along the entire machinery space, which is filled with cellulose made from the fibers of cocoanut husks, which has the property of absorbing eight times its weight of water. There are 500 cubic feet of cellulose in the coffer-dams of the Detroit. The speed of the Detroit is 17 knots an hour.

An Enterprise Deserving Success.

There is in progress at St. James Hall, in this city, a series of lectures on the Alps, by Mr. Garrett P. Serviss, the astronomer, well known to our readers as an entertaining writer on astronomical subjects.
The lecturer not only eloquently describes and beautifully illustrates what he has really seen and experienced, but he also gives much scientific information as he proceeds. Many of the views are artistically colored.
Mr. W. T. Gregg, who has undertaken to furnish New Yorkers with popular lectures on scientific and other subjects, has shown commendable wisdom in choosing Mr. Serviss as the first lecturer of the season

Sorrespondence.

'6The Position of Women in Germany,'

To the Editor of the Scientific American
Every two or three years news is making its rounds the English press that in Germany "two women are used for dragging a plow through the fields:" also " of woman being there harnessed to a vehicle alongside of ox, ass, or cow." If it were considered that a woman at best represents but a tenth or twelfth of a horse power, and that it takes a strong horse, or perhaps two, to drag a plow through the ground, such report would not be published. I for many years traveled on foot throughout Germany and up and down the Rhine Valley, but never either saw or heard of the like published by "Humanitarian," who can never have seen Germany, as shown by hisignorance of its geography Bloomington, Ill.

Louis Matern.

The Russian Thistle.

It is along roadsides and in neglected fields that Canada thistles flourish. In the untilled plains of Da kota or over the leagues of tilled land where wheat follows wheat, yielding in endless successon, year after year, eight or nine bushels to the acre, the conditions are just such as invite such a sturdy intruder as this Russian weed. There are more weeds in the West than in the East because there is more waste ground.
New countries always suffer more from weeds than old ones do, because the felling of the woods and the breaking up of the prairies disturb the equilibrium of things, and every plant begins to make a fight to occupy and possess the land. Agriculture in these re cently settled regions is usually one-sided, and this makes an easier conquest for the invading army. Thr Russian thistle will never get any dangerous lodgment in a well-tilled farm, and where it now exists proper agricultural practice will quickly subdue it. Indeed the only way to subdue any weed is to keep profitable crops growing. Taking this view of the case, what sort of a warfare could the government wage agains this Russian thistle with a million dollars? If it should hire men to pull up and burn every weed they found there would be some seed left, and in a year or two the crop would be as abundant as ever. The only way to rout the weeds is to revolutionize the prevailing agriculture, and since government is not conducting the farms of the West, it is hard to see how the owners of hese lands can be compelled to practice a rotation of rops that would secure them from evil. The fact is that this trouble, like the plague of rabbits in Australia nd the cardoons on the pampas, is one of those evils which always come to a new country where established onditions are overturned. It comes to remind settlers of the weak points in their agricultural systems, and although the lesson is pretty painful in the outset, it will, perhaps, for this reason be remembered longer But, after all, the settlers in new countries take these chances, and they must help themselves. No doubt, government can do something in the way of instruct ing farmers how to improve their farm methods; but, n the terse words with which Professor Bailey conluded his paper, "Weeds are beyond the reach of the sheriff; laws cannot control a vacancy in nature."Forest and Garden.

Destruction of Food Fish.

In view of the careful precautionstaken by the Fish Commission to protect the fish in local waters, it is trange that so little is being done to stop the de truction of our salt water fishing interests. A gradual diminution of salt water food fish is reported all along the coast. This destruction is caused in most cases by willful violation of game laws. The fish phosphate factories, for instance, cause the disappearance of immense quantities of bluefish, bass, and scup. The gill nets at the entrance to bays and harbors have almost exterminated the striped bass, which once was very plentiful, while early every spring which once was very plentiful, while early every spring
pound nets are set for alewives, flat fish, smelts, and pound nets are set for alewives, flatfish, smelts, and
flounders, and these are caught by the ton and spread upon the land as a fertilizer. The most destructive nets probably are the pounds, since they are made of fine meshed netting and cover an immense area. In some instances these nets are 4,000 feet in length and naturally catch immense quantities of canners, killies, butterfish, white perch, and young fry of the blackfish and sea bass which frequent our waters. It is to be hoped that stringent game laws will be adopted and that they will be rigidly enforced.

The Centrifugal speed Indicator.
A liquid, partially filling a glass tube, is employed to denote the speed. The centrifugal force, when the tube is revolved, causes the surface of the liquid to hange from its level position when at rest. rising on the sides of the tube and being depressed in the center For each velocity there will be one state of equilibrium and by graduating the tube empirically the speed can be read. The device is claimed to be accurate and sensitive to rapid changes of velocity.

THE AMERICAN GAS FURNACE COMPANY'S GAS PLANT AND FURNACES.
The use of gaseous fuel in metallurgical and technical operations is a distinguishing tendency of the technics of the present day. This has led to the extensive introduction of producer gas for the larger class of metallurgical operations, while natural gac whose supplies are now fast failing, has in the pāst caused an extraordinary development of processes dependent on its use. We illustrate in the present issue the gas-producing plant and general apparatus of
the American Gas Furnace Company, of Elizabeth, N. J., a system which has secured very remarkable
more will be said later, and which in the cut is seen
to the left of the main apparatus. The blower maintains a pressure of over one pound per square inch. It is provided with a blow-off valve, so that if no air passes through the gas machine, it simply blows off into the room. The air is heated before it acts upon the naphtha. The gas thus produced goes through the pipes to any desired place. It will be seen that in the ordinary operation of the plant no gas holder whatever is required. The blower runs continually, and if all the gas is shut off at once, the air from the blower simply escapes. In the plant, as shown, the blower is run by a gas
fit, leather packing is used at the ends of the vanes. This outer circle of the casting is not a true circle, but is turned out to the arc of a circle for the working portion only, thus saving 75 per cent of the friction of the vanes. In allits details the blower is a result of long experimenting and its construction has even involved the installation of special tools, in order that all the work might be done satisfactorily. In Figs. 3 and 4 are shown some experiments performed with the blower in the writer's presence indicative of the high pressure that can be produced. A stream of water from a watering pot was poured into the blast and was instantly atomized into the finest spray and

Fig. 10.-GAS FORGE.

Fig. 11.-SOFT METAL FURNACE FOR LEAD HARDENING.

Fig. 12.-MUFFLE FURNACE.

Fig. 13.- BRAZING TABLE.

THE AMERICAN GAS FURNACE COMPANY'S GAS PLANT AND FURNACES.

results and which is every day witnessing a wider extension.
Fig. 5 shows the gas plant complete. The gas is a mixture of naphtha vapor and air. Underground at any convenient place is established a naphtha tank. Connected with the naphtha $\tan k$ is a water tank at a higher level. When the water is admitted to the naphtha tank, it displaces the naphtha and forces it into the generating machine. Within the machine is a valve which regulates the height of the naphtha, shutting it off or admitting it, according to whether the level is raised or lowered. A similar valve maintains a constant water level in the tank, so that the naphtha is subjected to a double regulation.
This secures the supply of combustible. Air is
is ments of circles, one for each vane, which work in a
engine which supplies the power required in the fac tory and solely for the purpose of starting the providine in the mornings. a small gas holder the gas holder may be considered out of use. The plant is a self-contained unit. The gas engine drive the blower and is operated by a small portion of the gas produced. As an extreme safeguard a trip valve is provided, which, when the gas falls below a definOne of the shuts it off from the works.
One of the most interesting pieces of the gas-producing apparatus is the blower shown in Fig. 2. This is a four-vane rotary blower, working by a positive action. The vanes are held to their place by four seg This secures the supply of combustible. Air is
blown into the apparatus from a blower, of which $\begin{aligned} & \text { mences, one for each vane. which work in a } \\ & \text { circular groove on the side cover. To secure a tight }\end{aligned}$
carried up like a cloud to the ceiling. A 10 inch file was placed in the outlet and was supported by the blast of air.
We may now see what operations are done by the gas thus made. In Fig. 1 is shown one of the oven urnaces, a type in which a square oblong space is heated evenly throughout. Furnaces of this class have a very extensive application for heating metal products. Cutters, dies, reamers, knife blades, saws and the like are placed on the slab within the furnace and are there brought to any degree of temperature required. The slab is of fre clay, and the peculiar whirling motion of the flame when it enters secures an ven distribution of the heat. The flame is applied
valve, and the articles rest upon the slab untouched \mid Space is not permitted us to go into details of the $\begin{aligned} & \text { beth factory is lighted and partly heated by the }\end{aligned}$ by the flame. This does the work ordinarily executed American Gas Furnace Company's apparatus as fully gas as well as given its power.
in large and expensive muffles, and independent of the as we might desire. It is enough to say that a very saving of the muffles, runs otherwise more economi- large variety of furnaces for every conceivable kind of cally than a muffle furnace.

Fig. 6 shows a large melting furnace. This is used work is furnished, and that by the use of their gaseou for brass or bronze foundry work. The flame enters tangentially and with a slight downward inclination, and the products of combustion escape from the bottom of the furnace. There is no escape of gas or flame from the top, and when the metal is at its when the metal is at its hottest, one can stand over the crucible and look down
into it without inconveninto it
ience.
Fig. 7 shows one of the special furnaces to which the process lends itself so admirably. It is a modifi cation of the oven furnace just described, and is designed for tempering mowing machine rutters. These are fed to the machine on an endless chain, their bases resting thereon, the cutters being supported in an approximately vertical position. The effect of this is to produce differential tempering, the edges being brought to the higher heat, so that as they fall into a tank of oil or water the cutting edge is made hard and the body is left soft. Fig. 8 is a soft metal furnace. In such furnaces as this Babbitt metal, solder or other of the more fusible alloys may be compounded, or it may be used for melting the more fusible metals for cast ings.
Fig. 9 shows another interesting apparatus, a furnace for bluing screws or other small articles, such as the parts of a bicycle chain. Within a gas furnace rotates a drum, provided with helical partitions. The screws are fed in at the back and as the drum rotates pass through the furnaces, each one in an absolutely definite time, and a constant stream pours out from the front of the furnace, all blued to the exact tint required. By varying the amount of gas used or by feeding the pieces more or less rapidly, any desired re sult may be obtained with certainty.
Fig. 10 shows a gas forge. This apparatus provides for the needs of a blacksmith or drop forger. For the latter especially it is designed. The piece of metal introduced at the opening, O , is rapidly brought to the desired temperature. Fig. 11 shows another special apparatus, a furnace for maintaining lead in a state of fusion to be used for hardening steel tools. In this furnace the hotter metal is kept in fusion at any desired temperature, so that uniform results in tempering can be secured by it. This furnace has vertical burners entering opposite to each other at top and bottom, so as to maintain all portions of the metal at an even temperature. Thus a long bar of steel plunged in the metal is heated evenly from top to bottom.
Fig. 12 shows a muffle furnace. This is a more familiar type and is used by assayers, enamelers, and in many classes of operations. It is lined with fire clay and the muffle bottom is protected by an extra slab so that it will not sag. It is found that a muffle with a gas fuel lasts much longer than in the ordinary coal furnace, which also applies to crucibles.
Fig. 13 shows the brazing table, where two blowpipes fitted on adjustable supports bring their flames to impinge on the object to be brazed. This was originally built for bicycle work, but its operations have been found to be so good that it has been adopted by the brazing trade in general. Although our illustrations represent the works at Elizabeth, N. J., the general offices are at 80 Nassau Street, New York.

GAS ENGINE TRICYCLE

 and to less wear and tear upon the furnaceEvery apparatus is evidently the result of painstaking care and thorough technical knowledge, and their aim appears to be to produce the best, irrespective of immediate profit. Their work has re ceived flattering recognition from the Franklin In stitute, and the fact that these furnaces have been recognized as most efficient for certain grades of work is evidenced by the fact that a number of these furnaces are exported annually to foreign countries.
In the factory at Elizabeth, and elsewhere, the gas is used to supply incandescent burners. It also is used in radiators to heat rooms. Thus the Eliza

GAS ENGINE TRICYCLE.

Verily, the field of usefulness formerly held by the horse is narrowing daily. To steam, electricity, and the ubiquitous bicycle comes an ally in the form of explosive gas, so cun ningly applied to the pro pulsion of vehicles as to threaten his utter rout The accompanying illus tration shows the lates improvement in adapting the gas engine to the run ning of wagons on ordi nary roads.
This tricycle is pro pelled by a two horse power Golden Gate bal anced gas engine. It has been tested on the streets of the city under varying conditions as to grade and roadway, and has proved in every instance satisfac tory, being easy to contro as regardsstarting, regula ting speed, turning, stop ping, etc.
The machine is calculat ed to carry three person on the single broad seat though operated by one with surplus power suff cient to trail one or two buggies or a loaded wagon according to the characte of the road. It carrie twelve hours' supply of indirect one due to a more perfect regulation of heat gasoline, or two and one-half gallons, and can easily
attain a speed of from ten to twelve miles per hou on favorable ground. Being geared in such a man ner that the movement of a lever increases or de reases the speed enables the driver to climb grades of onsiderable pitch.
It is claimed to be perfectly safe and is simple in construction, the design of the inventor being to have as few pieces and parts as possible. The wheels and rame supporting the engine are strong and the entir machine is constructed in the most substantial man ner, as if intended to withstand hard usage. It was built on an order from a gentleman in Santa Maria Cal., by A. Schilling \& Sons, 211-213 Main Street manufacturers of the Golden Gate gas engine.-Min and Sci. Press.

HYDRAULIC JAW PLATE PUNCH The accompanying illustration represents one of the powerful hy draulic jaw plate punches in use in the William Cramp \& Sons Ship and Engine Building Yards in Philadelphia. The punch is one of many similar punches used in con structing the great war ships and merchant marine vessels for which the Cramps have gained a great reputation. This particular form of punch is used to cut the plate which are to form the hulls of the vessels to the desired shape. The punch is situated in the ship yard near the immense stays which hold the great vessels while in cours of construction. The illustration has been made from an instantane ous photograph taken while the punch was in operation.
Before placing the plates in posi tion for punching, the exact form of the plate desired is marked on the original plate by a wide chalk line. The plate is then carried to the punch by means of an ordinary traveling hand crane and pulleys, which are clearly shown in the illustration, and to aid in holding the plate in a horizontal position several ordinary wood trestles are generally employed. The steel punch consists of a knife with a very blunt edge which cuts or punches out disks of metal one inch in diameter. By punching the plate so that these disks overlap one an other it is of course possible to cut the plate quickly and neatly to the desired pattern. The illustration shows the punch at work in cutting a plate of steel one inch thick. The friction produced by the punch
passing quickly through such a plate is so great tha t is necessary for an attendant to throw water on the metal as each punch is made. The heat produced by the punch is so intense that each time a cloud of steam arises.

Hydrogen Peroxide

Anhydrous hydrogen peroxide, says Nature, has at ast been isolated by Dr. Wolffenstein in the laboratory of the Technischen Hochschule at Berlin, and the some what surprising fact demonstrated that this substance. which has hitherto been regarded as possessing but little stability, is capable of actual distillation with scarcely any loss under reduced pressure. In attempting to concentrate solutions of hydrogen peroxide in vacuo by the method of Talbot and Moody, and also in the open air upon the water bath, a solution as strong as 66 per cent $\mathrm{H}_{2} \mathrm{O}_{2}$ was obtained, but with a loss of over 70 per cent of the original amount of peroxide employed. Moreover, it was found that when the common commercial 3 per cent solution is concentrated, the percentage of $\mathrm{H}_{2} \mathrm{O}_{2}$ may be brought up to 45 without the loss of any considerable quantity of the peroxide by volatilization, but that as the concentration continues to rise above this limit the volatilization of the peroxide increases at a very rapid rate. For the great loss was proved not to be due to decomposition, but to actual vaporization of the substance. Evidently hydrogen peroxide is remarkably stable at the temperature of a water bath. An attempt was therefore made to actually distill it under reduced pressure. A quantity of commercial peroxide which had been further concentrated until it \}contained about 50 per cent $\mathrm{H}_{2} \mathrm{O}_{2}$ was first purified from all traces of suspended impurities, and at the same time still further concentrated by extraction with ether. After evaporation of the ether the solution was found to contain 73 per cent $\mathrm{H}_{2} \mathrm{O}_{2}$.
This solution was then submitted to distillation at the temperature of the water bath and under the reduced pressure of 68 mm . of mercury. The distillate was received in two fractions, boiling at $71^{\circ}-81^{\circ}$ and $81^{\circ}-85^{\circ}$ respectively. The first fraction contained 44 per cent $\mathrm{H}_{2} \mathrm{O}_{2}$, while the latter was found to contain
no less than 90.5 per cent. Upon again fractionally distilling the latter product, a large proportion distilled at $84^{\circ}-85^{\circ}$, and this fraction proved to be practically pure $\mathrm{H}_{2} \mathrm{O}_{2}$, containing over 99 per cent of the peroxide. The liquid thus isolated
is a colorless sirup which exhibits but little inclina tion to wet the surface of the containing vessel. When exposed to the air it evaporates. It produces a prickly sensation when placed upon the skin, and causes the appearance of white spots which take several hours to disappear again. As regards the much-discussed and disputed question of the reaction of hydrogen peroxide toward litmus, Dr. Wolffenstein finds that even when the pure liquid is made strongly alkalinewith soda and again distilled, the distillate exhibits strong acid characters, so that the acid nature of hydrogen per-
oxide must be regarded as fully established. It is finally shown that the use of ether in assisting the concentration is by no means essential. Ordinary commercial 3 per cent peroxide can be immediately subjected to fractional distillation under reduced pressure and a fraction eventually isolated, consisting of the pure substance boiling at $84^{\circ}-85^{\circ}$ under a pressure of 68 mm .

Coin Alloy.

For every bar which is in the vaults of the mint at Philadelphia there is a record on the books of the superintendent. That record shows the weight and fought in 1890, when the Sherman law went into effect. They have remained untouched from the time when the stamp of the assayer was put on them. Now they will be taken out and melted with copper to form an alloy.
The exact proportion of silver to copper should be nine to one, but in melting a little less than the meas ure of copper is used, so that by adding copper later in small quantities the alloy can be made as nearly as possible of the exact standard. It is easier to work the alloy down by adding copper than it is to work it up by adding silver.

The copper and the bar silver are put in the crucible together. The crucible for melting silver is of handwrought iron. These pots cost $\$ 45$ each. Each of them will hold about 1,000 ounces at a time. Each pot is good for 250 meits. It will cost the mint about $\$ 4,500$ for crucibles to melt the $42,000,000$ ounces of silver.
Gold is melted in a black lead pot which costs about one-tenth as much as the iron pot, but the black lead pot is good for about only thirteen melts.

No silver passes through the iron crucible. A little is absorbed by it and this is recovered when the crucible is melted after it has seen the last of its. useful-
ness. Nothing that could yield any of the waste silver is allowed to get away from the mint without chemical treatment to extract the precious metal.

The melting pots, the slag, the ashes from the fur- ${ }^{-}$July 29, 1878, from Cherry Creek, near Denver, Colnaces, and even the outside pickings from the black orado, and the total eclipse of May, 1882, from Sohag, linings of the furnaces, are ground and sifted to obtain in Upper Egypt.

The grains, and these grains are refined.

The residue from the sieves is put into a sweep machine, which extracts the smaller particles; and the very minute particles of metal pass in the water of the sweep machine to settling vats and wells. These wells are cleaned out at very long intervals, and they always yield a little gold and silver.

Peters-Denza-Ranyard.

Astronomical science has lost three of its votaries during the present month. Dr. C. F. W. Peters died
on December 2 , and Father F. Denza, as well as Mr. A. on December 2, and Father F. Denza, as we
Dr. Carl Friedrich Wilhelm Peters, director of the Konigsberg Observatory, died on December 2, after a protracted illness. He was born on April 16, 1844, at protracted ilness. He was born on April 16, 1844, at
the Pulkowa Observatory, where his father, Prof. C. A. F. Peters, held an appointment under the Russian government. In 1849 h is father was appointed to the Chair of Astronomy at Konigsberg, and in 1854 he was made director of the Altona Observatory, which was afterward transferred to Kiel. The son studied astronomy and mathematics at Berlin, Kiel, Munchen, and Gottingen, and was placed on the staff of the Hamburg and Altona Observatories. Between 1869 and 1872 he made some valuable pendulum observations, chiefly for the Prussian government. As Privat docent at Kiel University he undertook a long series of chronometer tests for the German navy, in the course of which he proved that they are influenced by changes of humidity as well as by changes of temperature. In 1880, upon the death of his father, he edited the Astronomische Nachrichten for a year, after which he was appointed Extraordinary Professor at Kiel University. In 1883 he undertook the direction of the Naval Chronometric Observatory at Kiel, whence he proceeded in 1888 to the directorship at Konigsberg, where he terminated a useful and laborious career.
Father F. Denza died at Rome on the 14th ult. from rebral hemorrhage. He was well known to the sci entific world by his works in astronomy, meteorology and terrestrial magnetism, and at the time of his death was president of the Italian Meteorologica Society and director of the Observatory at Moncalieri, which he founded in 1859, as well as of the Vatican Observatory, which was established by the Pope in Denza that the Corrispondenza Meteorologica Italiana was established in connection with the Alpine Clubs, and that the results of observations at a large number of stations in the Alps and Apennines have been regularly published in the organ of the Italian Meteorological Society. He was elected an honorary member of the Royal Meteorological Society in 1870.
In astronomy his chief work relates to the observa tion of meteors. For several years he issued instruc tions to observers of meteors previous to every im portant shower, and he published numerous tables and papers on the observations carried on under his guid ance, both in Comptes Rendus and the Monthly Notices of the Royal Astronomical Society. When the DirecFather Denza, a very comprehensive programme was drawn up, embracing investigations in meteorology terrestrial magnetism, geodynamics, and astronomy. Observations in each of these branches of knowledge have increased in number every year since then, and the fourth volume of the Pubblicazioni of the Observatory, received by us on the same day as the news of any of the previous ones. Father Denza was chiefly instrumental in making the Vatican Observatory one of those co-operating in the production of the photo graphic star chart. He devoted his best energies to the advancement of the scheme, and to the progress of astronomical photography. The reports to which reference has been made contain evidence of his know-
ledge of what had been done in other astronomical observatories, and of his ability to direct and further the advancement of celestial photography. His services to astronomy have earned for him an honored place in our memory of the sons of science.
Mr. Ranyard was born in 1845. He was educated at Cambridge University, and was called to the bar in 1871. He was one of the founders of the London Mathematical Society, of which he was originally joint secretary with Mr. George de Morgan, Professor Augus-
tus de Morgan being president. He became a fellow of the Royal Astronomical Society in 1864. In 1870 he was assistant secretary of a joint committee of the Royal Society and the Astronomical Society, which or and Oran to observe the total solar eclipse of Decembe 21. On his return to England he undertook to assist Sir G. B. Airy in the preparation of the report of the obervations of the total eclipses both of 1870 and 1860 . Ultimately Sir George Airy transferred the work en-
tirely to Mr. Ranyard, and in 1880 the report was pubtirely to Mr. Ranyard, and in 1880 the report was published by the Royal Astronomical Society as vol. xli.
of its "Memoirs." He observed the total eclipse of

In addition to papers on the corona and matters connected with physical astronomy, he also published papers on the "Early History of the Achromatic Telescope," and on "Photographic Action." In conjunction with Lord Crawford and Balcarres, he undertook in 1872 a series of experiments on photographic irradiation; and in 1886 he demonstrated by a series of experiments that the intensity of photographic action varies directly as the brightness of the object photo graphed, and directly as the time of the exposure. The "Old and New Astronomy," designed by Mr. Proctor, was completed in 1892 by Mr. Ranyard, who contributed to it some very important sections on the structure of the stellar universe.

Protecting Peach Trees.
Many experiments have been tried in attempting to protect peach trees during the winter by covering them with canvas, corn stalks or similar material, or by applying some adhesive substance to the branches themselves. Such attempts have never proved satis factory, however, and the only practical means ap pears to be by laying the trees on the ground and covering them over with soil or coarse material of some sort. To many people this, like many other opera tions with which they are unfamiliar, seems a great task. Experience proves, however, that it is compara tively inexpensive in practice. In setting the young orchard on the college farm last spring this matter was kept in mind, and part of the trees were set with the roots spmead out on opposite sides as much as possible, with the intention of laying these trees down possible, with the intention of laying these trees down
every winter as long as they live, if it is found pracevery winter as long as they live, if it is found prac-
ticable to do this. At least it is hoped to determine how old a tree must be before it becomes too unwieldy to handle in this way. To put down these young trees this fall was a very simple operation. Fifty-five trees were laid down and snugly covered with about four hours' work, thus costing only about a cent a tree. Indeed, the ease with which it was done raises the question whether it would not be well to lay down all young trees for the first year or two, until they become thoroughly established and better able to withstand the winter. Of course, the cost will rapidly increase with each succeeding year until the trees reach their full growth.-Fred W. Card, in Garden and Forest.

English and American Incomes.

The following figures, taken from the last English census, reveal some interesting facts concerning the economical situation of Great Britain.
About 250,000 persons in Great Britain have an annual income of $\$ 1,000$. and $2,000,000$ have an income of $\$ 500$. Thus it would appear that only one Englishman out of every five is capable of supporting a family. It is to be borne in mind that $\$ 500$ a year amounts to only $\$ 1.37$ a day, which is not very much for a family of four persons. On the other hand, there for a family of four persons. On the other hand, there
are in the United Kingdom 123,000 families having an are in the United Kingdom 123,000 families having an
arnual income of about $\$ 3,000$, and 5,000 families with an income of more than $\$ 25,000$.
In the United States, according to the statistics com piled by T. G. Shearman, we have 403,000 families (or about two millions of people) whose annual income amounts to $\$ 2,000$, and more than 10,000 families having an income of more th an $\$ 25,000$.
Taking into account the difference in population be ween the United States and Great Britain, it still will be evident that not only can America boast of a greater number of rich people than the United King dom, but that wealth is more equally distributed and less centralized in the United States.-Revue de Revues.

Railroad Building in 1894.

According to the records of the Railroad Gazette there has been much less railroad building in the United States during 1894 than in any year since the civil war. Some 1,761 miles of new track have been laid in the year, which makes an addition of less than one per cent to the railroad mileage of the country, which at present is 177,753 miles. From 1880 to 1890 an average of 5,000 miles of new track were laid per year but from 1890 to 1893 the average has dropped to 4.000 miles. In the three years previous to 1892 the largest percentage of new roads were built in the Southern States. Since 1892, however. the advantage has been held by the Northern States east of the Mississipp River. Illinois. Arizona and Pennsylvania lead in the number of miles of new tracks laid, over 120 miles hav ing been laid in each of these States during 1894. In Maine, Texas, and Montana about 100 miles of new track have been laid in each State. It is reported that the new year will witness a marked revival in railroad building.
There are in the United States at present $6,000,000$ farms. About one-half the population of the republic or over $30,000,000$ people live on them, and these farm dwellers furnish more than 74 per cent of the tota value of the exports of the country.

LIFE IN THE PAMPAS-A TUG OF WAR. The pampas are the great plains of South America which extend from Patagonia to the Bolivian frontier. They cover an area of 600,000 square miles. The southern portion forms a great desert, dotted here and there with sand pools and marshes. The northern portion is occupied by the vast unexplored territory of the Gran Chaco. The salient feature of the northern and northwestern parts of this huge territory are plains furnishing magnificent pasture lands. These plains are interspersed with dense timber forests, lagoons and rivers. The growths of clover, thistles and pampas grass are most remarkable. On these huge plains millions of cattle roan which are attended by many thousands of cowboys, who herd them mounted on their sturdy mustangs. This wild, nomadic life is arduous in the extreme, but even the lazy cowboy has his holiday. In our illustration, for which we are indebted to Black and White, one of their diversions is represented-a tug of war between two cowboys, or gauchos, as they are called. Each is mounted on a powerful horse of the country, the high horns of the so-called Mexican saddles are connected by a lasso or rawhide. Both horses are urged in opposite directions by their drivers with whip and spur. The gauchos and Indians applaud and make bets, the lasso tightens, then there is a sound of straining of the saddle girths. If they hold, one of the horses is pulled up on
gal force increases with the square of the velocity, the
throwing off of the belts brought an outward bending strain on the rim of the wheels nearly five times as great as that to which they were normally exposed, and, as he proves, dangerously near the point of rupture of cast iron; and the fact that all the fractures took place near the spokes proves that they were caused by the outward bending of the unsupported space between the spokes. Curiously enough, the accuracy of these observations was attested later. A spare pulley was mounted, in place of one of those destroyed, and was set at work to drive a portion of the electric light machinery. For some reason, the load for a short time was thrown off this turbine, and then restored. The next morning the pulley was found cracked in two places, just where the others had given way; and, if its use had been contined, there is no doubt the cracks would have spread until the wheel came to pieces like its predecessors.

Transparencies
A good transparency, sometimes called diapositive from a good negative, is probably the most technically beautiful of all the products of the camera, and, at least by some of the methods of production, the most permanent, burnt-in enamels perhaps excepted. Why, then, are they not brought more to the front? It is difficult to say.
Photographers, like farmers, are chronic grumblers,

Another excellent piece of bread to cast upon the waters would be a plate of glass about the length of the breadth of an ordinary window, say about 20 by 36 , ramed in mahogany or white enamel, and on which has been transferred an enlarged landscape, an attractive residence surrounded by groups or single figures of the inhabitants, etc. Such panels would make very attractive lower window shades, and although, especially if of plate glass, they would be somewhat costly, we believe that, to a man of taste and ability, they would afford protitable employment for many a eisure hour. And that is one of the many ad vantages of such work: it would not interfere with the regular work of the studio, but could be taken up and laid down at any time.
In the various methods by which transparencies may be made, the photographer has an ample field for choice. Lantern slide plates would, for most modern men, be most convenient for slides. and commercial transparency plates on ground glass should probably be selected for much of the smaller decorative pictures. Very convenient, too, especially for enlargements for the panels, is Eastman's transferotype paper, which indeed lends itself readily to the making of all kinds of transparencies
But probably best of all, and as simple as any, is the carbon or pigment printing method, as in technical beauty it is not excelled by any, while, although mono-

LIFE IN THE PAMPAS-A TUG OF WAR.
his hind legs, while his fore legs paw the air. An instant more and he is down, while the rider extricates himself as best he can. The gauchos seldom stay for any length of time in one place; they are very lazy and only work when they see fit. Many of them come from the Argentine Republic.

Flywheel Accidents.

A curious accident took place in a Swiss electric lighting establishment not long ago. The dynamo machines in this particular station are driven by turbine wheels, of which there are four. The main driving wheels, which are attached directly to the turbines, are large open pulleys, with six spokes, made in two pieces, bolted together. The ordinary speed of these pulleys is about two hundred revolutions per minute. A few days before the accident, to make some test of the turbines, the belts were thrown off, and the turbines and attached pulleys allowed to revolve as they would. In general, as Professor Escher, of Zurich, who writes the account to the Schweizerische Bauzeitung, says, the speed of a turbine without a load is about double what it is with a load suited to its capacity; and, by actual count, the large pulleys revolved, at the maximum, 425 times a minute. Some days later, while no one was in the room, all four of the wheels burst, nearly at the same moment, sending fragments through the floor and ceiling. Professor Escher, thinking that an explanation of this curious accident may be of value, shows that, as the centrifu-
and yet here they have something lying at their hands, chromatic, tissue may be had in all the colors of the in their own line, easily produced, always attractive, and waiting only the supply to create the demand. In the reception rooms of most, or, at least, of many, are to be found a variety of articles, all more or less connected with the art, but never, or hardly ever, a transparency; and yet we believe that a proper selection of them would be more attractive and bring more grist to the mill than anything else they handle.
Lantern slides, for example. We cannot remember, in all our wanderings, ever to have seen a lantern slide among the stock of an ordinary photographer, and yet they are now and have long been probably the most popular of photographs. True, the professional slide makers cater remarkably well, but they cannot include everything, and there are few photographers who have not some local surroundings from which interesting slides could be made that would readily find buyers if exposed in showcase or reception room.
Then there are transparencies for decorative pur poses, for which there are pretty metallic frames up to 14 by 17 inches, at least in the stockhouses, comparatively cheap. A few of those hanging about the reception room, especially of local scenery and local celebrities, would meet with a ready sale; and if the photographer, whenever hehasthe luck to make a fine negative of a pretty child or group of pretty girls, would make and frame transparencies from them on " spec," in nine cases out of ten they would be gladly taken and well paid for.

In short, we believe that in the hitherto almost neglected field of transparency making, photographers might find opportunity for much profitable work, oc upation for leisure hours, and an excellent means of advertising themselves.-Photo-Beacon.

Half-Tone Photo Work.

The firm of Le Page has made improvementsin their glue for this process, and now send out a specially clarified brand which leaves nothing to be desired in the manufacture of a printing solution.
The formula, as it now stands with the trial of nearly three years, is as follows :

Clarified glue..	2 ounces.
Water	2 ounces.
Merck's bichromate of amm.	120 grains.
Water.	ounces.
Albumen (dried).	$1 / 4$ ounce.
Water	4 ounces.
Chromic acid (c.	10 grains.

This prints quickly, develops easily, and gives every detail there is in the negative, and for a high average of work cannot be beaten
The methods of burning in are now so well known that it is unnecessary to go into details, but no one need be afraid of a lifting in the etching solution.
The whole process is one of the utmost simplicity.The Photo-Beacon.

The Vanilla Bean.

The so-called vanilla bean is not a bean at all, as is well known, but the fruit of a climbing orchid, Vanilla planifolia, the capsule or pod of which is about three eighths of an inch in diameter and from six to ten inches long, and has a certain resemblance to the so called catalpa bean. The plant in its native home, in Mexico and tropical America, climbs over trees and shrubs by means of slender rootlets sent out from the joints of the stem. It is not a true epiphyte, however, but always maintains its connection with the soil. In its wild state it climbs to a height of twenty feet, but in cultivation it is kept within bounds, so that the unripe pods are not injured when the others are gathered. A late number of Popular Science News contains an interesting account of the method of growing the vanilia, in which it is stated that in Mexico the plant is propagated by cuttings and then trained over some rough bark trellis work in partial shade.
When the plants were first introduced into the West and East Indies, they grew vigorously and produced an abundance of flowers, but no pods. It was discovered that the particular moth which fertilized the flowers in Mexico was absent from its new home, and artificial pollination was resorted to, after which the plants produced abundantly. With a long splint of bamboo the lip of the flower is lifted away and the pollen is transferred from the pockets and applied to the stigma. The work is so easily done that one per son can fertilize a thousand flowers in a morning The pods require a month to reach full size and six months more to ripen. The process of curing is long and complicated, and the aroma of vanilla is said to be produced only by fermentation. In the island o Reunion, in the Indian Ocean, where the plant is grown extensively, the pods are placed in a basket and
plunged for half a minute in hot water, then placed on plunged for half a minute in hot water, then placed on a mat to drain and exposed between woolen blankets to the sun for six or eight days, and kept in closed boxes during the night to promote a slight fermenta tion.
When the pods are perfectly cured, they are a dark chocolate color, pliable and free from moisture. When finally prepared, the pods are tied up in bundles. packed in air tight boses, and when in prime condi tion they are covered with a frosting of needle-like crystals of vanillic acid, which, when pressed between the fingers, gives off the characteristic odor. The supply sent to New York is produced in Mexico, and is regarded as of the highest quality. The amount imported amounts to something like 150,000 pounds a year, while on our Pacific coast a portion of the supply is derived from the island of Tahiti, although the quality of this is much inferior. The supply of
London comes largely from Mauritius and Seychelles, London comes largely from Mauritius and Seychelles,
and the greater part of the vanilla imported into France comes from Reunion. Three years ago more than 500,000 pounds were imported into France from this island, which was twice the amount produced in all the rest of the world.

Nearer to the stars.

In speaking with Alvan G. Clark (the sole survivo of the firm of Alvan Clark \& Sons, and the discoverer of the companion of Sirius) in April of 1893 he ex pressed himself as ready, just as soon as the forty inch was finished, to begin a five-foot object glass, and I rather inferred from his conversation that such was only waiting the completion of the forty-inch. He was then at work on the forty-inch disks, one of which near a low window, which on the outside was level near a low window, which on the outside was level
with the ground. A careless stone from a still with the ground. A careless stone from a still more careless boy's hand could easily have dashed
through the window and smashed the lens, but Clark through the window and swashed the lens, but Clark
didn't seem at all put out when this was mentioned as possible, and simply remarked that the object glass was insured for $\$ 60,000$. Perhaps he had more con-
fidence in the Cambridge small boy than I had. An accident to the glass now would doubtless delay the great telescope from three to four years.
What Americans cannot do in the way of great glasses by the Clarks and by Brashear, and what me ine these great glasses through the genius of Warner ine these great glasses through the genius of Warner ${ }^{\&}$ S Swasey,
It is possible, however, that our great telescopes of the future-I speak now in point of actual size-will be some form of the reflector, such for instance as the one projected by the French for their exposition of 1900, and that which Sir Howard Grubb has but re cently proposed.
The question now arises: Is there any limit to telescopic power, or can we continue to make and use bigger and bigger telescopes yet? To most intelligent people this question will at once resolve itself into two parts. First. Will it be possible to make much greater
lenses? This question our native opticians will answer for up to six or seven feet. Second, Can the mechani cal difficulties encountered in mounting these great telescopes of the future be overcome? When we have
made a perfect object glass six or eight feet in diameter, can we mount it in a slender steel tube 100 to any point of the heavens there shall be no strain upon it sufficiently great to destroy the perfection of the image, and which shall move by the most delicate mechanism and follow uniformly the motion of a star? This question was even a consideration in building the Lick thirty-six inch, but Warner \& Swasey sat sfactorily answered it. That they have done the ame for the forty-inch no one will question. But there must be a limit even to their skill. Just where that limit may be I shall not attempt to say, fo there is something else still more potent to deal with in out future great telescopes, and over which man has absolutely no control.
The atmosphere itself, which is so necessary for our very existence, is the greatest foe to the future grea telescopes, just as it is already to those of to-day.
The ideal place for a great telescope would be that one which had no atmosphere at all. But such cannot be found on our planet, and if it could a new kind of observer w uld have to be invented to run the telescope. Therefore we must be content to work with our atmosphere just as it is.
It is not the clouds that float in our atmosphere and which intercept our view that we have most to dread, though of course if continuous these alone would be sufficient cause for complaint. The real trouble oftenest occurs when the air is very clear. (The clear, crisp wintry night, when the stars are bright and sparkling is the worst possible time for a telescope, for on such a night the images are a mass of boiling and quivering light.) We are at the bottom of a great ocean of at mosphere that covers the entire globe. To see the stars and the other heavenly bodies we must look at them through this vast ocean of air. If this aerial cean would keep perfectly quiet while we looked, it would be all right. But unfortunately that is its last intention. Sometimes it is fairly quiet, but in genera it is very unsteady. Often it is in a fearful commotion The result of this disturbed condition of the air is to more or less totally destroy the image of a celestia body when looked at in a great telescope
As I have said, there are nights when the air is almost perfectly quiet. If under this condition we look at a star through a powerful telescope, it glows with a steady and beautiful radiance. On such a night everything that is at all within the reach of that telescope can be seen with it. The finest and most delicate details upon the surface of a planet, the faintest tar or satellite, all come out with a distinctness that permits the most delicate and accurate observations to be made. If this condition always existed, the work of an observer would be exceedingly pleasant and profitable, but such seldom occurs, and its occurence is rarer the bigger the telescope, and when it does occur it does not last for any great length of time a couple of hours of such perfect seeing and then the air becomes disturbed and the image more or less tremulous and blurred. The delicate details are lost and the faint satellite is blotted from view. If the observer has the run of several different sized tele scopes, he will appreciate this peculiarity of the at mosphere.
There will be nights on which he can successfully use a 6 inch glass that will not permit a satisfac tory use of a 12 inch, and which would wholly for bid the use of a 36 -inch. In this case the tremors pre sent in the air would not be sufficiently magnified by the 6 -inch to affect the clearness of the image. But with the 12 -inch (four times as powerful) these tremors would be so magnified by the greater power of that glass as to spoil the clearness and definition of the image. The yet greater power of the 36 -inch chirty-six times as powerful as the 6 -inch) under thes conditions will so increase the effect of this disturb-
ance as to totally destroy the image. Such nights ance as to totally destroy the image. Such nights
have occurred where features could be seen in the 12 have occurred where features could be seen in the 12 -
inch that were entirely blotted out in the 36 -inch inch that were entirely blotted out in the 36 -inch. But let the conditions be the best for observing with the air steady, and the 36 -inch is far ahead of the 12 inch. It is very seldom, however, that the tremulous ness of the air is not more or less apparent in the 36 inch, and under such conditions it is difficult or impossible to use the highest powers of the telescope One has to wait and watch patiently and snatch a moment here and there of steadiness to do his best work.
Now let us increase our aperture to, say, four nches. The atmospheric conditions being the same, ionable in thering of the air, which has bear powe of the 40 -inch, have become far more objectionable Now let the two instruments remain under the same conditions, but let the air grow more tremulous. We shall notice the effect soonest on the $40-\mathrm{inch}$, and after it has become unbearable in that telescope it will still be tolerable in the 36 -inch, and, much later, in the 12 inch. Now, let us imagine another telescope still more powerful, say several times as powerful as
the 40 inch. The effect of a slight disturbance in the air is multiplied just so many times more, and we
should have to look long and often during a year to find a night that would permit only a few hours of it would be so crippled by the unsteadiness of the air that its effective power would much of the time dwindle down to that of the 40 -inch, or even below it. But when a few hours of the best seeing come, hat marvels that glass would show !
Let us now go still a little further and make our tele scope still more powerful. We rapidly diminish the number of hours in the year that the atmospher would permit its use at all. Still, let us increase the size and power of our telescope-for we may suppose our American ingenuity unlimited-and we shall neve find an hour during which our instrument can be used to perfection, because the slight tremors ever presen in our
So, looking at the matter in this light, we can see how, though the optical and mechanical difficultie may be overcome, the atmosphere itself is going to imit the practical use of great telescopes in the future and in the end, if successfully made large enough, wil prohibit their use at all, or at least make them infe rior to smaller telescopes.
However, though I am confident the working hours of the future great telescope will be much diminished, yet I believe much bigger telescopes will be made and successfully used, but in the end the atmosphere will limit the effective work before the optician and the nechanician give up.
Of course, it is unnecessary to say that a favorable site upon the earth's surface for a great telescope wil aid much in making its powers effective.
As for the telescope proposed by a Chicago man-a arge lens made up of many smaller ones, like the eye of a fly-it is safe to say that no great telescope will ever be built on that plan, and if it should be (and we don't know what people may do nowadays), it will be absolutely safe to say that it will never be successfully used.-Examiner, San Francisco.

The Trolley Postal Service

The plan of employing trolley cars to assist in dis tributing the mails has been tested recently in Brooklyn with very satisfactory results, and it is thought that this success will lead to the introduction of the practice in other cities. The trolley car were first used to transport mail bags between the several post offices. The bags were intrusted to the motorman or the conductor and were carried on the platforms of the ordinary passenger cars. The pos tal trolley cars were then introduced to make it possible to sort and arrange the mail on the way from the central to the rural post offices. The or dinary trolley car was partitioned off into two compartments for this purpose, one section being used as a post office and the other as a smoking car The part of the car reserved for the post office is especially fitted up for this purpose. The equip ments of this novel traveling post office are simila to those ordinarily used. Several postal clerks ac company the cars, and they open the mail bags and sort and arrange the mail on the route. This saves time, it will be seen, and relieves the pressure of work at the regular post offices. Along the entire route these cars stop to take on and let off passengers in the usual way. The cars are run directly nto the post office yards to load or unload the mails. In this work the trolley lines are looked upon as regular mail routes and are regularly engaged and paid by the government. It is said that the postal authorities look with considerable favor on thi adjunct to our mail service and that it is probable very general use will be made of this novel plan throughout the country.

Celebration in Honor of Helmholtz

A memorial celebration in honor of the late Prof Hermann von Hemholtz was held in the hall of the Sing-Akademie at Berlin on Dec. 14. An immense bust of Helmholtz, almost buried in flowers, stood in the enter of the stage. The exercises began at noon Joseph Joachim, the celebrated violinist, took part in them. The eulogy was delivered by Prof. Bezold. The audience was composed of the most celebrated men of Germany and included a large number of the nembers of the Reichstag and the municipality as well as the Faculty of the University of Berlin. Prof. Helmholtz was specially honored by the presence of the Emperor and Empress.

Porous Glass for Windows.

The latest hygienic craze in Paris is the use of porous glass for windows. This is declared to possess all the advantages of the ordinary window framing, and, while light is as freely admitted as through the medium of common glass, the "porous" further admits air too the minute holes with which this is intersected being too fine to permit of any draught, while they provide healthy, continuous ventilation through the apart ment.-The Hospital.

RECENTLY PATENTED INVENTIONS.
Rallway Appliances.
Sectional Journal Bearing.-Wil liam J. Tripp, New York City. This is an improvemen providing a revoluble bearing more specially designed for car wheels and axles, reducing the friction and taking u lateral thrust. The car wheel has an annular exterior r cess in its hub, which is inclosed by a journal box having an annular interior recess, there being rollers in the re cesses between the journal box and hub, while the whee wheol center, there being in the recesses of the web the adselted to bear against the journal box
Car Brake.-Russell W. McKee, Clif ton, N. J. An emergency brake has been designed by
this inventor, adapted for use in connection with othe brakes, especially on trucks of trolley and cable cars. The truck is provided with curved guideways, shoes pro
vided with pins working in the guideways, there bein springs secured to the shoes and to the truck frame while bell cranks above the shoes have one arm engag ing the shoes and the other arm adapted for connection with an operating lever. It is designed that with this
improvement the car may be stopped so suddenly that mprovement the car may be stopped so suddenly that page being also effected without disagreeable jar.

Mechanical.

Indicator.-Joseph H. Scott, Aspen, accurately at all times the position of a cage in the shaft of a mine. The indicator consists of a traveling chain belt driven from the hoisting drum through the medium of sprocket wheels. The length of the chain belt is prosprocket wheels are also regulated to insure the prope oovement of the chain belt. The front run of the chai ating plates are secured on the chain belt and dino different levels of the mine shaft. The pointer is se cured to the guideway and is adapted to indicate the levels in connection with the indicating plates as they pass through the guideway.
Shaft Tug. - Arthur Edwin Hart Broken Hill, New South Wales. This invention is de signed to supply a more durable and ornamental shad which is formed of on \% outside piece of leather joine and stitched externally, and packed internally with scrap
leather, and the stitches and joints being so placed and ormed that they are not exposed on the wearing surface The tug body is connected to the buckle by a strap, and it is stiffened by metal plates, the buckle being so hinged and secured that

Thill Coupling.-Daniel Parker, Cal vert, Texas. This improvement comprises an axle clip having forwardly projecting lugs and a base plate hav-
ing its front end projecting beneath the lugs and a reilient block whose lower end rests on the base plate be ween the lugs. The thill iron has a knuckle thicken he said lugs in advance of the resilient block, and there s an abutment plate on the back of the thill projectin beyon

Transmitting Gear for Windmills -Frank J. Brown, Alfred Allen and Solomon Allen, of inion. Fastened to the rod which transmits the power he ground are parallel vertical guideways provided wit liary segmental rack at top and bottom. This rac which is thus made continuous, meshes with the pinio of the driving shaft. By adjusting the segmental rack and lengthening or shortening the guideways the strok of the rack and consequently that of the rod can be eadily increased or diminished. Friction rollers on ixed support hold the rack in engagement with the
Buggy Top Attachment.-John D. Axline and James L. Baillie, Shawnee, Ohio. The object top attachment which is comparatively simple and durabe in construction and is arranged to permit of conv niently raising or lowering the buggy top without the operator leaving the seat and without much exertion on the
part of the person in the buggy. It consists of a springpart of the person in the buggy. It consists of a spring-
pressed shaft journaled in the body of the buggy and provided with arms on its ends and links pivoted to the onnected with the forward stays of the top. To the shaft is secured a segmental ratchet wheel engaged by pawl, which is connected with a handle which terminates at the top of the seat. By the means of this mechanism of pawl and ratchet the top is easily manipulate
Packing Displacer. - Joseph Mat packings contained in glands and abutting on a fixed leeve supported in a bonnet. The object of this devic to provide an improved packing displacer which is du hooks and similar devices. It consists principally of a pushing device adapted to act on the packing, on mov ing the gland longitudinally, to push the packing out of
the same, so that the operator can readily mend or re he same, so that the operator can readily mend
new the whole packing and without damagingit.

Agricultural

Corn Harvester.-Henry M. Cox, Palmer, Nebraska. The object of this improved corn
harvester is to provide a harvester which, when driven between two rows of corn, will cut the corn from eac row and whereby further the cut stalks may be placed
upon a shock platform and be bunched or held in a bunched position while the platform is tilted to dump the shock upon the ground and also to provide a means whereby the binding twine will be carried by the machine and be near at hand for use by the operator tying the shocks.

Coal and Gas Burning Stove or ange.-Albert Stecke, of Osnabrick, Germany, a
gnor to Walter C. Eymann, of Anaheim, Cal. The ob ject of this invention is to provide a cooking sto dapted to be heated by either coal or gas or both. The as burners are arranged at various openings in ove, as the ovens, and are provided with means for has an opening in the top above the passage for the proacts of combustion. A gas burner is arranged belo this opening and is provided with a covering plate fitting
to the opening and with a tubular extension int into the opening and with a tubular extension int

Paper For Bank Notes, Bonds hecks, etc.-David N. Carvalho, New York City. Th object of this invention is to provide a safety paper fo will remove ink are applied they will instantly and per anently discolor the paper, producing thereon a stai herever the chemicals have touched it. The paper eaction which takes place by the action on this compound of an oxidizing reagent is, in general terms, to berate the iodine, and there may also be effected the formation of some definite compounds of iodine wit the metals, the stain produced being of a high degree permanency. For coloring matters suitable for use benzidene dye may be cited.
Animal Trap. - Victor J. Scherb orth Pasadena, Cal. The object of this invention is does not resemble a trap. It has a pair of jaws to cat he animal, the jaws being arranged in such a way that he animal enters between them without fear. The tra s easily sprung and can be made cheaply. It consist in brief, of a pair of jaws somewhat resembling a pair ongs made of heavy spring wire. The jaws are hel ripping plate is easily dislodged by the animal, who is ipping pate is easily slocged by the
Inhaler. - Edinond Souchon, New dis improveme in devices for injecting ar anæsthetic vapor into a
orifice of the head in such a manner that nothing but the vapor can be introduced into the head and which can be perated with one hand and which shall also be cheap
nd durable. It consists of a bottle containing an orbentie. It consists of a bottle containing an abhe vapor only can be ejected. The bottle is closed with stopper provided with two tubes, one for the air whic is forced i provided with stop-cocks. The rubber tube for ad ministering the vapor is pointed at its free end and is provided with a side opening through which the vapor

Magazine or Book Holder.-Frank Barwick, of Honolulu, Hawaii. This is a magazine or where magazines may be read but not removed. The evice may be quickly adjusted to hold books or paper of varying thicknesses. Two parallel serrated jaws ane One of these jaws is provided with offsets which con tain a device for adjusting the holder to the size of the work. This adjustable device can only be operated by
those having the key to the holder. The holder canul
 Trough.-Adam W. Haag, Fleetwood, a. The object of this invention is to provide an im proved metallic trough which shall be of a light and trong construction without sacrificing durability. It is also less costly to manufacture, and is less liable to mproved trough consists of a sheet of metal bent to form he bottom and side portions of the trough, and having the upper edges of the side portions formed with hollow scrolls and separate end pieces, each provided with bot-
tom and side flanges adapted to be secured to the sheet metal bottom and sides, and having about its upper edg bead corresponding in arrangement to the scrolls of he sheet metal sides, and projections at the ends of the ions of the hollow scrolls on the sheet metal sides.

Designs

Design for a Nut. - John G. Lane nd George Lane, Poughkeepsie, N. Y. The leadin arallel al laterally from the body at the bottom and near the top espectively and present each a many-armed figure. The
inor features of the design consist in the cylindrical body, and the ornamental arms of one flange extending utward slightly beyond those of the other flange. The on the one flang for on the other flang
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Plea of this paper.

NEW BOOKS AND PUBLICATIONS

Discussion of the Prevailing ng ${ }^{\text {ato Sewage }}$ Sisposal Bela
New York : John Wiley \& Sons. 1894. Pp. xiv, 182. Price \$1.25.
The subject treated by our author is one of greatimtowns and villages throughout the country are introduc ing sewage systems. The work, in a certain sense, is dis couraging, as the author points out the faults and weak he book totaking an optimistic view of any one of them. He very sensibly states that the different methods of sewwhile, at the meet different cases, and that it is not worth while, at the present day, to pin one's faith entirely
upon one way of solving the problem. This is the
general gist of the book, as far as we have seen it, and
it is characterized by it is characterized by a general advocacy forthe adoptio解 according to circumstances.
Cloudland: A Study on the Struc TURE and Characters of Clouds.
By Rev. W. Clement Ley. With nu merous colored plates, photographs Edward Stanford. 1894 Pp. xiv 208. Price $\$ 3$.

This very pretty book with colored illustrations, as we meteorology of the clouds and of the relation of the orms to atmospheric movements, such as cyclones. Th pround covered is one certainly not satisfactorily treate dequately describe the phenomena it relates to and the mospheric movements producing such. We have all hear of the "mackerel sky" and it is a satisfaction, at least, to find in this book the representation, in color and black and white, of types of "stratus maculosus."
The Century Illustrated Monthly 1894. New York:'The Century Com pany, London:T. Fisher Unwin Pp. viii, 960. Price $\$ 3$.
St. Nicholas: An Illustrated Maga zine FOR Young People. Con ducted by Mary Mapes Dodge.
XXI. Part I., November, 1893, t
April, 1894, and Part II., May, 1894, t April, 1894, and Part II., May, 1894, to tury Company. London: T. Fishe
Among the scientific books of more or less dry aspect nd St. Nicholas may seem out of place. We are howver glad to have a chance to notice them, to observe the elegance of their make up, and testify to the excellence
of the matter they contain. The world is becoming cientific now that even in these publications for children of lesser and larger growth much science will be found
nd some excellent scientific articles.

SCIENTIFIC AMERICAN

bUILDING EDITION.
JANUARY, 1895.-(No. 111.)
TABLE OF CONTENTS.

1. An elegant plate in colors, showing a Colonial cottage at Williamsbridge, N. Y., recently erected for
Chas. H. Love, Esq. Two perspective elevation and floor plans. Cost complete $\$ 4,250$. Mr. A
thur C. Longyear, architect, New York City. pleasing design.
Colonial residence at New Rochelle, N. Y., re
cently erected for J. O. Noakes, Esq., at Iselin Park. Two perspective elevations and floor plans. Cost $\$ 5,000$ complete. Mr. Manly N. Cutter, architect, New York City. An attractive design. erected for Sylvester Post, Esq. Two perspective A. Thor, architects, New York City. pleasing design.
ing, Esq spective elevations and floor plans. A picturesque and unique design after the "New England , Boston, Mass.
residence at East Orange, N. J., erected at a cost
of $\$ 7,000$. Architect Mr. W. F. Bower, Newark N. J. Perspective elevation and floor plans.
2. The First Presbyterian Church at Stamford, C Two perspective elevations and ground plan. A
design of great architectural beauty, treated in tect, New York.
residence at Scranton, Pa., erected for E. B Sturges, Esq., at a cost of $\$ 5,000$ complete. Archi-
tect Mr. E. G. W. Dietrich, New York City. Perpective elevation and floor plans.
3. A summer residence at Cushing's Island, Me., recently erected at a cost of $\$ 3,100$ complete. Two perspective elevations and floor plans, also an in-
terior view. Mr. John C. Stevens, architect, Portland, Me. An excellent example for a summer home.
of the Armory of the Seventy-first Regiment New York City
New York City.
Perspective view and floor plans
story Reliance Building, Chicago
scellaneouscontents.-Buff brickpopular.-Ceiling
and cornice tinting.-Home ground arrangement of plants, illustrated.-Stone dressing by compressed air, illustrated.-Brick dust mortar.-Interesting ruin of cliff dwellers.- Removing the front wall of a warehouse, with sketches.-Im-
proved woodworking machine, illustrated. -Buff brick in New York.-Ceiling paper.-" Dec-co-re-o, a new material for decorative purposes, iiDraughtsman's supplies, illustrated
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, wo hundred ordinary book pages; forming, pract cally, a large and splendid Magazine of Architec rtre. richly adorned with elegant plates in colors and
with fine engravings, illustrating the most interesting with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction and axamples of
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largesst Circulation al newsdealers. MUNN \& CO., Publishers,

DBusiness artd Personal.
The ciarge for Insertion unier this head is OMe Dollar a lin
for eacn insertion : aioout eiont woris to a line. Aaver tisements must ie received at puolication office as eariy
"C. S." metal polish. Indianapolis. Samples free. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. y. Trevor Mfg. Co, Lockport, N. screw machines, milling macnines, and drill presse Centrifugal Pumps for paper and pulp mills. Irrigating The er min ricity is " Experimental Science," by Geo. M. Hopkins Ortland, Me are thes.-The Belknap Motor Co., , tortlan Competent persons who desire agencies for a ne
opuiar book. of ready sale, with handsome proft, ma pply to Munn \& Co., Scientiff Americe. 36 The Imperial Power Building, of Pittsburg, Pa.., wily e completed March 1 . It is a new, eight story factory
uilding, ftted up as a model plant. with the finest ma cinery, electric dy namos and ing it desirable for manufacturers. The proprietor prourer. Each floor contains 7,600 square feet, capable subdivision, with exterior windows all around and powe nd appliances to meet any wants and give convenience city, within thirty feet of the Pennsylvania R. R. freigh epot. Manufacturers desiring to lessen expenses a e surrounded by every conven. - Send for new and comp
nd other Book for sale by Munn \& Co or scienting

HINTS TO CORRESPONDENTS.
vames and Add iess must accompany all letters,
or no attention will be paid thereto. This is for ous information and not for publication.
References to former articles or answers shoul
give date of paper and patice give date of paper and page or number of questio
Inquiries not answered in reasonable time shon
be repeated, correppondents w will bear in mind th the
some anseers require not a litle reach, an
though we endeavor to reply to all either by lett though we endeevor to reply to all either by letter
or in this departurnent. each must take his turn
n yers wishing to purchase any artice not advertised
in our columns will be furnished with addresses of
houses olunfor

 to may be had at the oftice.
Books referce 10 ents each.
prise price.
merls sent for examination should be distinctly
marked or labeled.
(6345) A. L. asks: 1. Where can 1 get hloride of silver sticks with silver wire fused in? A. Adaress Queen \& Co., Philadelphia, or about two volts each, and in what way connected, will ight up an incandescent lamp, 50 volts, and if one lamp can be lit up, can more lamps be applied to the same urrent at the same time, and how many? The lamps ance of the cells. Probably 100 will supply a sirgt amp. 3. If I had enough of Leclanche batteries, co they be used for electric light purposes? I mean so that he batteries would furnish strong enough current tc last
four or five hours? A. They could, but a very large umber would be required and some special device would e required to compensate for polarization, with conse entreduction of current
(6346) G. T. asks: 1. What is the best kind of carbon touse on an electric telephoneleadout of a
arge pencil or carbon they use in electric lights? A. Carre electric light carbons are very good; if you cannot eet these, use common lamp carbons. with one of these? A. Use a single wire and ground the ends by soldering to gas or water pipes. 3. Which is the best for short distance-a carbon or magneto transmitter?
A. The carbon transmitter. 4. Where can I get iron for A. The carbon transmitter. 4. Where can I get iron for aphragms? A. Get ferrotype plate from a photo
grapher.
(6347) C. E. L. writes : 1. How can I get instructions on electrical calculations? A. Consult our
advertising columns for correspondence schools. We also recommend Sloane's "A Arithmetic of Electricity," learn how to figure out induction coils to produce certain voltages. If you can give me any light on this, let me know. A. For induction coils divide the number of turns in the secondary by the number in the primary and
multiply the original voltage by the factor thus obtained. (6348) F. E. B. says : 1. I want to make induction coil for a telephone transmitter. How many layers, and what size wire shall I use, and how long to make the spooi? A. Wha the secondary of your induetion coil to 80 ohms with No. 36 wire ; the primary to $\frac{1 / 2}{2}$
hm with No. 20 wire. Make it two inches long on a quarter inch diameter core of pieces of thin iron wire a If I coat the inside of wooden battery cells with common yellow beeswax, will it make them acid proof? A. Coat melted together with a little boiled oil. Apply with a hot iron. 3. Why is it that they use finer wire to wind n armature than they do to wind the fields of a dynamo?
A. The armature wire works in parallel, and would be nuch shorter than tre field wire if of same size a definite ratio of resistances must obtain. 4. I have some small articles that I want to nickel plate. I have four
gravity batteries. How can I do it? A. See our Supgravity batteries. How can I do it? A. See our SUP-
pLement, Nos. 310 , 436, and many others.

INDEX OF INVENTIONS

or which Letters Patent of the

January 1, 1895
AND EACH BEARING THAT DATE
[See note at end of list about copies of these patents.]

A malagamator, Sur clar alarm. Barnart.

 Baling press, H. Bailey.

Boobrinding, removable, . Mcek ibbin.
Bookseeping aparatu, G. Gercke, Jr.

Vapor burner.
Button, H .
Bann

alking planking of boats, etc., McBride \& Fisher 531,
Can. capping maabine, M. E. Howard.
Can labeling machine. J. W. Wallace.
Can opener, B. F. Barnes............

Car liphting apparatus, electric, w. Bididie.:
Car. transfer. H. . . Incraham.
Carbons, adjusting mechanism for arc iight,

 Cement blocks or asbiers, constructing hydraulic,
w. J. Haddock.
Cement, manuf acturing asphaltic paving, R. i .

Check rein tolder. M. L. Winans...
Chimney top and cow
Churn, J. .. Greer...
Churn,
Cburn, D. B. Wanon ...

Cigar cutter and iighter, J. J. ONeil
Cirarete machine, A. L. Munson...
Circuit controliler, T. Parker etal...

W.F. Bowden.
Crusher. H. A. Hannum

End gater fastener, wagon chatin \& Gilbert....
End ate. Waopon, W. Weterson...
Engine. See Gas engine. Gas or oil motor en
Engine. attachment, direct-acting, Chouteau \&

531,62
5331,7
531,2
5

 Fe
 Fender. See Car fender. Fertilizer, apparatus for obtaining, separating, and disintecting. M. Nadiein.

 \section*{
 \section*{
 | | |
| :--- | :--- |
| | |
| | |}

Saw, band, J. Oldham Saw for sawing curves or irregular shapes, o. Sawmill steam feed, W. E. Hill. Scale and scoop, combined. G. Langer. Scoop and sieve, combined fiour, M. E. Peterson Scraper, C.S. Heath s....... Seaming machine, G. F. Vogel. Sectional wheel, P. H. Williams Sectional wheel. P. H. Williams... Separator. See Liquid separator. Steam separator. Sewing machine embrodering attachment. J. W. smith.
Sewing machine, fabric, c. Mcièil Sewing machine feeding mechanism, w. S. Brown.
Sewing machine rüfer, w. R. Abercrombie Sewing machine shuttle, W. S. Brown..... Signal. See B lock signal. Electric signal. Signaling apparatus, electric, G. E. Miller. Skirt supporter, A. M. Perkins. Silding yate, G.W. Frazier.
Stay, dress, E. M. D. Landenberger...
Stone botat, ${ }^{\text {Prem, Herman }}$Stone driling machine
Sulphite puSulphur fr sulphur fis
nnin, extractin
Temperature or pressure ind
Thrasaer a
$\xrightarrow{\text { Thrashing }}$ Goddat
Tie or wear plate, R . Morre Tire, pneumatic, J. W. Hall
Truck, H. L Hazer
Truck, weighing, 0. w. Parsell;...................... 53 Truak or sample case, traveler's, F. J. Palica,
Turned articles and die for same, forming, F.P.
Twine holder, J. W. Herriott
Valve, automatic ${ }^{\text {ceret }}$
Valve, balanced, J. S. Hunter.
Valve, pressure reducing, c. E. Van Auken Valve, reversing, H. H. Campbell.
Vebicle brake, Dixon \& Ta
Vebice spring, R. R. Brayto
Voltmeter. electrostaticic.H.
Washing machine, A. J. Waldschmidt............ Watch cases, lockets, ete., machine for spinn ing, F. Ecaubert.
Wheel spindle protector. J. S

TRADE MARKS.

Agricultural implements, certain named, Cutaway
Harrow Company.

 DESIGNS.

 Printing! ST

Everything done-drilling and revers-
ing with one hand, without taking it
from crank. Price
tis.0 EY \& R USSELL MFG. Cor Cor NOW READY !
Fourteenth Edition of Experimental Science
a great book for the holidays.

[^0]Office of the SCIENTIFIC AMERICAN,
361 BROADWAY, NEW YORK.

Indispensable to all who love gardens or the literature of gardens; to all who own country places or take pleasure in rural scenery ; to all who desire a broader knowledge of trees, shrubs, fruits, and flowers,
GARDEN AND FOREST stands for the pro tection of our forests, for the preservation of natural beauty, for a purer taste in the design and decoration of public and privat rounds. It is universally pronounced th for Americans.
" Wise, intelligent, entertaining."-Harper's Weekly.
" Rich variety of remarkable engravings."-N. \boldsymbol{Y}. ${ }^{\text {os }}$ " Rich variety of remarkable engravings."-N. Y.
" Winning, delightful, and accurate."-N. T. Tribune.
" A compendium of new information."-N. Y. Herald. Beautifully Illustrated. Weekly, $\$ 4.00$ per year
Garden and Forest Publishing Co.

ELEGANE VAPOR ENGINES
 BOATS (O)

THOS.KANE \& CO. CHICAGÖ.
VOLNEY W. MASON \& CO.
friction polbers, CLDTCHES, and ELEVATORS

(10)
 Telephones

The Scientific American PUBLICATIONS FOR 1895.

The prices of the diferent pubication States, Canada, and Maxerico are as foliow RATES BY MAIL. The Scientific American (weekly), one year - $\quad \$ 3.00$ The Scientific American Supplement (weekly), year, Theientific American, Spanish Edition (month- lyo , one year, The Scientific American Architects and Builders $\quad 2.50$ combined rates. The Scientifif, American, supplement, and Archi- teets and Buiders Edition,

 \$24. An 8 Light, 16 C. P., 110 Volt Dynamo

RECEIVER'S SALE. The entire glant and dood

Study Electricity at Home

\$1 Telegraph - \$1 Outfit, 圆 One Dollar.

The Rembert Roller Compress Co.
 to mentr Rember

2 rchitectural Books
Useful, Beautiful and Cheap.
 to examine the latest and best pann for a a curch,
school house, club house, or any other public oulding
 ENTIFIC AMERICAN.
The information these volumes contain renders the
work almost indispensable to the architect and builder nd persons about to build for themselves will find the plates of the elevation, plan, and detail drawings of
almost every class of building, with specifcation and
pproximate cost.
Seventeen bound volumes are now ready and ma. be
obtained, by mail, direct from the publishers or from obtained, by man, Arect $\$ 2.00$ a volume. Stitched in
any newsealer. Price
paper covers. Subscription price, per annum, $\$ 2.50$. Address and remit to

361 Broadway, New York
 GREAT MINING TUNNELS. - DE

ARCHITECTURE

 AGENTS WANTED Lo sel Mrs. Parkers com

Ficemen

SNOQUALMIE FALLS

 Electric Power Company.somaimie Fals, State of Washington
The Enqualmie Falls Ellectric Power Com-

OU USE GRINDSTONES?

为

The Most Useful Tool in any shop is the

METHODS OF MINE TIMBERING.

A Valuable Book

12,500 Receipts. 008 Pages. Price $\$ 5$.

 MUNN \& Co., Publishers, SCIENTIFIC AMERTCAN OFFICE,

The lightest and most practical cameras for hand
or tripod use. An illustrated manual, free with
every Kodak, tells how to develop and print the
Eastman Kodak Company,

VANDUZEN STEAM PUMP

Become a Locksmith

 URA Madion st, chicheri rifs iocus ana st. St. Louis.
\bullet - - SURVEYING INSTRUMENTS
 AGENTS WANTED Foo FINE TOOLS IN Every Shop. C.H.BESLY\& CO

root power Lathes

The

American
 Bell Telephone Company,

I25 Milk Street,
Boston, Mass.
This Company owns LettersPatent No. 463,569 , granted to Emile Berliner November ${ }_{17}$, 189 I, for a combined Telegraph and Telephone, and controls Letters-Patent No. 474,231 , granted to Thomas A. Edison May 3 1892, for a Speaking Telegraph, which Patents cover fundamental inventions and embrace all forms of microphone transmitters and of carbon telephones. 00 COLD DRAWN STEEL SEAMLESS TUBING

TGeo. W. MODERN ICE YACHT. - BY

30,000 SOLD.
Otto Gas Engine Works, Incorporited, No , Philadelphia

SCIENTIFIC AMERICAN SUPPLE-

 GOLDING \& CO., BOSTON,MASS.

DEAFNESS

Wilson's Conmon sense Ear Drumw
New scientific invention, entirely different
in construc-ion from all other devices. As-
sist the
and

STARRETT'S
IMPROVED SPEED INDICATOR.

Parson's Horological Institute. School for CUIatchmakers engravers and jewelers.
Parson's Horological Institute,
P02 Bradiey
ARMSTRONG'S : PIPE * THREADING
 CUTting-off Machines

instrong Mf for catalog.
Bridgeport, Comn.
ARTESIAN WELLS - BY PROF. E.

Oil Well Supply GO.

BUY

TELEPHONES
 guarantee our customers against loss, by patent suits.
Our guarantee and instruments are 13 DH No
WESTERN TELEPHONE CONSTRUCTION CO. 440 Monadnock Block, CHICAGO.
Largest Manufacturers of Telephones in the United States
GATES ROCK \& ORE BREAKER

Capacity up to 200 tons per hour.
Has produced more ballast, road

 136 Liberty St., N. Y. ${ }^{237}$ C Frankiin St., Boston, Mass.

MAXIM'S FLYING MACHINE.-FULL

Wimshurst Machines 8, 16 and no thimht bySimple and other scievtific ENGINE CATHINGS,
Sena stamp for catalognes, PALMER BROS., Mianus. Conn VELOCITY OF ICE BOATS. A COL-

 THE LINK-BELT COMPANIES;

ESTABLISHED 1845.
The Most Popular Scientific Paper in the World nly $\mathbf{\$ 3 . 0 0}$ a Year, Including Postage.
This widely circurated and splendidily illustrated
paper is published weekly. Every number contains sixteen pages of useafol information and a alaree number of
original engravinas of new inventions and discoveries original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures,
 tecture, Agriculture, Horticulture, Natu
etc. Complete list of Patents each week.
Terms of Subscription.-One copy of the Scievpostage prepaid, to any subscriber in the United States,
 Clubs.- Special rates for sev
masters.
The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctiy addressed, seldon goes astray, but is at the senders risk. Address
all letters and make all orders, rratts, etc., payable to
MUNN \& Co., $\mathbf{3 6 1}$ Broadwa, New York.

$$
=\text { THE }=
$$

Scientitic American Supplement This is a separate and distinct publication from Tre
ScIENTIIIC AMERICAN, but is uniform therewith in size. every number contaninins sisteen large pages fill
of engravings, many of which are taken from foreign papravings, many of which are taken from foreign
papers and accompanied with translated deseriptions. The Scientific american Supplement is published weeks, and includes a ary wide range of contents. It
preserts the most recent papers by eminent writers in all the principal departments of Science and the Useful
Arts, embracing Biology, Geology, Mineralogy, Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Arcbæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Engineering Mining, Ship Building, Marine Engineering, Photography, Technology, Manu-
facturing Industries, Sanitary Engineering, Agriculture, facturing Industries, Sanitary Engineering, Agriculture,
Horticulture, Domestic Economy, Biography. Medicine, etc. A vast amount of fresh and valuable information obtainable in no other publication.
The most important Engineering
The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated and Manufactures at home and abroad are illustrated
and described in the SUPPLEMENT.
Price for the SUPLEMENT for Price for the SUPplement, for the United States,
Canada, and Mexico. $\$ 5.00$ a year; or one copy of the SCIENTIFIC AMERICCAN and one copy of the SUPPLEMENT, both mailed for one year to one address for $\$ 7.00$.
Single copies, 10 cents. Address and remit by postal order, express money order, or check,
MUNN $\&$ CO., $\mathbf{3 6 1}$ Bread

ITuilding Fidition.
The Scientific American Architects' and
BuILERS' EdiIIon is issued monthly. $\$ 250$ a year. Single copies, 25 cents. Thirty-two large quarto pages, richly adorned with elegant plates in colors, and with other fine engravings; illustrating the most interesting
examples of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number dences. city and country, including those of very moderate cost as well as the more expensive. Drawings in perspective and in color are given, together with Plans, The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any Architectural publication in the world. Sold by all IUNN $\&$ CO., Publishers,
PRINTING INKS,

[^0]: MUNN \& CO., Publishers,

