at sea of the navy, the Reina nd, Reina Regente, with loss of some 420 officers and crew. On the 10th of March the ship sailed from Tangier for Cadiz, and sank, it is believed, the following day during the prevalence of a great storm. The tips of her topmasts were found projecting from the water near Gibraltar and the Spanish coast.
The Reina Regente was built and engined by Messrs. James \& George Thomson, of Clydebank, for the Spanish government. The following were her meas urements: Length over all, 330 feet, and 307 feet between perpendiculars; breadth, $501 / 2$ feet; and her draught was 20 feet; displacement, 5,600 tons when fully equipped.
There was a very minute subdivision in the hull of the ship, there being, in all, 156 water-tight compart ments, 83 of which are between the armored deck and the one immediately above it, or between wind and water. Most of these compartments were used as coal bunkers, and appear to have been of no avail in pre venting the fatal catastrophe.
The Reina Regente was one of the ships which took part in the grand naval parade in New York harbo in 1893, when she attracted much attention from her graceful lines and formidable appearance

a combination electrical meter.

The meter shown in the illustration is adapted to measure and indicate with nicety the ohms, volts, amperes, or watts, in measuring an electric current. Ithas been patented by Mr. Herschel C. Parker, of No. 21 Fort Greene Place, Brooklyn, N. Y. Supported on a suitable base is a permanent magnet, between the poles of which, on a common axis, turn coils wound respectively for high and low resistance, the coils as they turn moving a hand over a segmental graduation in dicating ohms, volts, and amperes, and which may be marked to indicate watts. The coils and magnets may, if desired, be differently arranged, but as shown the inner coil is wound for low resistance and the outer one for high resistance, both coils being secured to upper and lower axles on which are in sulating collars with binding posts. Two of the binding'posts are'connected by light flexible wires with the low resistance coil, and by other wires with binding posts on the base, while two other binding posts on the axles are connected with the high resistance coil and with other binding posts on the base, the posts on the base being adapted for connection with the current adapted for connection with the current
wires to be measured. The coils turn wires to be measured. The coils turn against the tension of a light spring se-
cured to the coils and to a bracket which supports a core centrally within the coils. The top axle carries the indi cating hand, and the current may be brought to the coils, if desired, through the torsion spring. In use as an ohm meter the high resistance coil is joined in parallel with the resistance to be measured, and the low resistance coil is joined in series, the action then being propor coilis joined in series, the action then being proporcurrent, or from Ohm's law, $\mathrm{R}=\mathrm{E} \div \mathrm{C}$. By giving the current, or from Ohm's law, $\mathrm{R}=\mathrm{E} \div \mathrm{C}$. By giving the
coils the proper resistance the deflection will be proportional to the ohms in the circuit, the ohms being indicated by the indicator hand on the segmental graduation. For use as an ammeter, the low resistance coil is employed, and for a volt meter the high resist ance coil, and the coils are arranged parallel instead of at an angle to each other for use as a watt meter.

The Rubles of Burma.

At a recent meeting of the Royal Society a paper by Mr. C. Barrington Brown and Professor J. W. Judd F.R.S., was read on "The Rubies of Burina and Associated Minerals: their Mode of Occurrence, Origin, and Metamorphoses." The ruby district of Upper Burma, it was stated, so far as explored, is about 26 miles long and 12 broad, and lies at elevations varying from 4,000 feet to 5,500 feet above the sea level. The principal mining center in this district is Mogok, and the present workings for rubies extend over an area of 45 square miles, old workings, however, being found over an area of 66 square miles. It is also probable that ruby-bearing limestones and the alluvial earths derived from them may be found in portions of the Shan states. It is in the lower clay beds of the river alluvia, and in similar deposits formed in gullies in the hill wash, that the rubies, spinels, and other gems of the district are found. Operations for the obtaining of rubies are carried on in Burma in four different ways. In the alluvia, square pits from 2 feet to 9 feet across, ingeniously timbered with bamboo, are sunk to the ruby earth, the drainage of the pits and the re moval of material being effected by baskets attached to balance poles, both made of bamboo. In the hill wash long open trenches are carried from the sides of a gulley. Regular mines are opened in some places,

parker's electrical meter

te, but it must be understood that this record was nade by writing a sentence which had been long practiced. The reason for picking out a particular sentence nd practicing it is very simple. The use of letter whose keys are close together, and convenient for alternate action of the hands, greatly assists the speed, and the more a particular sentence is practiced, the more rapidly can it be typewritten. Take the very operator who has shown a speed of, say, 150 words, and get him to write a sentence composed of the same let ters, but made up of different words, so that the letter are in a different order, and the speed will fall ver materially. The loss may be, perhaps, one-third. It is possible for a comparative novice to practice a well selected sentence and in a short time reach about the same speed as the expert, but in the case of the novice the speed would fall tremendously on new matter. The strain on the eyes and mind increases with the speed until a point is reached where it cannot be kept upfor any length of time, and it is worthy of note that som perators have had the keys blank, without any characters marked, in order to relieve the strain on the yes.
In considering the speed of the average operator considerable difficulty is experienced in arriving at any cecurate conclusion, owing to the tendency of all ope ators to put on extra steam when timed or watched By far the greater part of the work done on typewrit ers is copying, either from stenographic notes or other
manuscript, and a fair average would be below forty words a minute.
There is, of course, some time lost in reading from the copy, when no writing is done, and the practice of good many operators of continually reading ove what they have written to see that it is correct. The time required to correct mistakes has been figured a high as 15 per cent. Another reason for the tremen dous fall in speed is probably the strain on the eyes which are constantly dancing over the character marked on the keys. Thisstrain should not be under
estimated, as the eyes of many operators have been
affected by it, and it is further evidenced by the ex perts, who prefer blank keys, so as to avoid the blur ring caused in rapid writing.
It is interesting to note the number of strokes each minute that the hands are capable of, if depressed alternately. More than 700 strokes can be made in a minute, and more than 400 can be performed without undue exertion or effort. Now, taking five strokes to word (which is about the average), that would mean 80 words a minute comfortably, and after making due allowance for the time occupied in entering the paper and returning the paper carriage after each line, it and returning the paper carriage after each line, it
would still be about double what is done ordinarily on would still be about double what is done ordinarily on
a typewriter. The fault for the loss of speed appears to lie in either the method of operation or the key board. If a keyboard could be constructed that could be readily memorized, the eyes would berelieved and the speed increased, especially in copying, when the eye could be kept on the copy and would not have to keep shifting the eyes from the keys to the copy. Such a key board would necessarily have to be compact, and with a very limited number of keys, but for that very reason there would bea gain in limiting the motion of the hands there would bea gain in limiting the motion of the hands
required to select the required key. If, furthermore, required to select the required key. If, furthernore, such a keyboard could allow an alternate action of the without extra exertion. Then concerning the mistake that occur from depressing the wrong key, and which are realized the instant they are made, but too late to avoid the wrong impression, they could be partially avoided if the printing did not occur till the next de pression. That would mean that the machine would ways be one letter behind
It may be that the typewriting machine has reached its highest perfection, but in view of these facts it seems strauge that there has been no radical improve ment for fifteen years.-N. Y. Sun.

Wood Pulp.

More than 50 per cent of the saw mill owners to-day could make more money to sell their logs to be manufactured into wood pulp and paper than they can possibly expect to secure through sales of the same in the form of manufactured lumber. The wood pulp industry has far outstripped the manufactured lumber industry.
One factor in the pulp and paper busi ness is not always recognized by the own ers of spruce forests. When a pulp mill grinds up a million feet of logs into paper product, and the same is sold to the great newspaper corporations and printed upon day after day, that paper practically goes out of existence. Few think of saving a newspayer. The individual newspaper reader throws his paper after reading into the waste basket or kindles a fire with it, or it becomes the property of the old junk dealer, and practically passes out of existence. On the other hand, the piece of lumber which is manufactured goes into a substantial building, which lasts for generations. So that the great consumption of spruce for pulp and paper really amounts to so much raw mate rial taken out of the market forever, and practicall wasted so far as any subsequent use to which it may be applied is concerned.-Manuf. Gazette.

Lights and Colors.

It has often been observed that a bright scarlet uni orm will, in a good photographic dark room with ruby-glass windows, appear perfectly white. On this subject Herr H. W. Vogel made some interesting communications to the Physical Society of Berlin at a recent meeting. Experimenting with oil lamps pro vided with pure red, green, and blue color screens, he found that when white light was rigidly excluded, all sense of color disappeared to the observers, and noth ing but shades of black and white could be distinguish ed on objects in the room. He further found that a scale of colors illuminated by red light showed the red pigments as white or gray, which abruptly turwed into yellow, and not red, on adding blue light. Hence a color was perceived which was not contained in either of the sources. Red and yellow patches appeared of the same color, so that they could hardly be distinguished. But the difference was at once brought out by adding green instead of blue light. How very much the kind of sensation experienced depends upon the intensity of illumination is easily seen in the case of the region of the spectrum mear the G line of Fraunhofer. This region appears violet when its luminosity is feeble, blue when it is stronger, and may even appear bluish-white with strong sunlight, so that the assertion of ten made that with normal eyes a definite color sensation corresponds to a definite wave length, cannot be upheld. Herr Vogel comes to the conclu sion that our opinion as to the color of a pigment is ruided by our preception of the absence of certain constituents. Thus a red substance is only recognized as such when light of other colors is admitted, and we perceive its inability to reflect these.

