(4)

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

L. Fla@hing in. ぇ. Bulb. 3. Tubulated bulb. 4. Ingulating tubes. 5. Bridge. 6. Platinum leading-in wires. 7. Mount. 8. Mount and filament complete. 9. Copper connecting wires. 10. Sealing ana inking 11 Tubulating. 12. Insulating. 13. Exhausting. 14. Capping

Srientific American.

ESTAARLISHED 184E
MUNN \& CO.. Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERDS FOR the scientific american

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT No. 1006

THE STERN TUNNELS OF THE OLYMPIA

The following reflections have been suggested by an examination of dra wings showing the method adopted for inclosing and supporting the outboard ends of the screw shafts of the United States cruiser Olympia, built at the Union Iron Works, San Francisco, Cal.
In that vessel the outboard ends of the screw shafts for a length of twenty-four feet (the distance between the forward end of the stern bearings and the stufing boxes through which the shafts emerge from the hul of the ship) are inclosed in tubes three feet nine inches in internal diameter at their forward ends and two feet ten inches where they join the stern bearings Each of these tubes is made of steel one-half an inch thick, and is connected to the hull throughout it length by a box or cell formed of steel plates three eighths of an inch thick, stiffened with angle irons. This box has an average depth (measured on a line approximately parallel with the outside of the hull) of three feet ten inches at its forward end and six inche at the forward part of the stern. bearing. It will therefore be evident that this cellular connecting box tapers at a much more rapid rate than the tube which it supports. This is done probably to afford the wate as free a run to the screws as possible; but this inten tion is in no small degree defeated by the fact that the bracket arms which support the stern bearing are' at tached to the hull at points considerablv above and below the after thin end of the cellular structure re ferred to, and have to be dragged through the water and must, by whatever resistance they oppose, impai the speed of the ship.
These brackets it is true are quite similar to those in common use for many years for the support of the stern bearings of t win-screw shafts; and if there were no better method of accomplishing such support, criticism would have no claim against them; but, as is well known, there is a better way of attaining the end sought, and therefore in a cruiser whose speed at a critical time may involve her own safety and that of
her personnel, such improved methods should have her personnel, such improved methods should have been adopted.
The steel tubes above mentioned as inclosing the shafts are, strange to say, not water tight. but, on the contrary, are filled with water, whose presence seems to have required the casing of the shafts (which are of steel sixteen inches in diameter) with a bronze tube (closely fitting it) one inch in thickness and thirty-one feet in length. The weight of each of these bronze casing tubes is about six thousand pounds: further more, the water whichi surrounds each shaft will weigh at least ten thousand pounds, which, added to the weight of the bronze casings of the shafts, makes a weight of sixteen thousand pounds on each side of the stern of this ship. or thirty-two thousand pounds in all, of load which must be sustained and dragge through the water, and consume power for no useful purpose whatever: moreover, in the pitching and rolling of the ship, this useless dead weight subjects
the vessel to strains which are totally unnecessary, and which the adoption of modern practice would have avoided.
Just why this faulty construction has been adopted rumors that some of the other new vessels are to be built in the same way.
It is well known there are several vessels afloat in which the tubes inclosing the screw shafts are accessible from the interior of the ship throughout thei length up to the forward end of the stern bearing where the stuffing box is placed. This construction makes it unnecessary to incase the shafts with bronze and allows for their examination at any time. By this construction the extra buoyancy due to the displace ment of the shaft tubes is secured, and there is, of course, no strain on the vessel due to a mass of dead weight. This construction is no experiment, but has been used for several years, and so satisfactory has it been found, that the Cramp Ship Building Company have adopted it for the new American liners St. Louis and St. Paul.
In view of what has been done in the matter of shaf tunnels for twin screw vessels, it does seem that th Navy Department had taiken a step (if not a tumble) backward, when it inclosed the shafts of the Olympia with tubes filled with water.

Water Consumption in New York and London.

The average daily supply of water to London during January delivered from the Thames was $100,997,56$ gallons; from the Lee, $59,835,525$ gallons; f: om springs and wells. 29,046.055 gallons; from ponds at Hampstead and Highgate, 244.452 gallons. The last is used for
non domestic purposes only. The daily total was therefore, $190,123,599$ gallons for a population estimated at $5,481,890$, representing a daily consumption per head of $34 \cdot 68$ gallons for all purposes.
The daily consumption of water in New York City is about $183,000,000$ gallons, and the population less than one-half that of London. The safe capacity of the new Croton aqueduct is 300.000 .000 gallons per diem and of the old aqueduct $75,000,000$ gallons.

Influenza: Do Doctors Know Anything About It?
An evening contemporary assures its readers tha An evening contemor tha of the fifth successive annual epidemic of influenza doctors know little or nothing about it.
There is, perhaps, some justification for this in the ircumstance that a good many immature practition rs, who desire to pose as scientists in excelsis, hav assured the public on many occasions that science eally cannot say what influenza is. But now let us ask ourselves with the downrightness of mere common ense what is it that our profession really does know, and know thoroughly, about influenza.
In the first place, we know the disease when we se it; we know also the injurious physiological and pathological changes i: produces in the nervous sys em, the lungs, the liver and other organs of the body we know how, by prompt, early treatment, to reduc hose changes to a minimum ; and we know how to epair the damage done by those changes when the disease is brought to a termination.

But," it will be said, " if you claim to know al these things, you claim to know everything about in fluenza." No; we do not. We do not clain to know precisely what its cause is ; nor do we profess to know entirely how to prevent it. But do we know what the ause of cancer is; or of typhoid fever: or of simple, or even of tubercular meningitis, and a hundred othe things? Moreover, in the matter of prevention, can we prevent all other diseases of every kind except in fluenza? Can the lawyer, who thoroughly under tands law, prevent crime? Can the theologian pre vent \sin ? Can even the commercial man put an end to bankruptcy?
Influenza has now been with us for five successive years. We can recognize it, we can treat it rationally and successfully, and to some extent we can preven t. Perhaps when Providence has endowed us with mniscience and with almightiness as well, we may be able to entirely prevent the disease as well as to cure

In the meantime a little "silence" might be golden" on the part of the all-knowing lay journal t.-Hospital.

To Make Woolens Waterproof

The question of how to make a textile fabric water proof and yet preserve as much as possible its feel, fin ish, and appearance, says the Industrial Record, is one which is of interest in many mills. This process is no confined to woolen goods, but is practiced upon cot tons, linens, and other kinds of cloths as well. Upon dress woolens, the intention is to make the cloth water proof and yet leave it so that it will permit the escap of perspiration and the gaseous exhalations from the body. Overcoatings, wrappings, hunting goods, and goods of this class call for such treatment, and a few points as to the method of procedure may lead to good esults. So far as known there is not one to which anything like universal employment is accorded, but one or two may be mentioned which are recognized a safe and good for the purposes named
In the first place, as to the goods to be treated, no matter what may be their nature, it is an absolute es sential to success that they be perfectly clean. If ther is any sort of dirt upon the fibers of the cloth or in its meshes, dirt in the shape of oils, grease, animal products, vegetable materials, burrs, etc., the waterproof ing material will act upon this dirt, not being able to get down to the body of the fiberscomposing the cluth and just as soon as the dirt happens to be removed the waterproofing material is removed with it
For a cotton fabric the following will be a good mix ture: Take one pint of alum and dissolve it in hot water, also cake one pint of sugar of lead and dissolve in water, then mix the two and use cold water until the whole stands at about $5^{\circ} \mathrm{B}$. The clear liquid which is on top is applied to the goods, while the sediment is used in making another bath. For a woolen or part woolen fabric, take fifty quarts of animal glue and dis solve in water, add to this the same amount of potash aluin and mix with water to suit the finish desired This mixture is then applied to the goods upon the ordinary sizing machine. Then take two and one-hal quarts of tannin and one quart of waterglass and mix with fifty quarts of water, and apply this to the goods at about 50° C. (122' F.)
The waterproofing is done upon a sizing machine the cloth passing down into the material and up through the squeezing rollers, or sometimes passing only through the rollers and taking what material it can in the passage. The heavier the goods are, the more necessary will it be that they should pass through the mixture and get as much as possible of it into the body of the cloth
The making of the mixture, the coloring of it to suit somewhat the color of the goods to ve treated, the passage of the goods through it, and the subsequent drying constitute the main points in the process, the rest of the treatment being similar to that for ordinary cloths which are not waterproofed. There are many recipes in use for waterproofing fabrics, but those re ferred to here may be said to have been proved by ex perience to be suitable for the desired purpose.

Iron and steel at welding Temperatures. The following is an abstract of a paper by Mr. T. Wrightson, M. Inst. C.E., communicated to the Ro Society by Profes or Roberts-Austen, C.B., F.R.S. The object of this paper is to demonstrate that the phenomenon of welding in iron is identical with that of regelation in ice. The author recapitulates experiments mado by him in 1879-80), described in the "Proceedings" of the Iron and Steel Institute for those years. These experiments were upon cast iron, and
proved the fact that this form of iron possessed the proved the fact that this of expanding while passing from the liquid property of expanding while passing from the liquid
to the plastic state during a small range of temperature, and then contracted to the solid state, and that the expansion amounted to about 6 per cent in volume. The experiments were carried out under two distinct methods, the first being by the suspending of a cast iron ball on a spiral spring. and lowering the ball the same quality ; the change of volume was registered by the contraction of the spring as the varying. displacement of the ball varied its buoyancy.
The second method was by casting 15 inch spheres of cast iron, and measuring the changing diameter as the spheres cooled, then laying down on paper a curve of changing volume, which in general character was found to be similar to the curves produced by the instrument used in the first method. This property of iron resembles the similar property of water in freezing, which, within a range of about $4^{\circ} \mathrm{C}$., expands about 9 per cent of its liquid volume, and then contracts as the cooling proceeds. This property of water was investigated by Professor James Thomson and by was investigated by Professor James Thomson and by
Lord Kelvin. The former showed that from theoretical Lord Kelvin. The former showed that from theoretical
considerations there was reason to expect that in the considerations there was reason to expect that in the
case of a body exhibiting the anomalous property of expanding when cooled and contracting when heated, it should be cooled instead of heated by pressure or impact.
Lord Kelvin investigated the problem experimentally as affecting freezing water, and completely demonstrated the truth of his brother's reasoning. The experiments made by the author in 1879 and 1880 suggested the view that this property of ice was connected with the property of welding in iron, but this was only hypothetical, as the experiments had been made on cast iron, which probably, on account of the presence of carbon, does not possess the property of welding. Further, it was not practicable to experiment with wrought iron in the same way as with cast iron, on account of the difficulty of dealing with that substance in its liquid form. Professor Roberts-Austen has, pyrometer, and this has enabled the author to resume the investigation at the Mint, where he had the advantage of Professor Roberts-Austen's assistance and advice. The method adopted was the heating of bars in an electric welder, and as soon as the junction of the bars was at a welding temperature, end pressure was applied by mechanical power and the weld effected. The temperature at the point of welding was observed by placing a therwo-junction at this point, consisting of a platinum wire twisted into a second wire of platinum alloyed with 10 per cent of rhodium. The flected a galvanometer, which by means of a mirror threw a spot of light upon a sensitized plate, which moved by clock work uniformly in a direction transverse to the spot of light. This produced a curve, the ordinates of which represented time and temperature.
These curves appear to show that a molecular lowerThese curves appear to show that a molecular lower-
ing of temperature took place immediately the pressure was applied to the bar when in the welding condition. Photographic curves are exhibited which show that this fall in temperature varied in these par ticular experiments from 57° C. to 19° C., according to the circumstances of temperature and pressure.
This appears to prove that wrought iron at a weld ing temperature possesses the same property of cooling under pressure which was proved by Lord Kelvin to exist in freezing water, and on which demonstration the generally received theory of regelation depends. The author distinguishes the process of melting together of metals frow that of weldings. Either process
forms a junction, but the latter takes place at a temforms a junction, but the latter takes place at a temperature considerably below the melting point. The appears, therefore, to depend, as in the case of regelation in ice, upon this critical condition, which exists tion in ice, upon this critical condition, which exists
over a limited range of temperature between the molten over a limited range of
and the plastic state.

A Refractory Mixture.

m. Debois, of Reuleaux, France, has patented a mix ture which, according to the Moniteur Industriel, when burned will withstand the highest temperatures. The misture is compose proportions are varied accord phate of barium. The proportions are varied accord-
ing to the needed resistance of the material, in some cases ground. Pudding stone is also added to the "mix." The mass when moistened will take any shape like ordinary fire clay, and is dried and burned in the same manner.

Four-Hundred-Foot Steamers.

The steamer Zenith City is one of the two 400 foot freight carriers being built by the Chicago Ship Building Company at South Chicago. This boat and the Victory, building at the same yard for the Interlake Company, a corporation made up largely of members
of the firm of Pickands, Mather \& Company, Cleveof the firm of Pickands, Mather \& Company, Cleve-
land, are to be practicallyduplicates. The Zenith City is to be owned by a syndicate formed by A. B. Wolvin, of Duluth, and which will include such well known vessel owners as David and Frank L. Vance, of Mil waukee, J. R. Irwin, of Painesville, O., F. N. La Salle, of Duluth, G. E. Tener, of Pittsburg, and John
Green, of Buffalo. This is the boat that is to be fitted with Babcock \& Wilcox tubulous boilers, while the duplicate steamer is to have two Scotch boilers, 14 by 13 feet, allowing 170 pounds steam pressure.
The Zenith City will be 380 feet keel, about 400 feet over all, 48 feet bean and 28 feet hold. She will have a water bottom of 54 inches. Her load from Lake
Superior on present draught, $141 / 2$ feet, will be full 4,000 gross tous, and it is expected that, with a 20 foot channel a year or more hence, this will be increased in net tons to about 6,000. A feature of this boat and the
Victory will be the big expanse of unbroken deck that they will present. Quarters for the crews as well as the dining room, steward's apartments, etc., will be located below deck. There will be no houses on deck, excepting the texas and pilot house forward. A turtle back covering for quarters forward will extend only to the rail, sid the same will be true of the boiler house aft. Each boat will have eleven hatches, two of which will be located forward between the turtle back and the pilot house. Machinery for both the Zenith City and the Victory will be the same as that now in the steamer Kearsarge, and it will all be built by the Cleveland Ship Building Company. The en gines will be triple expansion, having cylinders 23,38 and 62 inches by 40 inches stroke.-Marine Review.

African Notes.

At a recent meeting of the Royal Geographical Society, Captain L. S. Hinde, of the Belgian service, read a paper on "Three Years' Traveling and Fighting in the Congo Free State."
The political geography of the Upper Congo basin under notice had been completely changed as a result of the Belgian campaign. It used to be a common
saying, in this part of Africa, that all roads led to Nysaying, in this part of Africa, that all roads led to Ny
angwe. The town visited by Livingstone, Stanley, and Cameron, until lately one of the greatest markets in Africa, had ceased to exist, and its site, when he last saw it, was occupied by a single house. Kasango, a more recent though still larger center, with perhaps 60,000 inhabitants, had also been swept away. It was represented now by a station of the Free State nine miles away, on the river bank. In harmony with this
political change, the trade routes had been completely altered, and the traffic which used to follow the wel beaten track from Nyangwe and the Lualaba, across Tanganyika to Ujiji, or round the lake to Zanzibar, now went down the Congo to Stanley Pool and the Atlantic. Despite their slave raiding propensities, the Arabs had during the 40 years of their domination of the most prosperous in Central Africa. The land scape, as seen from high hills in the neighborhood of Nyangwe and Kasongo, reminded one strongly of ordinary English arable country. There was nothing simi lar, as far as he was a ware, in any other part of the Congo basin. In all parts of the virgin Congo forest he had visited wild coffee was so abundant and so excellent that the expedition left their tins of imported coffee unopened. The center of the Congo basin, through which stretched the 1,000 miles of navigable river and tributary, was an alluvial plain, rimmed in on all sides by rocky ridges, through which the rivers broke at points marked by falls or rapids. At some future time this vast ring of rapids might beco
seat of a corresponding circle of mining centers.
At a meeting of the Linnean Society Mr. G F. Scott Elliot, who had been absent from Fing land since September, 1893, on a botanical explora tion of Mount Ruwenzori and the country to the north of the Albert Edward Nyanza, and had returned home only on the previous day, gave an account of his journey and of the results, geographical, geological, ootanical, zoological, and political, obtained by him. He took the route from Mombasa to Uganda. The country lying northeast of the Victoria Nyanza was
described as a large rolling grassy plain some 6,000 feet above sea level, and well adapted for colonization. He went west from the Victoria Nyanza to Mount Ruwenzori. which is said to have an altitude of 18,000 feet, and spent four months in exploring that district under the great disadvantage of a dense cloud hanging over he mountain the greater part of the day, which ofte prevented the party from seeing more than 50 fee base with a thick growth of trees resembling the laurel of the Canary Islands; above that bamboos to the 10,000 feet level; and ahove that again what the explorer could only liken to a Scotch peat moss, int
which the traveler sank at every step a foot or more. Large trunks like those of Erica arborea of the Canary Large trunks like those of Erica arborea of the Canary
Islands, but indicating trees 80 feet high, were noticed. Among other plants noticed were a viola, a cardamine, a gigantic lobelia, attaining a height of five feet or six feet, and a species of hypericum resembling that found in the Canaries; indeed, the similarity of the flora to that of the Canary Islands was remarkable, Mr. Scott Elliot ascended Mount Ruwenzori to the height of 13,000 feet, finding evidence of animal life and numerous insects to a height of 7,000 feet. Above 10,000 feet his Swali porters could not sleep without injury to their health, and it was only with a reduced number of men that he was able to ascend another 3,000 feet. Among the animals specially mentioned was a species of water buck (cobus), a new chameleon, a new snake, and several new insects. Mr. Scott Elliot's discovery that the Kagera River is navigable was regarded as important. Mr. Scott Elliott said he thought the route to Victoria Nyanza from the mouth of the Zambesi, by way of the Lakes Nyasa and Tan ganyika, would most advantageously open communication between the Upper Nile and the coast at Chindi, and thus do more for international interests than could be expected to result from a railway from Mombasa.

Hellium.

Lord Rayleigh, who so recently discovered "argon," new constituent of the atmosphere, has succeeded in finding helium in a Norwegian mineral. This substance was believed to exist only in the sun and in a few stars. There are indications that the sun contains a few elements which an analysis of the substances composing the crust of the earth has failed to reveal, as "coronium," a line in the green part of the spectrum of the outer solar envelope which is thought to represent a gas lighter than hydrogen. This line is number ed 5.316 in the Rowland scale and 1,474 in the old Kirchhoff scale. In examining the layer of gas below the corona spectroscopists have discovered a brilliant yellow line which was formerly called "D 3," and which is situated at 5,876 on the Rowland scale. Examinations of terrestrial substances have not revealed this element heretofore, so that it was regarded as peculiar to the sun and a few stars. This substance was known as helium. Lord Rayleigh was testing a Norwegian rock specimen with sulphuric acid and a gas was evolved. This he found to consist largely of
argon, but combined with it was another gas which he argon, but combined with it was another gas which he
succeeded in identifying with the spectroscope as succeeded in identifying with the spectroscope as helium. Prof. Crookes has confirmed his conclusions. The same rock has been treated in the same way before, but the gas evolved has always been considered to be hydrogen until Lord Rayleigh made his brilliant discovery.
From its associations and the particular region of the sun where helium is found, this gas is looked upon as being one of the lightest materials composing that body, possibly almost as light as hydrogen. Nilsing is inclined to think that helium resides chiefly in the upper portion of the chromospheric sheet. This sug gests the idea that, like coronium, it may weigh less than the gas with which it is associated. The researches of Gruenewald indicated that possibly both helium and coronium were components of hydrogen helium and coroniam were componsents of hydrogen Rayleigh's discovery of the gas in combination with argon at an ordinary temperature tends to discredit this theory.

The Swiss Watch Schools.

The famous Swiss watch schools are said to be the most exacting industrial institutions in the world. Their methods, which are doubtless the secret of their success, will be found very curious and interesting. In one of the most celebrated of these institutions in Geneva, for example, a boy must first of all be at least ourteen years of age in order to enter. After being dmitted, the student is first introduced to a wood turning lathe, and put to work at turning tool handles. This exercise lasts for several weeks, according to th beginner's aptitude. This is followed by exercises in filing and shaping screwdrivers and small tools. In this way he learns to make for himself a fairly complete set of tools. He next undertakes to make a large wooden pattern of a watch frame perhaps a foot in diameter, and after learning how this frame is to be haped, he is given a ready-cut one of brass of the or dinary size, in which he is taught to drill holes for the wheels and screws. Throughout this instruction the master stands over the pupil directing him with the greatest care. The pupil is next taught to finish the frame so that it will be ready to receive the wheels. He is then instructed to make fine tools and to become expert in handling them. This completes the instruc tion in the first room, and the young watch maker next passes to the department where he is taught to fit the stem-winding parts and to do fine cutting and filing by hand. Later on he learns to make the more complex watches which will strike the hour minute etc and the other delicate mechanisms for which the Swiss are famous.

AN IMPROVED INK WELL.

The illustration represents, in perspective with a broken-out section, an ink well that is not easily tipped over, which is designed to prevent dipping the pen too deeply into the ink, and to hold the ink in the well proper always clean and free from sediment. The improvement has been patented by Mr. John Black, of Trafalgar Street, Nelson, New Zealand. The main reservoir has a raised bottom, in the front side of which is a depression with tapering inner and outer walls, adapted to receive a removable doublewalled well, having preforations near its bottom through which the ink flows slowly from the reservoir

BLACK'S INK WELL
On the outside of the removable well is a vertical groove, admitting air to the reservoir, and by regulating the thickness of the top flange of the well the height to which the ink risesin it may be determined. Above and back of the well is a recess to provide room for the fingers in dipping the pen, and in the top is a transverse groove to receive the pen when not in use. It is apparent that the removable well is kept fully supplied as long as any ink remains in the reservoir, and the point of the pen is protected from settlings.

CALIFORNIA SUN DRIED PRUNES.

California has given us an enormous supply of fruit, which by recent improvements is able to reach Europe in good, wholesome condition. Our engraving, which is from the Illustrated London News, shows the process of drying prunes. Wide strips of linen are laid on the ground, and on them are placed the newly picked fruit. The hot sun accomplishes the drying in a short while, and then the prunes are carefully packed for traveling, and are transported from the fields to be relished in all parts of the world. From recent statistics it appears that California produces at least $26,000,000$ pounds of raisins annually. There are more than 200,000 acres in California under vines, and these yield nearly $15,000,000$ gallons of wine.

Incinerated Leap of

 Deutzia.At the annual exhibition of the Department of Microscopy of the Brooklyn Institute, held in January, Mr. Geo. M. Hopkins, of the Scientific AmeriCAN, exhibited a beautiful preparation of Deutzia leaf, which seems to have the merit of rovelty. The leaf was reduced to white ashes, leaving the star-like hairs in situ. Some of the hairs were blackened by the carbon of the leaf, others were white, with pearl colored nodules ranged along the rays of the star, like so many real pearls.

Mr. Hopkins' method of preparing this object is as a this object is as follows : A small piece of the dried leaf is placed upon a thin, flat copper plate, and another flat copper plate is laid upon it to keep it straight. Strong pressure is not required. The plates are now heated slowly over a flame until they become red hot; they are then allowed to cool, and the upper plate is removed. The piece of leaf is found to be carbonized and considerably shrunken. Without replacing the upper copper plate the lower plate with the carbonized leaf is again brought to a red heat, and lastly the flame is brought into actual contact with the leaf, thus removing the last trace of carbon, leaving nothing but the stars and the white ash.
The object is very tender, but it may be handled ${ }^{\text {in }}$ tion tion.
with proper care and may be mounted dry. If it is desired to secure the stars separate from the ash, one or two incinerated leaves may be placed in a small metallic box and shaken up until the leaf is disintegrated, when the stars may be picked out.-The Microscopical Bulletin.

Microscopical Analysis of Steel

At a recent conference, held under the auspices of the French Society for the Encouragement of National Industry, M. Osmond; described a method for the microscopical analysis of steel. The method proposed comprises, in addition to the preliminary process of preparing the polished surface, three operations : (1) Polishing in bass-relief on parchment with a very small quantity of English rouge mixed with water (2) etching and polishing on parchment with a mixture of calcium sulphate, in precipitate, in a suitable vehicle; and (3) etching with tincture of iodine and nitric acid. These three operations enable one to recognize in the steel five constituents. These five con stituents are associated in combination to form the complex edifice of the structure of steel. M. Osmond examined four types of steel, possessing a known proportion of carbon, to discover the manner in which these combinations varied. As a result of that investigation, M. Osmond states that the thernic treatment of the steel leaves in the structure of the metal, when cooled, characteristic indications sufficiently precise to form a useful guide in the manufacture of steel, and also to enable consumers to determine the quality of the metal supplied to them.

Suppression of Bone Black

Bone black in beet sugar making and refining is says the Sugar Beet, rapidly becoming obsolete. Manufacturers at first hesitated to believe that any other process for the clarification of saccharine juices could give equally satisfactory results. Facts as they now stand show that most of the sugar experts have been convinced that mechanical filtration mean greater economy and an equal clarification. Most European refiners do not use more than 10 pounds bone black per 100 pounds sugar worked, and within the next few years, as a certainty, even this will be aban doned.

Of all the excellent methods for suppressing bon black Dr. Soxhlet's may be considered the best. There are some features of it that resemble the Casamajo process; it acts mechanically and has no decolorizing effect upon the sirups filtered. The facts seem to show that the product obtained is so pure that no other manipulation is necessary but graining in pan The filtering medium consists of a thoroughly washed powder made out of fossils, to which is added an equal

PRUNE DRYING IN CALIFORNIA.
quantity of fine sawdust. The raw sugar is melted and cold water added, so that the consistency is 65 degrees Brix. To this must be added $0 \cdot 1$ per cent of the fossil in sawdust mixture; the whole lis then orced through a filter press. The first filtrate has a troubled appearance, but after that the sirup filters clear for at least 15 hours.
The masse cuite obtained by this method should have purity of $99: 6$, equal to that of any product obtained by a bone black method. It is interesting to note that the economy by this method is not only in he saving of bone black, but a considerable reduction in sugar losses that occur in the old method of filtra

A RELOADING TOOL FOR CARTRIDGES.

The illustration shows a simple tool, patented by Mr. D. A. Ripley, for preparing shells for shot guns and other arms, in applying caps and removing them, re moving the primers from the shells after they have been fired, and quickly adjustable for use in applying new primers or caps to the shells. The improvement is being introduced by Mr. W. P. Lewis, of Center Belpre, Ohio. A recessed shell base at the joint of the tool provides for the convenient placing of the shel to be reloaded; as indicated. The lower jaw has a forked upper portion, and a depending curved arm in which is pivoted the shank of a shell holder and guide, which is swung outward to receive the shell and turned up, as indicated by dotted lines, when a

RIPLEY'S CARTRIDGE RELOADING TOOL
cap or primer is to be ejected by the punch on the outer end of the holder. On the under side of the upper jaw is held a swivel plate, by means of a screw and thumb nut, the plate having near one end a hole registering with a hole in the jaw and also with the punch. On this plate is also a boss, slightly large than the primer or cap of the cartridge shell, the boss being concaved on its under side and adapted to push the cap or primer to its seat, the plate being turned round for this purpose, and adjusted, by means of the screw and thumb nut, with the boss beneath the hole of the upper jaw and above the primer hole of the cartridge. The shoulder of the shell being thus recapped rests on the arms of the fork of the lowe jaw as the handles are pressed together. To hold the handles closed when the tool is not in use, one handle has a hook and the other an engaging link.

Importance of Systematic Exercise.

It has always seemed to us a grave mistake that physicians in general have not studied the subject of exercise much more thoroughly and systematically, and thus direct their pa tients more carefully and intelligently. Many phy sicians simply say to thei patients that exercise wil be of benefit, but go no further than this. Direc tions of this meager and superficial nature are of no real value whatever.
A variety of exercises is probably the best way. We must try and get exercise which will interest and stimulate the mind. It seems to us that the very best single sport is fencing It can be done in all sea sons of the year ; it is ex cellent for both sexe young and old. This ex ercise is very absorbing and stimulating, and can be much better regulated and systematized $t h a n$ sparring, wrestling, bicycling, and m any other sports, which are not en tirely mechanical.
In fencing, we learn self reliance, agility, grace, and rapidity of thought; andit is comparatively free from many of the dangers we meet in sparring, wrestling etc. It brings a large number of muscles into play and makes them supple and extremely quick.
Pupils are taught to fence with both arms equally well ; the chest always being thrown well forward. It can be carried on in well ventilated rooms or out of doors in moderate weather
The fact that fencing can be so well regulated and systematized makes it an ideal exercise from a medical standpoint.-Med.-Surg. Bulletin.

A scientist has recently declared that the average speed of the transmission of the shock of an earthquake is 16,000 feet per second

THE ICE PLANE.

When severe cold comes on suddenly in calm weather the lakes and ponds rapidly freeze, and the surface, which is as smooth as that of a mirror, makes the hearts of the lovers of skating glad. But it sometimes happens that the wind intervenes during the period of cold necessary for the formation of ice, and the motions given the sheet of water produce an irregularly frozen surface that presents changes of level of severalinches, which are very troublesome to the skater. Upon rivers, where the complete solidification of the mass of liquid scarcely occurs until after a drifting of some days, the irregularities are still greater. An apparatus-a sort of large plane-has been devised for removing such irregularities and swoothing the ice, so as to adapt it for the exercise of skating, whatever be the conditions, moreover under which the congelation has taken place. This appar called a "glaciplane," we have seen used upon the skating pond of the Bois de Boulogne, at Paris, and have thought that it might render service elsewhere if it were better known.
As shown in the accompanying engraving, the system consists in pushing forward a steel blade properly inclined to cut away everything that exceeds the desired level.
This blade is mounted in front of a wooden frame provided with crossbars that allow six men to push it, while at the same time bearing upon it slightly. The in!lination of the blade is regulated by means of set screws that serve for mounting it, and afterward by causing the general position of the frame to vary with respect to the plane of the ice. To this effect, the rear rests upon the frozen surface through a single point only, a sort of wooden shoe, which, by means of a small winch, may be lifted to a varying degree. A man standing in the rear attends specially to this work, while another one, by means of a bar, does the steering. In order that an adequate thrust may be given, the men whose duty it is to maneuver this gigantic plane are provided with special calks, which are fixed against the sole of the shoes by straps. These calks consist of a piece of iron whose bottom is provided with blades toward the heel and toe, and which is jointed in such a way as to allow the foot to have a certain amount of flexibilty and to move without fatigue.

With a force of strong and well trained men it is possible in a few hours to render a very bad sheet of ice sufficiently level to allow skaters to perform their evolutions thereupon easily and without danger -La Nature.

ROYAL E. HOUSE.

We republish from the Scientific AmeRICAN the portrait of the distinguished inventor, Royal E. House, whose decease, at the age of 81 years, we have already chronicled. The following interesting account of his achievements is by Mr. Franklin L. Pope, and is from a recent number of the Electrical Engineer : Royal Earl House, who died at his home in Bridgeport, Conn., on February 23, at the advanced age of 81 , was, in many respects, one of the most remarkable of the galaxy of American inventors whose achievements have rendered the annals of the nineteenth century illustrious. In the limited space at disposal, it is impossible to give more than the briefest outline of his singularly interesting career. Born in Rockingham, Vermont, September 9, 1814, he removed, while yet young, with his parents to Choconut, a small hamlet in Susquehanna County, Pennsylvania, a point farther remote from civilization at that date than is Alaska to-day. His inventive talent first manifested itself in the construction of a submerged water wheel for a saw mill, which embodied a principle since used in many forms, and known as the "scroll wheel." Early in the forties, he went to Buffalo, N. Y., with the design of studying law with a relative of his family residing there, but having gained access to a limited number of scientific books, he became interested in electrical researches, and these soon became the absorbing passion of his life. Returning to his
home, he conceived and worked out in his own mind, of Morse's first line between Baltimore and Washing without the slightest knowledge of what had been ton, and long before this had been extended to New done by others, the scheme of an electric telegraph. York. Mr. William Ballard became interested in the From the outset, his design was to produce a record invention, and furnished House with the necessar in printed Roman characters, and all his efforts were means to perfect the invention. When completed devoted to that end. He possessed the unusual and which was not until several years afterward, it proved remarkable mental capacity of originating and de- to be a perfect marvel of mecharical skill and inge signing the most complicated mechanical structures, \mid nuity, and was demonstrated to be capable, under favorable conditions, of printing messages in plain

ICE PLANE USED UPON THE FROZEN LAKES OF THE BOIS DE BOULOGNE. Roman characters at the rat of more than fifty words per minute. Capitalists ultimate ly became interested in the scheme, and between 1847 and 1855 an extensive range of telegraph lines was erected, extending from New York along the seaboard to Boston and Washington, and west as far as Cleveland and Cincinnati, on which the House in struments were employed with great commercial suc cess. Many original details of the line construction were designed and carried out by Mr. House, and, viewed in the light of later knowledge, they stamp him as an electrician whose practical attainments were vastly in advance of his time. He preferred to employ stranded wires of great conducting capacity, insisting that a much higher speed of transmission by his system could be obtained in this way than by means of solid wires of equal resistance, a theory which was scouted by electri cians for nearly half a cen tury, but which is now uni
tangible form printing telegraph, which was adapted to work with two independent circuits, one of which was made to turn a type wheel step ivy step, while the other served to give the impression of each successive letter then presented, precisely as is done in many of the more recent "stock tickers." Having fully completed the design in his mind, House came to New York and had his machine constructed piecemeal at two or three different shops, afterward assembling the parts together with his own hands. This apparatus was exhibited in successful operation at the Fair of the Mechanics' Insti tute, of New York, in the basement of the City Hall, in the fall of 1844 only a short time after the establishm, e fall of 1844, only a short time after the establishmen

ROYAL E. HOUSE.
versally admitted to be true. He designed and con structed the first successful long span river crossing at Fort Lee, in 1849, carrying two piano wires on masts 400 feet above the Hudson River, in a span f over 4,000 feet; thus for the first time establishin permanent telegraphic communication between New York and Philadelphia. He designed an insulato having a glass screw-socket to engage with a thread cut upon the top of the pole. When the glass manu facturers insisted that it was impossible to make it, he at once designed a machine for performing the opera tion, which, in its essential principle, is in use to this day. By his wonderful powers of observation and invention, he was able to overcome every difficulty as it ame up, and no electrical or mechanical problem ever appeared to baffie him. Suits were brought in 1849 by the owners of the Morse inventions against companies using the House machine alleging infringement of their patents, bu the combined technical and legal skill of Counselor George Gifford, the forensic pyro technics of Rufus Choate, re-enforced by the consummate expert knowledge of House himself, were too formidable an opposition to be readily overcome, and in June, 1850, in the United States Circuit Court, in the Dis trict of Massachusetts, Judge Woodbury announced his famous decision, refusing an injunction; a most notable victory for the eminent inventor and his associates, especi ally relished by House in view of a remar which had once been made by Francis O. J Smith, one of the principal owners of the Morse patents, that he could drive his old Durham bull from New York to Boston with a message tied to his horns quicker than it would ever be sent by House's printing telegraph.

After the general consolidation of com petitive telegraphic interests, which took place about 1860 , the House apparatus gradually went out of use, the simplicity and cheapness of the Morse system, and more especially the vast inprovement in the skill, rapidity and accuracy of the operators over those of early days, rendering the use of the latter more profitable to the companies. Mr. House himself, in possession of a competency acquired from his invention, removed to Binghamton, N. Y.. where he lived in comparative retirement for many years. In 1865 he appeared at the Paient Office with a most elaborate and ingenious system of automatic sound telegraphy, obviously the fruit of .years of laborious study, and embodying features which have proved of extraordinary value in other systems of intercommunication, but which, as a whole, never met with the acceptance of the commercial telegraphic interests of the country. About ten years
since he removed to Bridgeport, where he passed the remainder of his days.
Mr. House possessed keen powers of observation, great originality of mind, and extraordinary tenacity of purpose. He was a man of vigorous physique and attractive personality. He was in full possession of his faculties to an advanced age, and retained in his memory the minutest details of his diversified and eventful life. His first patent bore the early number of 1,200 ; his last was No. 533,600 .

THE MANUFACTURE OF INCANDESCENT ELECTRIC
 LAMPS.

Without doubt, electric lighting by incandescence is the perfection of artificial illumination, since it offers light of the desired quality without developing an objectionable amount of heat, and without vitiating th air, while it is practically free from fire risk.

It is unnecessary in these days of electrical literature to devote time and space to historical matters, and it would be equally superfluous to extol the inventors and theinvention.
This article and the annexed illustrations are published for the purpose of giving to the general reader a
knowledge of how incandescent electric lamps are made. knowledge of how incandescent electric lamps are made
Our sketches were taken from the extensive manufac tory of the Swan Lamp Manufacturing Company, in Cleveland, Ohio, and it is through the courtesy of Mr . S. M. Hamill, president of the company, that we are enabled to present the facts and sketches.

It has been found cheaper and generally more satisfactory by lamp manufacturers to buy the blown glass bulbs from glass factories. These globes are sent to the lamp makers in the form shown in Fig. 2, in which is shown a bulb having an elongated open-ended neck. The first operation in the work of making a lamp is to perforate the bulb at the end, by heating it and forc piece of glass tubing having a diameter of about $\frac{8}{32}$ of an inch is fused to the glass, and the tube for a distance of about $5 / 8$ of an inch from the globe is reduced tance of about $5 / 8$ of an inch from the globe is reduced
in diameter, leaving a small passage through which in diameter, leaving a small passage through which
the air is removed from the lamp in the operation of exhausting. Attaching the tube in this manner is termed " tubulating."

At another table, as shown in Fig. 2, the carbonized cellulose filament is subjected to a process called "flashing." The girl having this in charge attaches the carbon ends to suitable pincers projecting from one side of a rubber disk, the pincers being connected with the wires carrying the current for heating the carbons. The carbon filament is plunged downward into hydrocarbon vapor, when the current is sent through the filament, heating it to incandescence, while it is surrounded by the vapor. The vapor is de composed by the heat and carbon is deposited on the filament until it acquires the proper resistance, when the current is automatically cut off. Platinum lead-ing-in wires having a cup at one end, made by flattening the wire at the end and bending it around a "former," are inserted in short glass tubes, 4. Two of these are connected together by a solid cylindrical "bridge" piece, 5, thus forming the mount, 7. The operation is shown in 12. The filaments, cut to the proper length, are then inserted in the cup shaped
ends of the leading-in wires, and cemented with ends of the leading-in wires, and cemented with
carbon derived from naphtha by a current of electriccarbon derived from naphtha by a current of ele
ity, thus completing the mount and filament, 8 .
Short pieces of copper wire, 9 , are then soldered to the free ends of the platinum wires. The completed mount and filament is now introduced into the bulb. A girl twirls the elongated end of the bulb in a flame, seizes the end of the mount with tweezers, and grad ually closes the lower end of the bulb around the lower end of the leading-in wire tubes, fusing them to-
gether and properly disposing the filament in the center of the bulb; this is shown in Fig. 10, and is termed "sealing and sinking."
Three such bulbs are now taken to a Sprengel pump and the air is exhausted by a stream of mercury, so directed and subdivided by its fall through a glass tube as to gradually pull out all the air from the bulb. The attendant is enabled to judge the progress of exhaustion by the size of the mercurial drops, and when their diminished size indicates nearing the finishing point, the current is turned on to heat and rarefy the remain ing air and assist in the more complete exhaustion. A flame from a Bunsen burner is then directed against the reduced portion of the glass tube, fusing the glass and thus sealing the globe. This operation is shown in Fig. 13.
To complete the lamp now requires only the attachment of the brass cap and making the proper connection with the little copper wires. The caps are made fast to the bulb with plaster of Paris, as shown at 14. This operation is termed "capping."
The Swan Lamp Manufacturing Company's works are on Belden Street, Cleveland, Ohio. They have a capacity of 2,500 lamps per day, the lamps having a voltage of from 40 to $1 \leqslant 5$ volts. Lamps made at these works are guaranteed an existence of 1,000 hours..

Water in Steam Pipes.
In a discussion upon steam piping, at, one of the recent meetings of the American Society of Mechanical Engineers, Professor Thurston made some interesting comments. Every one will recognize the fact that the two and sufficient principles to be adhered to in designing lines of steam piping are, first, to provide for contraction and expansion; and secondly, to provide against standing water anywhere in the line of the out-
side or inside. If the pipe can be arranged so that the expansion or contraction can take place without caus ing stress of the material, and if it can be kept dry inside or out, no difficulty will arise. It is not well under stood that the strains that may be produced in a pipe
by water are very severe. These are very serious and by water are very severe. These are very serious and severe and sometimes fatal, the results of settlement of water in a steam pipe, that may act by condensa tion of steam causing water hammer, or may be pre a slug to strike where it will and act like a hammer.
siug to strike where it will and act like a hammer.
An early experience of this sort is related by Pro essor Thurston. Steam was carried from the boiler room adjacent, down the opposite, wall and under the floor, a distance of several feet, then up to the steam chest of the engine. In the U thus formed was placed a cock, to be opened for draining it, by the engineer whenever the engine was stopped, and to be closed when the engine was running. It happened that one norning the engineer was not in the room at seven o'clock, and his assistant came in and at once stepped to the throttle valve, which was set in the pipe lying gainst the wall, at the point where the steam en tered the U on the way to the engine. The instant he
opened the valve there was a crash; the cast iron steam pipe was broken below the floor. He went below and found the engineer dead, having been killed by the exploding pipe. He had gone down to set up a joint which had probably been loosened by this very action. This fact illustrates either the force which water may exert when forced through a pipe by the impelling oower of steam, or the forces that may be set in action by the sudden contraction of a moving mass of steam when coming in contact with a mass of cold water Either action would have been sufficient for the result described.
Another instance was mentioned where the steam pipe was not sufficiently drained, and the water col ected in the pipe and was carried over into the cylinder of the engine, wrecking it. Large stresses must be produced, and it would be interesting to observe how arge these stresses are. No one has yet found a way of ascertaining them accurately. The fact that such accidents do occur, unquestionably due to the impact produced by the rapid condensation of steam on the surface of a pool of cold water, shows that these stresses must be enormously great. What may hap-
pen when a rapidly moving, heavy mass of solid water, pen when a rapidly moving, heavy mass of solid water,
in full career, strikes an obstruction we all know ; but he hammering of steam in pipes produces a local strain probably quite as severe, perhaps even more serious. This second kind of strain is known to be enor mously great, but how much we do not know. He had occasion once to examine a quantity of pipe taken out of a heating system then in operation, but now ex inct. He was informed that the pipes were defective and was asked to examine them for the purpose of obtaining a report to secure from the makers a reduc tion of their cost and possibly damages. Many of the pipes were split through good welds and bad welds, through solid iron even, and the only report he could make was that they were injured by water hammer. A quantity of the pipe was taken to the mill where it was made and the pressures they would stand were measured, split and weakened as they were. In order to obtain a fair idea of the actual pressures that the pipes would sustain, a rubber packing was arranged on the inside of each pipe, a strip covering each crack from end to end, drilling a few holes along the crack, so that the strength of the pipe should not be affected and to insure that sealing these joints should not affect the strength of the pipe. The bolts simply held that packing up against the crack on the inside, so as to seal it by the slight pressure of a line of small bolts which were put in simply to hold the packing in place Pipes arranged in this way, and tested in the hydraulic apparatus of the mill, carried all the way from 300 to 1,000 pounds pressure to the square inch, injured as they were. The conclusion was obvious that the water hammer to which they had been subjected was enormously in excess of these figures, representmade. These facts are more impressive than any possible examination, without actual measurement of these quantities, and reveal the intensities of the strains that occur, and the risks of danger which occur from allowing water to stand anywhere in a pipe. After water had once collected in a pipe, especially in steam pipes leading to engines of larger size, there is no safe way of removing this danger except by simply shutting the steam off at once, if it is moving in the pipe, or
keeping the throttle shut, if it is not moving; then let the steam down and drain the pipe completely before steam is again put on. If an attempt is made to
drain even a still pool of water in a pipe under pressure, the water hammer may become very severe The disturbance of the pool by the flow of steam causes condensation; condensation causes a rush of steam upon the surface of the water, and presently there may result as serious effects as when steam actually moves through the pipe with the throttle valve open, and the pool of water is set in motion to cause accident by impact.

Aluminum Alloys and Solder.

The solder consists of silver, nickel, aluminum, tin and zinc, in the proportions as follows:

	Per cent.
Silver.	... 2
Nickel.	. 5
Aluminum.	. 9
Tin.	34
Zinc	

No flux is necessary, and any soldering iron or tool may be used, though one of aluminum is preferable. The alloy consists of copper, tungsten, aluminum, in and antimony, for either of the two latter manganese or nickel being at tines substituted. The proportions preferred are somewhat as follows:

	Parts.
Copper.	0.375
Tin.....	$0 \cdot 105$
Antimony.	1442
Tungsten	0.038
Aluminum.	. 98.040
	100.000

Tungstic acid and cryolite are melted together, equal proportions being employed. When the temperature reaches $1,200^{\circ}$ C., aluminum is added so as to produce 10 per cent compound of aluminum and tungsten. A second alloy is made containing equal proportions of aluminum and copper. These two alloys are then melted together with pure aluminum in the proper proportions to form the alloy required as above; tin, antimony, or their substitutes.being added in the necessary proportions; or they may be left out altogether when the copper and tungstic acid originally employed are chemically pure.
Another alloy consists of aluminum, silver and copper, preferably in the following proportions or approximately so: Aluminum, $96 \cdot 25$; silver, 3.50 ; copper, 0.25 per cent $=100.00$.

Medical and Surgical Aspect of the Japanese

Great progress has been made in Japan in medicine, and especially in military surgery, in the last few years. The surgeon-general has pointed out that the mortality among the wounded in the Satsuma war was 17 per cent, while in the present war it has dropped to 4 per cent. The armies of Japan are accompanied bv 1,350 medical attendants, of whom 380 are surgeons. The barrack hospitals in Japan are large, and are equipped with the latest appliances.
The largest of these hospitals is at Hiroshima. The staff consists of 56 surgeons and 501 nurses, in addition to 173 surgeons and nurses from the Red Cross Society, in which many representatives of the Japanese nobility serve. The same society has 138 practitioners and nurses in the field. The remarkable results which have been obtained in the present war in Japanese surgery, medical practice and sanitation are largely due to Dr. Kitasato and other pupils of the great medical schools of Germany.
Dr. Kitasato was one of the most eminent of Dr. Koch's students and was associated with Dr. Behring in some of the researches which culminated in the discovery of antitoxine.
The army of Japan has been fortunate in regard to disease as it has been in the results of its numerous encounters. The London Times states that the combined mortality from disease and the loss in battle has only been about 1,300 lives out of the armies, which number 50.000 men, and the navy, which consists of 29 ships. The comparative immunity from sickness is believed to be largely due to the rice diet. It is probable that such achievements were never before realized in the history of warfare with so small an expenditure of human life.

English Express Trains.

The present exhibits some striking accelerations compared with ten years ago. The broad gage is gone, and the "Cornishman" has superseded the "Dutchman" and "Zulu" as the fastest G. W. train to Exeter. The timing is : Paddington, depart, 10:15 A. M.; Swindon, arrive 11:42, depart 11:52; Bristol, arrive 12:45, depart 12:52 ; Exeter, arrive 2:20. The up leaves Exeter 3:40, and makes exactly the same time over every section. With only the two stops 194 miles are covered in 228 minutes, or upward of 51 miles per hour. A train now leaves Birmingham at 8:45 A. M., and reaches Euston at 11:10, a speed, with three stops occupying seven minutes, of $49 \cdot 1$ miles an hour. The London and Southwestern now runs the 79 miles to Southampton West in 98 minutes without a stop, the 12:30 P. M. down doing this at $48 \cdot 3$ miles an hour.

Sorrespondence.

${ }^{6}$ The Mechanical Color Tests."
To the Editor of the Scientific American :
Having read with special interest the recent articles which have appeared in your columns regarding "The Mechanical Color Tests," and noting the fact that my. name has been used in connection with them, I venture to ask that you will allow me space for a very brief explanation of my relation to the subject. Owing to my connection with the kindergarten since its earliest introduction in this country, my atten tion was called, many years ago, to the utter lack of any logical system of color instruction, and for a long time I gave this subject much thought without discovering the means f or any radical improvement.
As early, however, as 1885 I had arrived at the con clusion that, owing to the fugitive qualities of pig mentary colors and the indefiniteness of their commercial names, the solar spectrum affords the only source from which to derive unchangeable standard of color; also that the Maxwell disks furnish the only practical means for measuring color effects produced by material substances, and that from these two sources a practical color nomenclature was possible.
Following out these ideas by continued practica demonstrations with the aid of many friends in the educational field, we selected, in 1888-89, six location in the solar spectrum best adapted, in our opinion, to supply these standards. We also prepared Maxwell disks in the closest possible pigmentary imitation of these six standards and black and white, thereby rendering possible a nomenclature of colors. A little later these spectrum standards, which had been chosen æsthetically by competent colorists, were located by their wave lengths by a professional scientist.
This scheme of color instruction was definitely formulated and carefully explained at considerable length in a book published and copyrighted in 1890, called "Color in the 'Schoolroom." This book out lines a practical system of color instruction based on spectrum standards æsthetically selected and scientifically located. When the purest possible pigmentary imitations of these spectrum standards were applied to the Maxwell disks and rotated on a color wheel or color top, they furnished the first practical nomenclature for material colors ever put in use. After a test of five years this nomenclature has proved of such educational value as to gain the approval of a ver large number of the leading educators and art teacher of the country.
Since 1890 this system of color teaching has been greatly improved, having been kept constantly before the public in the scientific and educational papers, by means of numerous addresses to teachers, norma schools and colleges, and in two other books which the writer has published since the one mentioned above.
Springfield, Mass.
Milton Bradley.

An Answer to Strindberg.

To the Editor of the Scientific American :
In the March 23 number of your valuable paper noticed an article by Strindberg on the "Inferiority of Woman." If the editor will permit, I would like to make reply to that article through your journal.
The first sentence under the above heading is this "Woman is inferior to man." He goes on to prove this statement by saying, "The author of 'Pere' does not arrive at this conclusion by an exclusive analysis of woman's mental qualities; to a great extent he relies upon her structural and anatomical weak nesses."
In the second chapter of Genesis, seventh verse, we read : "And the Lord God formed man of the dust of the ground." In the same chapter, twenty-first and twenty-second verses, we read : "And the Lord caused a deep sleep to fall upon Adam, and he slept, and he took one of his ribs, and closed up the flesh instead thereof, and the rib, which the Lord God had taken from man, made he a woman." He speaks of the gray matter of the brain not being so dense in the female as in the male. Yet, in the next sentence ad mits that her nerves are much stronger, nine pair of much stronger nerves in the female than in the male emanating from this inferior brain of the female
The author of that article evidently traces his origin The author of that article evidently traces his origin
to the inferior animal. How much rather would I to the inferior animal. How much rather would I
believe the second chapter of Genesis and meditate upon my origin as from God. This inferior little body of mine being framed by God from the bone or rib of this superior being spoken of, man. Yet Adam, when woman was brought unto him, said: "Thisis now bone of my bone, and flesh of my flesh."
Man, with his superior strength and muscles (which we admit), has not the nerve or courage to en dure suffering. As we attribute largely man's superio strength and the developed muscles to the difference of duties or occupation of men, so do we attribute to woman a greater capacity to endure pain; simply because God made woman to bear and nurture the
race. In the burial places of the stone and iron age
the writer claims skulls were found of two differen kinds. He says it is opined that the inferior skulls were those of the female; the superior, those of the male. It is as reasonable to suppose that the inferior were those of the male, and the superior those of th emale.
And again it is just as reasonable to suppose that hundreds of years hence his own skull may be exhumed and declared to be that of a female.
One of the motives given by the author which causes so many men in the present day to deny the inferiority of woman is "a feeling for
ration much as religiou does."
This intense tenderness and veneration for woman is God-given. He loves, and respects, and reverences her because God so planned and formed her his equal and companion. Another motive given by some, he says, to deny her inferiority is "the idea that a quantity of
masculine vices are not found in woman," but adds "Shasculine vices are not found in woman," but adds in the garden of Eden, woman used the superior nerve spoken of by the author, and tempted Adam to sin. While Adam's inferior will power yielded to the machi natio
"
The so-called higher qualities of woman do no bear a very searching analysis. Her impressionability, of which we hear much, is merely that of a child. Her hysterical and passionate outhursts when thwarted are the true equivalents of a child's screams and kicks when it is refused something it wants."
Really, we consider this the most irrational and unintelligent survey into the character and disposition of woman that could possibly be made. The writer could not possibly use such language regarding on who has assumed the title of mother. Analyze, it you lease, the devotion of a mother, a Christian mother to the child she loves and cherishes more dearly than her own life. Search and analyze, if you have the ability, the so-called higher qualities, love, fidelity, ortitude, self-denial, of your own (perhaps Christian) mother, over the same "higher qualities" of your father. These mothers who rock the cradle possess the intelligence to rule the world. "No woman can make a good cup of coffee!" The author then states the reasons. To this I make no further response than this: If she cannot, content yourself to rise early and make your own superior cup of coffee before your loved, though inferior, companion has arisen from he slumbers.
Crime, even, demonstrates feminine inferiority, for there is generally no reflection or calculation of the probability of discovery in crimes committed by male criminals, his own statements argue for instead of against her ; morally man must be inferior. Crime is usually a rash act, not premeditated; and the mur derer who plans, and plots, and reflects, and calculate as to the results of certain deeds is usually a worse man, and morally an inferior man, to the one who com mits a crime in a passion and repents the deed. We note again the author simply expresses his disbelief in the historical record of the great queens, such as Elizabeth of England, whose works he clains have been magniified. He offers nothing to substantiate his opinion. He goes on to reaffirm that woman is merely the complement of man. "As his alter ego she may be invaluable, but alone she is useless."
Here he has simply reversed God's plans. First God made man, not woman, and he said it is not good that man should be alone. Afterward he made woman As his alter ego she may be invaluable, but, withou

Th, man was found to be useless.
"The complete success of the emancipation move nent would mean a struggle against the laws of nature." "What [asks Strindberg] is the cause of this nreasoning fury against man? For is it not he who after all has bestowed upon woman the benefits o culture, the right of holding property and other privi leges?" The laws of nature are in the hands of Goo
These are not what we wish to change. It is the alter able laws of countries, made by man, we are attacking The unreasoning fury against man spoken of is inginary, not real. Woman still loves man, her family, her home, and seeks to protect it, but is rebellious as to her subjugation to certain laws made by man giving to him rights and privileges he is not willing she shal equally share. You say man bestows the right to woman of holding property and other privileges. The other privileges spoken of are no doubt paying the tax
required by the laws without representation. "A bad feature of wodern legislation is its tendency to rob the wage earner and father of the family of his daily bread in order to benefit the emancipated female. generally childless." Shame on such an assertion. You make thorough can vass of our cities, the shops, the factories he stores, the many places were women are employed saying nothing of the thousands of hovels in which women are found bending over wash tubs, sewing ma chines, etc., and ask why they thus labor from morn till night. The larger percentage of these women will answer to support father, mother. children, or. per
haps, husband. Why : Because the fathers or hus
bands have neglected to properly provide for them Again, why? Because of some of the bad features of modern legislation. While it has given to man a iberal recompense for his services, it has allowed to remain evils that drag down not only the man, but woman. Hence her desire for emancipation and equality. "Necessarils, theremust be some sacrifices and it is against these that the crowd of so-called mancipated women, who are devoid of any feeling of duty toward humanity, raise their raucous voice.'
Yes, there must be sacrifices. Every mother in the universe knows that. Yet these are God-given pleas ures with ample rewards. No! No! No! I am a mother and deem it a sacred duty to have children given me to teach and train, not only for time, but for ernity. And we are not devoid of duty toward hu manity. For ours is a love that reaches beyond ou own fireside. We are ready and willing as wives and nothers to rock the cradle. But the day has com when woman can no longer be kept beneath her equal. Through education are we enlightened. Possibly France has not yet arrived at the place where she is ready to accept or concede woman the equal of man But America, the republic of the world, is saying in many of her States, and the echo is sounding through "Wational capitol:
"Woman! Woman! God bless her noble nature and generous spirit." And as the echo rolls from State to State all over America, we hear again and again th epetition sounding in senate chamber and legislative hall, "Welcome, noble woman."

Mrs. Dr. A. S. Rudy.
734 South Main Street, Lima, 0.

Platinum.

The Ural platinum deposits in Russia are the only nes in the world, as this metal is worked nowher else, and is known simply as a mineral finely dissemi nated in certain rocks. Platinum occurs in the Ura government of Perm, where it is found on various private properties and state lands. In the districr of Goroblagodat there are 70 allotments for the exploi tation of platinum under different private individuals. The metal is found in the form of alluvial deposits or platinum-bearing sands, which frequently also contain oold. These deposits vary in thickness; they are rarely less than three and often reach seven feet; the grains are usually small in size, but occasionally small uggets are found weighing one or more kilogrammes The platinum is frequently accompanied by other are metals, such as iridium and osmium. At present all the platinum extracted in the Urals is forward ed in the crude state to St. Petersburg, whence it is sent abroad. Although there are two laboratories in the Russian capital for refining platinum ore, the reater quantity is sent abroad in the crude state The production is subject to a tax of 3 per cent for leasebold and 4 per cent for freehold works. The rapid and variable fluctuations in the price of a pro duct having no definitely fixed exchange value but indispensable to the arts, reflect upon the produc tion of platinum in Russia. Thus, when the price o the metal is high, it becomes profitable to work the poorer deposits, while it is only possible to work the very richest when the price is low. Although the first platinum deposits in Russia were discovered so far back as 1819 , the actual exploitation of this metal be gan only in 1824, when rich veins were discovered in the Nizhni-Tagilsk district. From 1828 to 1845 plati num money was coined in Russia. The denomination f these coins was three, six and twelve rubles; the total value of platinum money put into circulation was $4,250,000$ rubles. During this period the produc tion of platinum increased considerably, but when platinum coinage ceased the exploitation of the meta was almost entirely stopped, and only revived in 1859 In 1887 the production of pure platinum was 269 poods 4 pounds, in 1890 it was 173 poods $263 / 4$ pounds. The value of the yearly export of platinum, which goes chiefly to England, is about $1,560,000$ rubles. The argest quantity of platinum is now extracted at the deposits of Nizhni-Tagilsk, belonging to Prince Demi doff San Donato, and at the Krestovosdvigensk deposits of Count Schouvaloff. In 1890 there wer 6,000 workmen employed in the exploitation of plati-num.-Petersen's Trade Review.

The New Mauser Repeating Mifle.

The new Mauser repeating rifle was exhibited at Fort McHenry, Maryland, on April 1, by Captain Marksclaeger, of the steamship La Campine. The new un is one of the first made for the German govern ment. It is something like the Krag-Jorgensen mili tary rifle which is now being adopted in the Unite States Army. It is of 32 caliber and the construction is on the same principle as the Krupp gun, the barre being of three tubes, one inside the other. The inner tube is made of hard tempered steel and is rifled. The bullet is propelled by a smokeless powder. Fired at the height of the shoulder, the bullet, it is said, will go nearly two miles before becoming spent, and at 2,000 yards it will pierce the bodies of seven men placed one behind the other.

THE PULVERIZED CHARCOAL INDUSTRY Pulverized charcoal is used principally for purifying water, wines, glycerine, etc., and also used for packing purposes. The lump charcoal used here comes principally from Delaware and New York State. The material is bought by thefcarload by the manufacturer, who first extracts the gas from the coal by reburning it in kilns, after which the material is passed through a cracking, softening and grinding process which produces any grade of charcoal, ranging from flour to pieces as large as peas. The kilns are made of $1 / 2$ inch boiler plate iron. They are about 10 feet in height, about $61 / 2$ feet in diameter inside and lined on the interior with fire brick. Each kiln is pierced with about 18 draught holes about 4 inches in length and about 3 inches in height. A wood fire is first started in the bottom of a kiln and about two or three barrels or
grade. From the pulverizing mill the charcoal is car-
ried by elevator to a revolving screen or sieve. The ried by elevator to a revolving screen or sieve. The screens are about 4 feet in length, hexagon shaped and about 2 feet in diameter, the wire cloth from which the screen is made ranging from 3 to 24 meshes to the inch. From the screen the material passes down through wooden chutes, where it is packed into lb. bass for the market. The tailings or coarse mate-
rial not properly ground is taken back and run through rial not properly ground is taken back and run through
the pulverizing mill again. The apparatus for softening charcoal for hard packing are hollow circular iron cylinders about 8 feet in length and about 4 feet in dia meter. They revolve in the interior of inclosed brick compartments, two cylinders in each geared together.

These compartments are about 9 feet square, abou 8 feet in height, and about 1 foot in thickness, and are

14 bags of pulverized charcoal per hour, weighing about 78 lb . each.

Boring Holes in Hardened Armor Plate
The success attained of late in hardening the surface of armor plate has made it necessary to devise some especially effective method of boring holes in the plate for the bolts which are to hold it in position number of experiments have been made with th dea of softening a spot on a Harveyized plate large enough to allow a drill to pass through, but without weakening the plate itself. The oxy-hydrogen blow pipe has been used for this purpose, but without suc cess. No method has been found entirely satisfactory until the attempt was made recently to soften a spo by employing an electric current. The successfu method consisted in placing the two electrodes of a

THE PULVERIZED CHARCOAL INDUSTRY.

ders are perforated with holes about $1 / 8$ of an inch in |barbette plates of the Massachusetts, and the results diameter, and about 6 inches apart, through which the are said to be very satisfactory.
material drops when ground to the floor below. The cylinders are filled from the top about every two hours, the material being ground to a powder as the appara tus revolves, by means of 8 to 10 lb . cannon balls in each, weighing from 10 to 12 lb . each. The cylinders revolve at the rate of about 60 revolutions per min ute, the rolling of the balls through the charcoa causing the material to soften. About every six week he hard, unbroken chunks that the iron balls will not break are dumped out of the cylinders and burned in the furnace. If the cylinders revolve too quickly, the balls pound the material and turn it out gritty. The ground charcoal is scraped from the floor of the compartments with hoes, the attendants carrying it to the elevators, where it is conveyed to the screens and down through the chutes to the bags below. Our sketches were taken from the plant of Merrill \& Wehrle, New York, who turn out, with 25 men, about

Activity in Railway Building.

A very gratif ying revival of activity in railway build-

 ing throughout the United States is announced by the Railway Age. According to the table prepared by this publication, some 20,547 miles of new road are now either in course of construction or are about to be built in the near future. The 20,547 miles of new track comprises many new short lines and extensions on old roads in forty six States and Territories. The State Texas, with a proposed new mileage of 2,913 miles, takes the lead, California ranks second with 1,390 miles of new track, Arkansas with 1,377, Pennsylvania 768, New York 393 miles, etc. During the year 1894 less than 2,000 miles of track were laid in the United States. It is stated that the construction of the 20.547 miles of backing.\triangle VISIT TO THE EXHIBIT OF THE NEW YORK ACADEMY OF SCIENCES. by professor h. f. OSborn.
The annual reception and exhibit of recent progress in science was instituted last year by the New York Academy, upon the model of the famous "conversazione" of the Royal Society of London. These social scientific meetings of the Royal Society, which are held on two or three even ings in the course of the winter brin ngs together savants from all parts of Great Britain. There are usually from forty to fifty exhibits, partly of a popu lar character, but mainly illustrating the most recent discoveries in England or the Continent. The distinctive fea ture of each discovery is set forth with great clearness, either by personal ex planations given by the exhibitor himself or by some diagramatic method Englishmen have a gift of exposition of scientific truth which is exemplified in a remarkable degree both by the writings and teaching methods of such men as Huxley and Tyndall.
From a study of the catalogue of this second exhibition of the New York Academy it is apparent that we have much to learn from the Englishmen in this repect, and that one result which pect, these exhibitions should bring about is an improvement in the
methods of extending scientific methods of extending scientific
truths to wider circles. The extruths to wider circles. The ex
hibit of the Academy as a comparatively local society naturally presents a contrast in being of a less national character, and yet one cannot fail to be struck by the broad fields of research now being entered by the scientists of this city, with the promise of some really great results in the future.
Of five hundred exhibits dis played, it is only possible to mention a few. All of our educational institutions contribute, while a number of the most important objects come from great distances, such as the photographs from the Allegheny and Lick Observatories to be shown in the astronomical section. This section is in charge of Mr. Charles A. Post of the Strandhome Observatory, and among the ten exhibits he has brought together are photographs of star spectra between F and D shown by Professor Keeler of the Allegheny Observatory. This is the portion of the spectrum most easily observed by the eye, and these plates are referred to as evidence that photography is superior to the eye even on its own ground. Professor Barnard of the Lick Observatory exhibits valuable glass negatives of comets and the Milky Way made with the new six inch Willard portrait lens, re figured by Brashear. There are also other series of photographs from the Lick and Strandhome Observatories. In the mechanical section Professor Woodward exhibits models of the international prototype meters and kilogrammes, which have been lately adopted as the standard of length and mass respectively by nearly all nations. One of the most novel exhibits in novel exhibits in physics is a series of "Chladni" figures shown by Professor Alfred M. Mayer of Stevens Institute, who has charge of th is section. The figures are formed in white ord upon vibrat ing upont ing metailic plates, and Professor Mayer's process consists in fixing $t h e$ sand upon a black background after the figures have been formed, by means of a fixative spray These pla plates demonstrate the truth
of Lord Rayhorse upon the extreme right.

Fig. 1.-PRIMITIVE HORSE-HEIGHT, THREE AND ONE-HALF HANDS.

2.-COMPARISON OF PRIMITIVE HORSE AND MODERN TROTTER

and of the Rev. W. A. Ward. The American Museum of Natural History contributes an attractive series in the line of zoology under the direction of Professor J. A. Allen. The rapid inprovement in methods of taxidermy is illustrated by a series of comparisons between the work just completed at the museum and that of ten years ago. The most striking of these pairs is that of two chimpanzees, the modern example being the late Chico, so well known in New York, which has just been mounted by Mr. J Rowley Jus. been mounted by Mr. J. Rowley, Jr. Two wild turkeys mounted side by side show in the modeling of the head and wattles the greater naturalness of recent work. Adjoining this exhibit is that made in different lines of research by Columbia biologists. First is a series of preparations of nerve cells from the brain and spinal cord, illustrating the great advance in our knowledge of the nervous mechanism which has been made by the method discovered by Professor Golgi of Pavia. By a silver nitrate impregnation we secure a picture of the nerve cell with its finest processes standing out like a silhouette on a light background, a technical result which has worked a complete revolution in all our ideas regarding the relations of the nervous system. The exhibitor, Mr. O. S. Strong, shows two of his own improvements upon the original Golgi method.
A second series is that made by Messrs. Wilson, Calkins and Kean, showing the relations of the archoplasm and chromatin the two substances which lie at the basis of all the phenomena of inheritance both in animal and plants.
These elements are seen in several different types of animals, the most novel series being that shown by Professor Wilson which is the basis of a discovery of great significance, namely
leigh's theoretical deductions, and differ radically from that the paternal cell alone contributes the dynamic all figures which are shown in modern text books in or cell-dividing substance to the new individual, fron the fact that none of the lines intersect. The physical which we infer that the chromatin alone, as a product exhibit is an extensive one, including a large number of both sexes, is the bearer of hereditary qualities, for of instruments for spectroscopic as well as for sound it is evident from Galton's researches that such and light measurements, mainly devised by different qualities are equally contributed by both parents members of the Columbia Physical Laboratory. The mineralogical exhibit has been arranged by Dr. L. P. Gratacap of the American Museum of Natural History, and includes about one hundred objects, the most notable being a series of Babylonian and Assyrian cylinders and seals arranged to illustrate the different mineralogical materials used for these purposes between 4,000 and 300 B. C. This is from the collections of Tiffany \& Co.

Sa And
Fig. 8.-EVOLUTION OF THE HORSE AS SHOWN BY THE FOOT
On the left is the fore foot of the ancestral four-toed horse, found in the Eocene beds of the Wasatch Mountains. Northern Wyoming. Passing to the right are the intermediate stages of evolution, represented in fore and hind feet found in Dakota, Nebraska, and Texas, terminating with the modern

These so-called fertilization phe nomena are beau tilfully shown on a large scale to those not familia with high powers of the microscope by a series of mi cro - photograph taken by Dr. Ed ward F. Leaming who has charg of the entir photographic sec tion. In this sec tion we find some striking exam ples of the latest stages of perfec tion in picture taken through the microscope shown in con nection with nerve prepara tions and also in photographs o bacteria. Ther is also here a large exhibit of the latest photographic appa ratus, to which one of the side rooms of the gal leries is devoted.
Inoperation during the evening is a triple lantern, designed by Mr , designed by Mr. Frederic delphia, showing
the projection of the three primary colors in lantern slides so combined as to produce the effect on the screen of a picture in natural colors. All the recent advances in half tone and color printing are also shown.
In an adjoining room is the bacterial exhibit arranged by Dr. T. M. Cheeseman, of the College of Physicians and Surgeons, whose recent exposé of the impurities of the Croton water supply is familiar to New Yorkers. A very large number of pathogenic species are shown, the new feature in each case being that all the types have been preserved by the new formalin method. The recent discovery of the cure for diphtheria is illustrated by the specific germ of this disease, also by viels contarning the "toxin" which is used to inoculate horses and other animals to induce immunity, and by the "anti-toxin" drawn from the serum of the hlood of the horse. Professor John G. Curtis has charge of the physiological department in which many new forms of apparatus for experimental investigation are shown. The exhibit of experimental psychology arranged by Dr. Farrand is of a similar character. Geology and paleontology are in the care of Professor Kemp and Professor Osborn respectively. Here is a large collection of the evidences of the series of great volcanoes which extended along the Atlantic seaboard from New Brunswick to North Carolina during preCambrian times. These eruptive rocks have been found to possess in greater or less perfection all the characteristic structures of recent lavas. The discovery and proof of the existence of these volcanoes is one of the most surprising results of recent geology work in this country. Various types of invertebrate fossils show the work which has been done in the ancient life of the Atlantic coast. The most striking is the rich collection made by Messrs. Van Ingen and Matthew at St. John, N. B., demonstrating the existence of a varied fauna in the middle and lower Cambrian, which has nitherto been considered extremely barren. In vertebrate paleontology the main exhibit is that showing the evolution of the horse, as here illustrated. The wonderful series connecting the oldest known horse of the lower Eocene period with the modern horse is probably the most complete which has ever been brought together. The American Museum of Natural History has recently acquired the famous little four-toed horse from the collection of Professor Cope, of Philadelphia, and it is here publicly exhibited for the first time (Fig. 1). This little animal, although fully matured, is only $31 / 2$ hands high, and is estimated at two million years of age. The skull and limbs, nevertheless, display the most undoubted characteristics of the horse, there being a broad space in the lower jaw corresponding to the space for the bit. The teeth are short and simple; the limbs are scarcely larger in diameter than a good sized pencil, and there are four toes, all resting upon the ground, in the fore foot. To those who still doubt whether this little animal is actually the ancestor of the modern horse, a remarkable series of feet is exhibited (Fig. 3), giving all the stages between this four-toed and the modern onetoed animal, in which the median toe is seen constantly increasing in size, and the side toes are constantly diminishing until they are reduced to the pair of splints. This evidence is further confirmed by an almost equally complete series of skulls showing every stage in this wonderful development. The two extremes of this remarkable series are shown in the little four-toed animal placed beneath the head of the modern trotting horse skeleton (Fig. 2), showing the exact relative size of each. This exhibit, together with botany and anatomy, is placed in the Vanderbilt gallery. Dr. Curtis, of Columbia, has charge of an extensive display from the botanical laboratories of Columbia and of Barnard, including the collections made by Messrs. Small and Nash in Georgia and Florida and the microscopic studies of Dr. Schneider upon the North American lichens. In anatomy, Professor Huntington has arranged a complete series, showing the comparative anatomy of the ileo-cæcum.
It is already informally decided to make this reception an annual affair. The galleries prove to be perfectly adapted to the purpose, with admirable wall space for charts and diagrams, very extensive floor and table space, and every

Natural History Notes.

The Eozoon.-Eozoon was a name applied to a supposed genus of animals, because when first examined by Dr. Dawson, of Montreal (1864), it was the oldest fossil then known to exist, and its appearance was held to be, as the name denotes, the dawn of life upon the globe. Some naturalists have believed it not organic, while others, such as Dr. William Carpenter and Prof. T. Rupert Jones, have considered it a rhizopod or a foraminifer. It occurs in the Laurentian of Canada, and is called Eozoon Canadense.
Messrs. Johnston Lavis and J. W. Gregory, in a memoir recently published in the Transactions of the Royal Society of Dublin, finish the history of this supposed fossil animal. Doubts were expressed as long
ago as 1865 as to the organic nature of this object
and the conclusions of Moebius upon the subject have
now been fully confirmed by the English investigators above mentioned, who have not been able to find in the specimens of Eozoon examined by them anything but traces of mechanical and chemical alterations of the rock. It is very interesting to note that the vestiges of the pretended "dawn of life" are particuarly abundant in the rocks thrown out by Monte Somma, and the authors conclude that the Eozoon is due to an alteration of calcareous rocks inclosed in an igneous magma in fusion, in fact, to a true metamorphosis.
Varieties of Chlorophyl.-Mr. Etard has previously shown that the green coloring matter of phanerogamous plants consists of a mixture of pigments, and he now points out (Comptes Rendus, cxx., 328) that chlorophyl may be more or less blue, green or yellow, according to the plants from which it is obtained and the treatment to which it has been subjected. He finds that lucerne (Medicago sativa) contains several distinct chlorophyls, among others α-medicagophyl and β-medicagophyl. Certain chlorophyls, soluble in pentane, are, by their decomposition in the plant cells, the cause of the formation of essences and oils by chemical means. Others again, which are not so soluble, mix with water. These are very rich in oxycen and become decomposed to produce carbo-hydrates, tannins, etc.
Sight in Insects.-Dr. C. V. Riley, in his recent address as president of the Biological Society of Washington, said : Of the five ordinary senses recognized in ourselves and most higher animale, insects have, beyond all doubt, the sense of sight, and there can be as little question that they possess the sense of touch, taste, smell and hearing. Yet, save, perhaps, that of touch. none of these senses, as possessed by insects, can be strictly compared with our own, while there is the best of evidence that insects possess other senses that we do not, and that they have sense organs with which we have none to compare.
Taking the sense of sight, much has been written as to the picture that the compound eye of insects produces upon the brain or upon the nerve centers. Most insects that undergo complete metamorphoses possess in their adolescent states, simple eyes or ocelli, and sometimes groups of them of varying size and in vary ng situations.
It is difficult, if not impossible, to demonstrate experimentally their efficiency as organs of sight; the probabilities are that they give but the faintest impressions, but otherwise act as do our own. The fact that they are possessed only by larvæ which are exposed more or less fully to the light, while those larvæ which are endophytous, or otherwise hidden from light, generally lack them, is in itself proof that the.: perform the ordinary functions of sight, however low in degree. In the imago state the great majority of insects have their simple eyes in addition to the compound eyes. In many cases, however, the former are more or less covered with vestiture, which is another evidence that their function is of a low order, and lends weight to the view that they are useful chiefly for near vision and in dark places. The compound eyes are prominent and adjustable in proportion as they are of service to the species.
It is obvious from the structure of these compound eyes that impressions through them must be very dif ferent from those received through our own, and, in point of fact, the late experimental researches of Hickson, Plateau, Tocke and Lemmermann, Pankfact that while insects are shortsighted and perceive stationary objects imperfectly, yet their compound eyes are better fitted than the vertebrate eye for apprehending objects set in relief or in motion, and are likewise keenly sensitive to color.
So far as experiments have gone, they show that in sects have a keen color sense, though here again their sensations of color are different from those produced upon us. Thus, as Lubbock has shown, ants are very sensitive to the ultra-violet rays of the spectrum, which we cannot perceive, though he was led to con clude that to the ant the general aspect of nature is presented in an aspect very different from that in which it appears to us. In reference to bees, the experiments of the same author prove clearly that they have this sense of color highly developed. as indeed might be expected when we consider the part thes have played in the development of flowers. While
these experiments seem to show that blue is the bee's favorite color, this does not accord with Albert Muller's experience in nature, nor with the general experience
of apiarians, who, if asked, would very generally of apiarians, who, if asked, would very genera
Economic Uses of Insects.-Lowly as they seem in point of organization, there are few animals that exceed insects in commercial importance. The finest red dyes known to manufacturers before the introduction of coal oil colors were derived from insects. The Leu canium Ilicis, an inhabitant of the evergreen oak, was
employed for this purpose by the ancient Greeks and Romans, as it is still by the Arabs; and, until the in troduction of the Mexican cochineal, another species,
the Coccus Polonicus, living on the roots of the Scleranthus annuus in Central Europe, was much used for the same purpose. The Mexican cochineal, which drove all other kinds out of market, is one of the species of Coccinia. This insect was long regarded as a parasite upon the prickly pear. For many years the cultivation, or rather feeding, of the cochineal insect was entirely confined to Mexico, but it has now been introduced into Spain and the French possessions of introduced into Spain and the French possessions of
Africa. A fourth species of great importance is the Africa. A fourth species of great importance is the
lac insect, Coccus lacoa, an inhabitant of the East lac insect, Coccus lacoa, an inhabitant of the East
Indies, where it feeds upon the banyan and other Indies, where it feeds upon the banyan and other
trees. It is to this insect that we are indebted, not only for the dye stuffs known as lac dye and lac lake, but also for the well-known substance called shellac, so much used in the preparation of varnishes and sealing wax. It is somewhat remarkable that only the female insects yield a good coloring matter.
Of all the secretions peculiar to insects, silk may well be regarded as the most valuable, since it has become as much an essential to the purposes of mankind as to the economy of its producers. The fluid, before it comes in contact with the air, is viscous and trans parent in the young larva, but thick and opaque in the more mature. By chemical analysis, it is found to be chiefly composed of bombic acia, a gummy matter, a substance resembling wax, and a iittle coloring mat ter. Silk may be placed in boiling water without undergoing any change, the strongest acids are re quired to dissolve it, and it is only quite recently that it has been imitated artificially.
Then we have large sums of money changing hands from the labors of the useful little bee, tons of weigh of honey and beeswax being yearly consumed.

The Spanish fly is an indispensable article in the treatment of certain forms of disease, and that in valuable agent, chloroform, was first made from for mic acid, an acid discovered in the formic ant and from which it has derived its name. Then there are nutgalls, produced by a small fly, and for which a sub stitute could not be found in dyeing and ink making.

Diastatic Ferment in Plants.-From experiments on Diastatic Ferment in Plants.-From experiments on
seedlings of Canna, Platanus, Phaseolus, etc., Dr. J. Gruss concludes the existence in seediings of a soluble diastase which is capable of diffusion through the cel wall in the same way as sugar. It appears to pass with maltose, out of the cotyledons into the stem for the removal of the cotyledons diminishes the amount of diastase in the stem. The quantity of dias tase present was ascertained by its action on starch the iodine test being used to determine the extent to which the starch had been destroyed. The penetration of the diastase into the substance acted on is accom panied with a simultaneous change in the latter, and to this process the author applies the term "allenoly sis." The action of the diatase on the reserve cellulos in the seed of the date is very slow, and ends in it transformation into soluble products, probably man nose. It is luy this action of diastase that the absorption of reserve cellulose takes place in the germinating date Vitality of Seeds.-Dr. Peters, of the Botanic Garden of Gottingen, has been expzrimenting with seeds taken from different depths of soil in a dense wood from 100 to 150 years old, which had been arable land for many years before it became woodland. His object was to discover how long the seeds of weeds would retain the power of germinating after they had been buried in the soil to a depth where they could not sprout. Soi samples were taken at various distances from the sur face to the depth of a foot. These samples were placed under genial conditions and the seeds which germi nated were raised and cultivated to a flowering stage Although the land had ceased to be arable between 300 and 400 years before, the weeds of cultivation were abundantly represented, and Dr. Peters claims to have proved that the seeds of many field and pasture plant retain their vitality considerably more than half a cen tury.
The Flight of Birds.-Hawks, says Fleming, in his Philosophy of Zoology, probably fly at the rate of 150 miles an hour, and an eider duck at 90 miles. Si George Cayley estimates that the common crow flies at nearly 25 miles an hour. Spallanzani found the rate of the swallow to be 92 miles an hour; while he coujectures the velocity of the swift to be nearly three times greater. A falcon that belonged to Henri IV, of France, escaped fron Fontainebleau, and in twenty four hours afterward was found at IMalta, a distance of not less than 1,530 miles; a velocity equal to nearly 57 miles an hour, supposing the bird to have been un ceasingly on the wing. But, since such birds never fly by night, and allowing the day to be at the longest, it flight was, perhaps, equal to 75 miles an hour. If we even restrict the migratory flight of birds to 50 miles an hour, how easily can they perform their most extensive migrations. Fair winds may perhaps aid them at the rate of 30 or 40 miles an hour, or even help them attain three times greater rapidity.

Two sections of the great Russian railway across Siberia are now in operation. The aggregate of the
two is 761 miles. The total length of the road is to be 4,000 miles.

Loss of a Spanish War Ship.

The sad intelligence is announced of the foundering at sea of the splendid armored cruiser of the Spanish navy, the Reina Regente, with loss of some 420 officers and crew. On the 10th of March the ship sailed from Tangier for Cadiz, and sank, it is believed, the following day during the prevalence of a great storm. The tips of her topmasts were found projecting from the water near Gibraltar and the Spanish coast.
The Reina Regente was built and eugined by Messrs James \& George Thomson, of Clydebank, for the Spanish government. The following were her measurements: Length over all, 330 feet, and 307 feet between perpendiculars; breadth, $501 / 2$ feet; and her draught was 20 feet; displacement, 5,600 tons when fully equipped.
There was a very minute subdivision in the hull of the ship, there being, in all, 156 water-tight compartments, 83 of which are between the armored deck and the one immediately above it, or between wind and water. Most of these compartments were used as coal bunkers, and appear to have been of no avail in pre ventirg the fatal catastrophe.
The Reina Regente was one of the ships which took part in the grand naval parade in New York harbo in 1893, when she attracted much attention from her graceful lines and formidable appearance.

a combination electrical meter.

The meter shown in the illustration is adapted to measure and indicate with nicety the ohms, volts, ammeasure or watts, in measuring an electric current. Ithas peres, or watts, in measuring an electric current. It has
been patented by Mr. Herschel C. Parker, of No. 21 Fort been patented by Mr. Herschel C. Parker, of No. 21 Fort
Greene Place, Brooklyn, N. Y. Supported on a suitaGreene Place, Brooklyn, N. Y. Supported on a suita
ble base is a permanent magnet, between the poles of which, on a common axis, turn coils wound respectively for high and low resistance, the coils as they turn moving a hand over a segmental graduation in dicating ohms, volts, and amperes, and which may be marked to indicate watts. The coils and magnets may, if desired, be differently arranged, but as shown the inner coil is wound for low resistance and the outer one for high resistance, both coils being secured to
upper and lower axles on which are inupper and lower axles on which are in-
sulating collars with binding posts. Two sulating collars with binding posts. Two
of the binding'posts are"connected by light flexible wires with the low resistance coil, and by other wires with binding posts on the base, while two other binding posts on the axles are connected with the high resistance coil and with other binding posts on the base, the posts on the base being adapted for connection with the current adapted for connection with the current
wires to be measured. The coils turn against the tension of a light spring seagainst the tension of a light spring se-
cured to the coils and to a bracket cured to the coils and to a bracket
which supports a core centrally within the coils. The top axle carries the indicating hand, and the current may be brought to the coils, if desired, through the torsion spring. In use as an ohm meter the high resistance coil is joined in parallel with the resistance to b \in measured, and the low resistance coil is joined in series, the action then being propor tional to the ratio of the potential difference to the current, or from Ohm's law, $\mathrm{R}=\mathrm{E} \div \mathrm{C}$. By giving the coils the proper resistance the deflection will be proportional to the ohms in the circuit, the ohms being indicated by the indicator hand on the segmental graduation. For use as an ammeter, the low resistance coil is employed, and for a volt meter the high resist ance coil, and the coils are arranged parallel instead of at an angle to each other for use as a watt meter.

The Rubles of Burma.

At a recent meeting of the Royal Society a paper by Mr. C. Barrington Brown and Professor J. W. Judd, F.R.S., was read on "The Rubies of Burma and Associated Minerals: their Mode of Occurrence, Origin, and Metamorphoses." The ruby district of Upper Burma, it was stated, so far as explored, is about 26 miles long and 12 broad, and lies at elevations varying from 4,000 feet to 5,500 feet above the sea level. The principal mining center in this district is Mogok, and the present workings for rubies extend over an area of 45 square miles, old workings, however, being found over an area of 66 square miles. It is also probable that ruby-bearing limestones and the alluvial earths derived from them may be found in portions of the Shan states. It is in the lower clay beds of the river alluvia, and in similar deposits formed in gullies in the hill wash, that the rubies, spinels, and other gews of the district are found. Operations for the obtaining of rubies are carried on in Burma in four different
ways. In the alluvia, square pits from 2 feet to 9 feet across, ingeniously timbered with bamboo, are sunk to across, ingeniously timbered with bamboo, are sunk to
the ruby earth, the drainage of the pits and the rethe ruby earth, the drainage of the pits and the re-
moval of material being effected by baskets attached to balance poles, both made of bamboo. In the hill wash long open trenches are carried from the sides of a gulley. Regular mines are opened in some places,
while the limestones are at one or two points quarried.

Parker's electrical meter.

ute, but it must be understood that this record was ticed. The reason for picking out a particular sentence and practicing it is very simple. The use of letters whose keys are close together, and convenient for Iternate action of the hands, greatly assists the speed, and the more a particular sentence is practiced, th more rapidly can it be typewritten. Take the very operator who has shown a speed of, say, 150 words, and get him to write a sentence composed of the same let ters, but made up of different words. so that the letters are in a different order, and the speed will fall very materially. The loss may be, perhaps, one-third. It is possible for a comparative novice to practice a well selected sentence and in a short time reach about the ame speed as the expert, but in the case of the novice the speed would fall tremendously on new matter. The strain on the eyes and mind increases with the speed until a point is reached where it cannot be kept up for any length of time, and it is worthy of note that some operators have had the keys blank, without any characters marked, in order to relieve the strain on the yes.
In considering the speed of the average operator considerable difficulty is experienced in arriving at any accurate conclusion, owing to the tendency of all ope ators to put on extra steam when timed or watched By far the greater part of the work done on type writ ers is copying, either from stenographic notes or other manuscript, and
There is, of course, some time lost in reading from the copy, when no writing is done, and the practice o a good many operators of continually reading over what they have written to see that it is correct. The time required to correct mistakes has been figured a high as 15 per cent. Another reason for the tremen dous fall in speed is probably the strain on the eyes which are constantly dancing over the characters
marked on the keys. Thisstrain should not be undermarked on the keys. This strain should not be under
estimated, as the eyes of many operators have been
affected by it, and it is further evidenced by the ex perts, who prefer blank keys, so as to avoid the blur ring caused in rapid writing.
It is interesting to note the number of strokes each minute that the hands are capable of, if depressed alternately. More than 700 strokes can be made in a minute, and more than 400 can be performed without undue exertion or effort. Now, taking five strokes to a word (which is about the average), that would mean 80 words a minute comfortably, and after making due allowance for the time occupied in entering the paper and returning the paper carriage after each line, it and returning the paper carriage after each line, it
would still be about double what is done ordinarily on would still be about double what is done ordinarily on
a typewriter. The fault for the loss of speed appears to lie in either the method of operation or the key board. If a keyboard could be constructed that could be readily memorized, the eyes would be relieved and the speed increased, especially in copying, when the eyes could be kept on the copy and would not have to keep shifting the eyes from the keys to the copy. Such a keyboard would necessarily have to be compact, and with a very limited number of keys, but for that very reasou there would be a gain in limiting the motion of the hands there would bea gain in limiting the motion of the hands
required to select the required key. If, furthernore, such a keyboard could allow an alternate action of the hands,without deviation, the speed would be increased without extra exertion. Then concerning the mistakes that occur from depressing the wrong key, and which are realized the instant they are made, but too late to avoid the wrong impression, they could be partially avoided if the printing did not occur till the next de avoided if the printing did not occur till the next de-
pression. That would mean that the machine would pression. That would mean
It may be that the typewriting machine has reached its highest perfection, but in view of these facts it seems strange that there has been no radical improve ment for fifteen years.-N. Y. Sun.

Wood Pulp

More than 50 per cent of the saw mill owners to-day could make more money to sell their logs to be manufactured into wood pulp and paper than they can possibly expect to secure through sales of the same in the form of manufactured lumber. The wood pulp industry has far outstripped the manufactured lumber industry.

One factor in the pulp and paper busi ness is not always recognized by the own ers of spruce forests. When a pulp mill grinds up a million feet of logs into paper product, and the same is sold to the great newspaper corporations and printed upon day after day, that paper practically goes out of existence. Few think of saving a newspayer. The individual newspaper reader throws his paper after reading into the waste basket or kindles a fire with it, or it becomes the property of the old junk dealer, and practically passes out of existence. On the other hand, the piece of lumber which is manufactured goes into a substantial building, which lasts for generations. So that the great consumption of spruce for pulp and paper really amounts to so much raw material taken out of the market forever, and practically wasted so far as any subsequent use to which it may be applied is concerned.-Manuf. Gazette.

Lights and Colors.

It has often been observed that a bright scarlet uniform will, in a good photographic dark room with ruby-glass windows, appear perfectly white. On this subject Herr H. W. Vogel made some interesting communications to the Physical Society of Berlin at a recent meeting. Experimenting with oil lamps provided with pure red, green, and blue color screens, he found that when white light was rigidly excluded, all sense of color disappeared to the observers, and nothing but shades of black and white could be distinguished on objects in the room. He further found that a scale of colors illuminated by red light showed the red pigments as white or gray, which abruptly turued into yellow, and not red, on adding blue light. Hence a color was perceived which was not contained in either of the sources. Red and yellow patches appeared of the same color, so that they could hardly be distinguished. But the difference was at once brought out by adding green instead of blue light. How very much the kind of sensation experienced depends upon the intensity of illumination is easily seen in the case of the region of the spectrum near the G line of Fraunhofer. This region appears violet when its luminosity is feeble, blue when it is stronger, and may even appear bluish-white with strong sunlight, so that the assertion of ten made that with normal eyes a definite color sensation corresponds to a definite wave length, cannot be upheld. Herr Vogel comes to the conclusion that our opinion as to the color of a pigment is guided by our preception of the absence of certain constituents. Thus a red substance is only recognized as such when light of other colors is admitted, and we perceive its inability to reflect these.

RECENTLY PATENTED inventions.

Engineering.

Stopping and Steering Boats. IIenry A. Sheldon, Arcadia. R. I. Wings which ma be laierally projected from the boat at opposite pointe not far back from the bow are provided by this inventor
in connection with a novel operating mechanism, in which steam power is applied through curved cylindere actuating a curved piston rod, to move either one o both the wings to an outwaril positon, at right angles to the hull, or than inner position in line with the side of pilot house, and afforls means for conveniently aljuust ing the wings as may be desired.

Railway Appliances.

Gar Fender. - William A. Morris, Brooklyn, N. Y. Lnder each platform is a frame with
outwardly and downwardly extendingcurved guideways to receive the side bars of a fender covered with a suit able netting, and having at its front end whecls or shoe
adapted to travel on the track rail. The side bars have allapted to travel on the track rail. The side bars have each a rail to prevent a person picked up from falling off
the fender. Centrally on the inner end of the fender is an eye adapted to connect with a bolt sliding on the under side of the platform, the motorman or gripman
by simply pressing with his foot upon a stud, disengaging the bolt from the eye and permitting the fender to slide downward and forward, in poisition to readily pick up human being. When the fender is not desired for
use, it is moved upward on its guideways and held use, it is moved upward on its guideways and held
in withdrawn position under the platform by the engage in withdrawn position under the platform by the engage
ment of the eye with the bolt.
Switch Lock.-John W. Tew, Rome Ga., and John D. Rigge, Selma, Ala. This is an automatic safety lock to prevent the interference of unau-
thorized persons with a switch. It is an improvement thorized persons with a switch. It is an improvement on
a formerly patented invention of the same inventors, a formerly patented invention of the same inventors,
and comprises a lock projection or bolt normally in posi tion at the side of one of the movable switch sections, to lock such section and its mate from movement, tripping plates being so connected with the operating devices that the weight of a passing locomotive withdraws the bol and permits the switch to be trown by hand or in any other manuer. The construction is simple, having no
parts likely to get out of order, and this invention relates particularly to improvements in the devices for operating the bolt.
Nut Lock.-David C. Wetsel, Carrollnuts on fish plate bolts especially adapted for lockin has a shoulder adapted to fit against a shouldere locking block with a radial wing at each side, a fish plate recessed on one side near the bolt receiving one of he wings. The improvement affords convenient mean for quickly locking the nut on a bolt, permitting the
Car Bell Rivger.-Samuel A. White nd Auguetus M. Glover, Savannah, Ga. This is an im axle of a car. A hinged bar is arranged near projection evolving with the azle and connected with trojection of different tension acting in opposite directions, the prings being also connected with a rod beneath the ca to which tension may be applied to overcome the stronger
spring, allowing the weaker one to throw the bar into pring, allowing the weaker one to throw the bar int ontact with the projections on the axle, thus working a larm. The attachment includes a sultable operativ connection with a foot piece on the car platform, by
pressing upon which the alarm will be eounded, but will cease as soon as the foot pressure is removed.
Mail Bag Hanger.-George M. Patstandard witt. an upper and a lower arm, the arms being provided with bag-retaining devices, each having a num ber of hooks or cleats to which a mail bag may be a ached, the devices being adapted for complete rotation and to be automatically placed in position for use by the movement imparted when the bag is removed. When
the bag is caught by the gathering arm of the mail

Electrical.

Signal Sistem.-Webster Gillette, ity, N. Y. This improvement comprise, Long Islan Huctor Y. cutting into the closed conductor for signaling, and elephone support with switch contacts or cos he local and line circuits. The system may be used in connection with the existing wiring of hotels, factories, mall telephone exchanges, ${ }^{\text {or }}$ with smaller wiring aranged specially for use under this improved system. While the conductors are all closed. the circuits of th
batteries are open, and the conductors are always in condition for sending and receiving signals and for use for elephonic communication
Ship's Log and Course Indicator. John P. Kogers, Moncton, Canada. This invention ncludes a \log to be towed as usual, and printing and matically record the distances, so printing the mileage figures that the deviation of the ship from a prescribed course will be indirated. Electrically operated mean are provided for controlling the printing and registering mechanism, and affording a reliable circuit breaker in
the log proper to make and break the circuits and set the controlling mechanism in operation. A wind-indicating device is connected with the apparatus to indicate leeway in the same manner as the current indicator, the Ifiect of the wind on the log line being counteracted by the disk of the wind indicator and its electrical connections.

Mechanical.

Forge.-Aaron Rice, Northport. Ala. The hearth of this forge has a water compartment under boller. the pipes being preferally one above another to extablish a circulation. The boiler drives an engine
which operates a blower with a blast pipe projecting
over the basin of the hearth, a water jacket on the front
Machine for Curling Hat Brims. -
Joseph Ives, Newburg, N. Y. The machine has a whee vex face being adapted to press the hat brim agains the flanged wheel, while a shoe made concave in the direction of its length has a concave groove in the edge. A gage is provided for guiding the hat, springs for pressing
the button against the brim, a cam for withdrawing the the button against the brim, a cam for withdrawing the button, and means for heating the shoe, flanged whee
and button. As the hat is passed between the revolving flanged wheel and button, under the application of heat, the brim is given the proper curvature, being receive and prepared for curling by the shoe, and also pre served in such curl as it leaves the wheel and button.

Agricultural.

Cutter for Harvesters, etc.Frederick Friesz, Shenandoah, Iowa. According to this invention the cutters of reapers, harvesters, and similar
machines are made in stellated form, to rotate indiidually upon their own axis, and collectively around guide of predetermined construction, the cutters pre enting themselves successively in position for cutting, chain bell with the least possible friction, the cutters clearing themselves from the grass or grain cut, pre venting clogging.
Hedge and Lawn Edger.-Myles Y and light machine for trimnis lawns and hedges by being pushed along the borders. Its wheel-supported rame has one straight side with blades at its front edge he opposite side near the front being inclined towar he straight side, and the bottom of the frame extendin scraper 0 ond the inclined side and having at its fron die of the frame are radial arms which press the twigh rass, etc., against the blades, in advance of which, near he ground, is a small circular cutter.

Miscellaneous.

Recoil Operated Automatic Ord IRNCE.-A
ording to supported and movable has separated abutments, a lever pivoted to and movable with the barrel having an arm
connected with and operating the breech block, while econd arm extends between and is operated by the parated abutments. The hammer is 1 rigger supported on the framing, the reciprocatin and pull the trigger. The several moving parts are designed to be operated, after the first firing, by the force of the recoil, or by springs acting in opposition thereto,
the gun barrel being moved rearwardly, the hamme the gun barrel being moved rearwardly, the hamme
cocked, the breech block lowered, the cartridge thrown ocked, the breech block lowered, the cartriage throw out and a new one inserted, the barrel moved forwar the gun fired.
Sword Scabbard.-Henry O. Weller, Butte, Montana. This scabbard has an opening in one haped to enter and fill, the opening. The constructio of the scabbard is such that the sword may be guide therein more quickly and conveniently than in the or dinary scabbard, a beveled recess in its upper end serving
as a guide to direct the sword to the mouth of the as a guide to direct the sword to the mouth of the

Voting Machine.-Frank H. Gilbert Ridgefield, Washington. This machine provides a sheet or tape to be passed between punch bars with apertures
corresponding to the candidates to be voted for, means for puncturing the sheet or tape, and a concealing slide, hereby neither the following voter nor the inspect signed to facilitate voting without mistake by an ignoran person, and when each vote is cast an alarm is sounded, when the official in charge may place the recording macrial in position to receive the next vote, means being also provided for making a duplicate record, one of the ing accese to the other record
Carbon Holder for Blank Books. Lewis A. Lipman, New York City. The book, accor greater length than the other leaves, the leaf being folde in at the edge of the book, and thus constituting a'holde of great simplicity and cheapness for the carbon sheet which may be readily removed as desired.
Ink Well. - Joseph Morton, New York City. As an improved article of manufacture, this innk frome devised an ink well designed to prevent the well body. The body is of glass or crystal, and r novably fitted in its central recess is an exteriorly polished cup-shaped ink well, of metal, adapted to reentire ink well, the ink being invisible through the sides ontire ink well, the body.
Sash Balance. - Joseph H. Bane, Barre, Mass. According to this improvement a pini on a sash, there being a pawl and ratchet connection be tween the pinion and spindle, and a brake engaging the spindle. The improvement may be applied to an old as well as a new window, and its action is not interfered with by warping of the window frame or sash, the
window being raised and lowered as conveniently as if he old balance were employed. The locking device is

Lock and Stay for Wire Fences.Cyrus M. Suter, Ashton, Iil. This improvement consiste the ends inwardly to within a short distance of the center of the plate, and forming two jaws at each end of the plate, which is to be used in connection with a link of wire adapted to extend across a runner, the wire hat ing a loop at each end and being bent near its center.
simple and inexpensive method is thua afforded
securing the runners of wire fences from vertical move
ment.
CArt.-Amasa L. Smith, Carnes, Iowa he running areart has an integral yoke-1ike boyy, an receive a dumping body or a barrel-like receptacle which may be quickly taken up from the ground by the anipulation of the running gear without being touche the operator, and may also be gently dropped upo

Horse Weight.-David B. Macona hie, Toronto, Canada. This is a hollow weight block with ball-like handle, and in the block is a spring-conrolled strap roller to which is attached a self-wrapping balter that may be extended from the weight as desired, nimal is detached from the halter and the weight is animal is detached if
placed in the vehicle.
Garment Hanger.-Edgar W. Hor ousers with the waistband hanging downward, to re move bagginess at the knee. The trousers may be lamped in the hanger without marking them at the 3 a support for a coat and vest, or other garment.
Clothes Hanger.-John H. J. Ron ner, New York City. This device consists of separable jaws with opposite clamping faces and a suspending xpensive means of holding an entire suit of men othes, while also adapted to support other garmente The clothes are so held as
creased or losing their shape.
Note.-Copies of any of the above patents will be end name of the patentee, title of invention, and date of this paper.

SCIENTIFIC AMERICAN
buildina EDition
APRIL, 1895.-(No. 114.)
TABLE OF CONTENTS
legant plate in colors, showing a Colonial co tage recently completed fur Frank L. Purdy, Esq nd floor plans. An attractive design. Architect Charles P. Baldwin, Esq., Newark, N. J.
2. Two perspective elevations and floor plans, showing a residence recently completed for George N .
Tyner, Esq., at Holyoke, Mass. An elegant degn in the Romanesque style of architecture. Mr H. H. Gridley, Springfield, Mass., architect.
cottage at Nutley, N. J., erected at a cost of about
$\$ 4,000$. Perspective elevation and floor plans Architect, Mr. E. R. Silton, N. Y. A simple but asteful design
Colonial residence at Orange, N. J., recently
erected for John Hammond Bradshaw, M.D. A erected for John Hammond Bradshaw, M.D. A pure example of modern Colonial architecture.
Two perspective elevations and floor plans. Meshitects.
n attractive residence at Indiana, Pa., recently erected for Mr. Harry McCreary, at a cost of $\$ 4,350$ complete. Perspective elevation and floor plans,
Architect and builder, Mr. E. M. Lockard, Indiana, Arch
Pa.
. Two perspedive levations and fioor plans of a hand Ome residence erected for Sam 1 . Mclure, Armour m ila Park, Brory of a . Y. A good ex complete. Mr. Henry s. Rapelyea, architect Mount Vernon, New York.
7. A cottage at Glen Ridge, N. J. An altractive resiclevations and floor plans.
8. A carriage house at Orange, N. J., recently erected for John Hammond Bradshaw, M.D. The design pond with the marchitecture of his residence Ground plan and perspective elevation. Mes Rossiter a Wright, architects, New York. elegant resdence at Flatbush, L. I., recentlyerectelevations and floor plans. Architect, J. G. Richardson, Esq.; builder, J. C. Sawkins, E house at Park Hill, N. Y., recently erected house at Park Hill, N. Y., recently erected for
Messrs. Loreni \& Morrow, at a cost of $\$ 6,500$ complete. Perspective elevation and floor plans. Mr. Edmund J. Maurer, architect, New York.
11. Miscellaneous Contents : Moderne Innen-Decoration. -The evolution of an old building, with 4 views.-
Wood stains.-Wood finish chemically and microWood stains.-Wood finish chemically and microdestroy hothouse insects.-Venetian blinds, illus-rated.-An improved spring hinge, illustrated. zen water closets.--An electrical mail box, illus-trated.-The anchor fence post, illustrated.Hardwood matching heads, illustrated.-Porcelite. -The Rider engines, illustrated.-The Security machinery, illustrated.

The Scientific American Building Edition is issued
onthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary Magazine of Architectcrese. richly adorned with elegant plates in colors and with fine engravings, illusrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cneapness, and Convenience of this work have won for it the Largess Circulation all newedealers. MUNN \& CO., Publishers,

Wusiness and \mathscr{P}^{2} ersonal.
The charge for Insertion under this head is One Dollar a line for each insertion: about ciont words to a line. Adver
tisements must be received at pubication office as eariv a Try us for manufacturing your wirt or sbeet meta
pecialties. The Enterprise Mig. Co., Akron, Obio. "C s." ietal polieh Indanaplis Saples fre Marine Iron Works, Chicaso. New cataluse For ple driving enges For phe driving engines. J. S. Mundy, Newark, N.J. Best Handle Mach's Best Handie Mach'y. Trevor Mfg. Co., Lockport, N.Y Screw machines, milling macnines, and drill presses.
The Garvin Mach. Co., taight and Canal Sts., New York. Emerson. Smith \& Co.. Ltd., Beaver Falls, Pa.. will
send Sawger's Hand Book on Circulars and Band Saws ree to any address.
Canadian and foreign patents nezotiated. Industrial companies formed in Lurope. Heferences. P. O. bod
528. Toronto, Canada. For the original Bogardus Universal Eccentric Mill Foot and Power Preseres, Drills, Shears, etc.. address
J. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. \mathbf{Y} The best book for electricians and beginners in ele tricity is "Fxperimental Science," by Geo. M. Hopkin Competent persons who desire azencies for a new popuiar book. of ready sale, with handisome proft. may
apply to Munn $\&$ Co., Scientific American office. 36 Broadway, New Yor
To anyone of the name of Fulton or Fulton, particu ars wanted as to name, date, and place of birth of se ather, and krandfather. Address. with full inform
Ion, Robt. Fulton. Dunedin, New Zealand. CT- Send for new and complete catalogue of Scientific and other Books for sale by Mun
New York. Free on apolication.

HINTS TO CORRESPONDENTS
Names and Addiess must accompany all leters,
or no attention will be paid thereto. This is for our
information and
 WEGます
some answers require not a atithe rescarch, and,
though eendevor te reply to all either by letter
or in this deparartment. cach must take his turn
Bu yers wishing to purchase any article not advertised

 to may be had at the office. Price 10 cents each.
Bo mas referred to promptly supplied on receipt of
price.
marals sent for examination should be distinctly
marked or labeled.
(6471) G. E. M. says: Please give a receipt for a paste for pasting the labels on tin cans. A.
Make a paste by dissolving rye flour in a solution of caustic soda, dilute with water, stirring all the time. Add this paste Venetian turpentine-a few drops for each lass, etc. P, (6472) P. J. R. says: Kindly tell me ered mushrooms, white, full, and firni; cut away the gritty part near the stalk, and throw the mushooms into a basin of cold water; wash them quickly and drain them na cloth. Put in a stew pan the juice of a lemon, an equal quantity of water, and a pinch of salt. The above Turn each mushroom, put them into the stew pan containing the lemon juice, and toss them to impregate them with the liquid. Cover the stew pan, put it over a brisk fire, and boil the mushrooms for four minutes, cossing them occasionally; and pour the whole into a basin. When cola, put the mushroome in quart tins, cover them entirely with the liquor in which they have viously boiled if the the tins with cold water, prethe covers and boil the tins in water for two hours.
(6473) E. H. says: Can you give me the A. Four ounces gention root; 10 ounces cach calisasa A. Four ounces gentian root; 10 ounces cach calisaya oot, yellow bark, allspice, dandelion root, and Angosturaj bark; 6 ounces cardamom seeds; 4 ounces each balsam of tolu, orangetis, Turkey rhubarb, and
galanga; 1 poundj orange peel ; 1 pound alkanet root; galanga; 1 poundj orange peel; 1 pound alkanet root;
$11 / 2$ ounce caraway seed ; $11 / 2$ ounce cinnamon; $1 / 2$ ounce 11/2 ounce caraway seed; $11 / 2$ ounce cinnamon; $1 / 2$ ounce
cloves; 2 ounces each nutmegs, coriander seed, catechu and wormwood; 1 ounce mace; 11/4 pound red sanders
wood and 8 ounces turmeric. PPund these ingredients and steep them for fifteen days in 50 gallons proof spirit; before filtering, add 30 pounds honey.
(6474) M. D. H. asks: 1. Can a No. 10 steel wire can be used to run around an iron pulley, and what size pulley and groove? A. Yes; pulley should be 3 feet diameter with \mathbf{V} groove rounded at bottom to fit hoisting 2. And also size of pulley that a $3 / 8$ inch wire A 20 inch to 2 foot drum or pulley for the wire rope, ac cording to the flexibility of the rope
(6475) L. E. D. writes : 1 . I have a storwith 6 gravity Crowfoot cells (6×8) conns which I charge They do not charge it cells $(6 \times 8$) one-thected in series. nected in multiple series, they do not charge it at all. Can you tell me where the tronble is? A. You need for proper charging at least nine Crowfoot batteries in series, calculating voltage and amperage of give formula for primary battery when the voltage and amperage of one cell is known. A. These calculations are made by Ohm' law. The amperage depends on the resistance of the
entire circuit, the voltage on the number of cells in series

See Sloane＇s＂Arithmetic of Electricity，＂$\$ 1$ by mail 3．Please tell me if it is proper to say amperage or am－ page．I have heard the word pronounced both ways．A
（6476）J．F．B．writes：Will you give me the approximate diameter of a windmill that will de velop about one horse power with a twenty mile pe hour breeze ？Also what would be the increase in powe
with additional wind pressure，say of five and ten per cent 9 A．An 18 foot mill should be equal to 1 horse解帾．The increase of power will be as the square of he ratio of the velocity of the wind．Thus 10 per cen to 20 m ．is 22 miles，and $\frac{22}{20}=1 \cdot 1$ ，the square of which is $1 \cdot 21$ ，so that the 1 horse power mill will yield $1 \cdot 21$ horse
（6477）A．C．M．asks if two of the simple electric motors described in＂Experimental Science and beput on one shaft，and what horse power they volts and amperes would the two motors require at full oad，and whether each notor should be connected parately．A．You can connect as described，and get nearly two－tenths horse power at eight volts and eighto
（6478）W．B．asks：What is the best way to produce the greatest amount of heat by electri－ by electricity，and state which is the best to create the reatest amount of heat．A．Al methods of producing andescence of a conductor．For examples of the firt e refer you to our Supplement，Nos．904，905， 901, $86,610,840,635$ ；for the lattermethod，used on the larg cale in electric welding，we refer you to our Soppus－
ENT，Nos． $582,682,768,892$ ．
（6479）D．J．F．，Newfoundland， writes：1．What is a ship＇s metacenter，and how is the point of intersection of the vertical line passing through he center of gravity of the vessel，when in its posi－ ion of equilibrium，and a vertical line through the cen ter of gravity of the water displaced when the body is a vessel rolling in a sea．It is found by computing the center of gravity of the vessel as it floats when at rest and the center of gravity of the mass of water displaced t any angle at which the vessel may be careened． The point of meeting of a vertical line from this last point at the angle of careening and the central ne of the vessel is the metacenter．The height on this point above the center of gravity of the vessel
is the measure of its stability．See Haswell＇s＂En－ ineer＇s Pocket Book＂for How is the contour of the keel of a ship found，when the same is not straight，as is very often the case in wooden vessels？Is it found from the keelson？If so，how？ And provided the ship be laden，how is it found ？A． rregularities in keel aligament can be approximated y examination of the lines of the keelson．When irregu be to bring them to a bearing．With a loaded vessel the problem becomes complex and may require the service a diver．3．How is the dead rise，which governs the height of the bilge blocks which snpport a ship in dry dock，found \boldsymbol{q} ．．The bilge blocks should be adjusta－ le in height and angle and also be movable to their proper bearing when the keel touches the keel blocks． he dead rise must also be found by examination insid directions for dry－docking ships？If so，please give the name，price，and where procurable？A．There is no work on dry－docking of ships．We have one copy of Stuart＇s＂Naval Dry Docks of the United States，＂now ut of print，price $\$ 6.00$ ．
（6480）G．D．asks ：Could you tell me why a permanent magnet was used in a telephone？ is far more sensitive than an onpolarized core
（6481）C．W．C．asks ：1．Is the large plunge battery，Fig．394，in＂Experimental Science，＂suf－ ficient to run a one horse power motor？A．No． 2 ．Is
the dynamo described in SUPPLEMENT，No．600，with could it be driven with above battery an what power would it have？A．It makes a good moto and can be run with about three times this battery，and would give about $1 / 4$ horse power for a short time only． The power would soon diminish．3．How long would ，batcry ran at ful pow on one charge？Δ ． lecrease rapidly after the first half hour
（6482）H．K．M．asks ：1．How many horse power will it take to equal 1 kilowatt，or what is the relation between 1 horse power and 1 kilowatt ？A．
1 horse power is equal to 0.7459 kilowatts．2．You give receipt for cleaning clothes，in Scientific American， this should be mixed？If so，which should be mixed first？A．It makes little or no difference how the in－ gredients are mixed．3．In your columns you advertise the＂Kombi．＂Is it a success ？How long will one last， and what will be expense of having negatives finished ？ information desired． 1 Which will （6483）C．A．C．asks ：1．Which will Blake or a Hunning transmitter？A．We cannot un－ dertake to pronounce upon the relative merits of the two transmitters．Both are good．The Hunning＇s trang－ mitter is described in the Scientific American，vol．64， No．4．2．What is the internal resistance of ordinary gravity batteries？A．Two to four ohms．3．Some of
the Scientific Americans tell how to make stor－ age batteries A．See Scientific American，vol．62， No．10；vol．65，No．22；vol．68，No．9；vol．69，No．20； and our Supplement，Nos．838，845，and 997．4．What is a two phase alternating dynamo：A．A dynamo of the simple alternating current type produces a single phase current．By special connections it may be made to give polyphase currents．In Walmsley＇s＂Electric Current，＂$\$ 3$ by mail，page 458 et seq．the production of
polyphase currents is very well explained．A two phase polyphase currents is very well expl
dynamo gives a two phase current．
（6484）A．L．asks ：1．How is it that a dle power about 15 volts to make it give the proper light，and the econd one will require some 50,75 ，or 125 volts to mak give the proper light ？See E．S．Greeley＇s Catalogue， N．Y．A．The low voltage lamps are of proportionally the watts per candle power are the same in all．The watts is the unit of rate of work－the volt is merely the odine battery made，what are the elements and charging hid，and what is its lasting power and quality，both with regard to material as well as electricity？A．Car bon and zinc are the electrodes；the excitantis a paste of water；the depolarizer is iodine sulphide or a mixture of odine and mercuric oxide．The battery proved ansatis－ actory on the time test．The voltage was $1 \cdot 4$ to 165 An illustrated paper on the subject appeared in the Journal of the Franklin Institute for March and April，
（6485）E．A．Le S．asks：Where can ind the results of a complete analysis of common sea
water？A．The following is of sea water from the British Channel：

W	745
Sodium chloride	． 059
Potassium chloride．．	0.766
Magnesium chloride．	$3 \cdot 666$
Magnesium bromide	0.029
Magnesium sulphate	2296
Calcium sulphate．	140
Calcium carbonate．	0.033

（6486）P．C．S．asks：How can a Ley den jar be disruptively discharged so you can get a car jar were charged by a battery and then discharged as Tesla＇s coils ？current be dangerous，or will it run one ar is of the character you describe，but as the entire duration of the discharge is very short，it cannot be used or a Tesla coil．
（6487）J．M．B．says ：Will you have alsu do you publish receipt for making camphing per umery and cosmetics ？A．1．Oil of sweet almonds， unces；spermaceti， 4 ounces；white wax， 2 ounces ； moulds of proper size and form．2．Expressed oil of spermacti，each 1 watce Camphor， 2 ounces rosemary， 1 drachm．Melt together Glycerine may be ubstituted in part for the oil and rose water．From our ＂Cyclopedia of Receipts，Notes and Queries，＂price \＄5， which contains several hundred formulas for cosmetics， erfumery，toilet preparations，etc．
（6488）C．H．asks ：How many B．T．U． （or heat units）are there in one gallon of alcohol as con－ pared to one gallon of coal oil ？A．For a pound of alco ol the thermal units are 12，929；for a pound of petro eum，27，531：－You－may take refined coal－oil asor about
（6489）A．C．asks：1．Of what number wire and what sizemust I make an induction coil ift one－third of a pound，and how much battery will be depends on the current you propose using A．The siz of one－quarter inch area must be charged with about 9,000 ines of force per square inch of section to have the de－ sired traction，requiring perhaps twenty or thirty ampere tarns．The question of leakage so complicates solenoid and straight bar calculations as to affect consiaerably their reliability．The ampere turns can be given by low 2．How large and at what distance apart shall I make holes in a tube $9-16$ inch in diameter to make notes of a diatonic scale，the same to be made like a small boy＇s cane whistle？A．Arrange them on the principle that the undulations of the note vary with the length of the pipe
as determined by the position of the holes．For narrow （1：12）stopped pipes the formula is $L=(2 p+1) \frac{1}{4}$ and for open pipes $L=\frac{p}{2}$ ；in which $L=$ length of pipe， $1=$ length of wave to be produced， $\mathrm{p}=$ any whole number．By taking $p=1$ you will get the length for the fundamental，and the the formula $=\frac{1120}{n}$ in which $n=$ the number of vi－ rations per second，which you can take fromany table of the diatonic scale．Thus 1 is expressed in feet or a $: 1: 12$ ceases to exist or to be exceeded，an arbitrary ormula must be used．Consult Ganot＇s＂Physics．＂

Query No．6406．－In your answer to R．K．B．，February 23,1895 ，No． 6406 ，I am inclined to with an improper adjustment．I have frequently met with the same trouble，and bell would ring when several pushes were given successively．The successive pushes
believe give an accumulative series of vibrations to I believe give an accumulative series of vibrations to
the bell hammer，and if synchronized properly will finally set the bell ringing．In such cases I generally investi－ rom the contact on the spring of the vibrating armature －Thos．D．Gillespie，Pittsburg．

TO INVENTORS

An experience of nearly ifty years，and the preparation of more than one nundred thousand applications for da－ laws and practice on both continents，and to possess un－ equaled facilities for procuring patents everywhere．A oreign countre patent laws of the United States and all contemplating the securing of patents，either at home or abroad，are invited to write to this office for prices， Which are low，in accordance with the times and our ex－ tensive facilicies for conducting the business．Address
MUNN \＆CO．，office SCIENTIPIC AMERIC AN， 361 Broad－
may，New York．

INDEX OF INVENTIONS
For which Letters Patent of tho
April 2，1895，

AND EACH BEARING THAT DATEE

$\underset{\substack{\text { sse } \\ \text { ss，} 8,80}}{ }$（x，ific

nutanain ind

Envelope．＇．：S．Soutarard．

 部

Sawing lumber, machine for edge, H. A. Holt..... $\mathbf{5 3 6 , 8 3 2}$ Seal. lock, P. H. Conger Semaphore, B. Culp................................. Sewing looped faorics, trimmer and raveler for machines for, H . C. Rightmire..................... Sewing machine, M. H. Pearson.........................	
wing machine threading device,	
Soaps. Sole e channeiling wactine J. J. Poole. Spool orbobinin w. . . .fete venson Sprin seat, Ge Ge Howird sprifriter. See street sprinkier. Water sprinis-	
ashing macoine, bean. F.A. Prior	
rouse	
C.Mandt.... 536.388	
	THE ELECTRIC LAUNCH CO.Office and Works.Morris HEIGHTS, NEW York City.

ELECTRICITY

MEASUREMENT OF POWER.-BY G forms of absorption and transmitt ting dynamometera
for the measurement of the aseful work of prime movers

ABBBORUNDUMO

BOSS SCREW PITCH GAUGE A full line of Pitches as shown in cut from 4 to 40
Sent by mail, prepaid, on receipt of $\$ 1.25$.

That are good not "cheap thinges." The difer-
ence incostigittle. We guarantee our apparatus and
 WESTERN TELEPHONE CONSTRUCTION CO.,

How To Make a Dynamo
 GASOLINE ENGINES.

MOMTPR VAPOR ENGINE ano 8 Erie Street, Grand Rapios, Michigan.

DESIGNS.

TRADE MARKS.

 Sole

$\underset{\substack{\text { B. W. Hoy............ } \\ \text { Sprocket whee }}}{ }$

Wrench, J. G. Lowe.....
Wranch. At Warmer
Wrist esting machinine
Pearson

nito.......

CIDER \& WINE PRESS POWER AND HANERY. apacity, 10 to 1200 Bbls. int en hours. Send for 50 -page Catalogue. pire State Pulley and Press
Fulton, Oswego Co., N. \mathbf{y}.

CRITERION MAGIC LANTERNS Stereonitions

$\$ 10$ min $\$ 40$

THE

SClissine 1 MERCNX

ETESTABLISHED 1845.
The Most Popular Scientific Paper in the World
Only $\$ 3.00$ a Year, Including Posta
This widely circulated and splendidly illustrated paper is published weekly. Every number contains six original engravings of new inventions and discoveries, New Inventions, Novelties in Mechanics, Manufactures, Cbemistry, Electricity.Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History Terms of Subscription.-One copy of the ScIENTIFTC AMERICAN will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States, Cansda, or Mexico, on receipt of Three Dollars by
the publishers; six months, 81.50 ; three months, 81.00 . Clubs.- Special rates for several names, and to Post masters. Write for particulars.
The safest way to remit is by Postal Order, Draft, or of envelopes, securely sealed, and correctly addressed seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to
MUNN \& CO.. 361 Broadway, New York.
 This is a separate and distinct publication from The size, every number containing sixteen large pages ful of engravings, many of which are taken from foreign
papers and accompanied with tranglated desciption THE SCIENTIFIC AMERICAN SUPPLEMENT is published weekly, and includes a very wide range of contents. It preserts the most recent papers by eminent writers in all the principal departments of Science and the Usefu
Arts, embracing Biology, Geology, Mineralogy, Vatura Aistory, Geography, Archæology, Astronomy, Chemis try, Electricity, Light, Heat, Mechanical Engineering Steam and Railway Enzineering Mining, Ship Building Marine Engineering, Photography, Technology, Manu
facturing Industries Horticulture, Domestic Economy, Biography. Medicine etc. A vast amount of fresh and valuable informatio The most important Enoineering Works, Mechanisms and described in the SUPPLEMENT
Price for the SUPPLEMENT, for the United States Canada, and Mexico. 85.00 a year; or one copy of th
ScIENTIPIC AmERICAN and one copy of the SUPPLE MENT, both mailed for one year to one address for $\$ 7.00$ single copies, 10 cents. Address and remit by posta der, express money order, or check,
MUNN \&E CO., 361 13roadway, New York. Thinlding Iglition.
The Scientific American Architects' and
Buliders' EDition is issued monthly. 8250 a year. Single copies, 25 cents. Thirty-two large quarto page
forming a large and splendid Magazine of Architecture richly adorned with elegant plates in colors, and wit other fine engravings; illustrating the most interesting
examples of modern Architectural Construction and examples of m
allied subjects.
A special feature is the presentation in each numbe
of a variety of the latest and best plans for private resi. dences. city and country, including those of very mod perspective and in color are given, together with Plans, Descriptions, Locations, Estimated Cost, etc.
The elegance and cheapness of this magniflent work have won for it the Largest Circulation of any
Architectural publication in the world. Sold by al ewsdealers. 8250 a MUNN \& CO., Publishers,

FUNDAMENTAL PRINCIPLES OF

MOTOR CASTINGS A. F. WEED \& Co. 106 Liberty s.i. New York. 1 Gas Euns ins. Castings, Boil
Experimental \& Model Work FACAT FOOT POWER LATES (A)

 Marintys z MACHINISTS' P Little Giant Drilling Machine

 1 P. O. Box B, \quad Greenfield, Mass.

A.W. PABER

Manufactory Established 1761.
LEAD PENCIL, COLORED PENCIS, SLATE
PENCILS, WRITING SLATES. STEEL PENS, GOLD PENS, INKS, PENCLL CASES IN SILVER AND IN 78 Reade Street, - - New York, N. Y.
 The United Autographie Register CO_{0}
 thest than 2 censs per

EXPERT MODEL MAKING, ETt Ealusbed

WELL DRESSED MEN

DAIMLER MOTOR COMPANY, Highest Grade Single and Twin Screw Launches.

Safest, cleanest and sp
解 sman No smoke or smokestack, no boiler, no elec-
tricity. No steam or naphtha under pressure tricity. No steam or naphtia under pressure. Run on one pint of gasoline per horse power per hour, and are under way in less
minute. No licensed engineer or pilot. Also Stationary Motors.
OFFIGE AND WORKS, "STEINWAY," LONG ISLAND CITY, N. Y.

TYPEWRITERS.

 EXCHANGE, 8 Barclay St., New York. We will save you from 10 tr
50 per cont. on Typewriters
of all make..
atm Send for catalogue. FASTER THAN SHORTHAND:

AMATEUR PHOTOQRAPHERS Say

$10{ }^{1} 1 /$

 Made of Large Blocks of Emery Set in Metãl.
Fastest Grinders known. Can grind anything NO PICKING. Made Sharp. Stay Shar
Will Fit any Mill Frame.
Cheap as Best French MILLSTONES.

AGENTS WANTED

 Mention this paper.
 TURBINE

PROPOSALS.

 EXPERTMENTS IN AERONAUTICS.-

INCUBATORS

SCIENTIFIC AMERICAN SUPPLE-

MATCH MACHINERY

MANVEL WIND MILLS

PRINCIPLES AND PRACTICE OF SAD-

 The Scientific American Reference Book.

[^0]

GARDENIER'S
Ready Help for Locomotive Engineers

The New Model

Remington

 6 Typewiter:matchless Construction. UNEQUALED DURABILITY, Unrivaled Speed. Many Notable Improvements.
Wyckofe ilustrateo catalogue. 327 BROADWAY, NEW YORK.

MR. BOOKKEEPER.
do you know what the Comp-
tometer ist. 1 nt cots you nothing
to ind out.
tit will help you out on that out.ial to will helpy you out accuracy, is twice asirapid as tho
best accountant and relieves all ous and mental strain.
Write for Pamphlet. FELT \& TARRANT MFG CO. S2-66 ILLINOIS St. emichao.

The

American

Bell Telephone
Company,
125 Milk Street, Boston, Mass.

This Company owns LettersPatent No. $+63,569$, granted to Emile Berliner November 17 , 189 f , for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Telephones.

You Haven't Wings but-

You can fly (almost) if you ride a Victor Bicycle weighing 19 pounds, 15 ounces.

The lightest weight high-grade bicycle on the market. Try it.

Weight reduced by accurate tests made by the wonderful Victor Dynamometer.

OVERMAN WHEEL CO. Makers of Victor Bicycles.
Boston. New York. Detroit. Denver.
San Francisco. Los Angeles. Portland.

BALL BEARING AXLES AND RUB

DO YOU WANT A LAUNCH?

That you can run yourself. That is Clean and Safe.

THE ONLY NAPHTHA LAUNCH. gas engine and power company, 185th St., Morris Heights, New York City.

Are Warranted the Highest of all High = Grade Machines Built in the World, Regardless of Price. 21 lb Scorcher

That requires neither Licensed Engineer nor

Pilot.

SUPERIOR TO COTTON WASTE
Endorsed by Fire Underwriters
Safe durable, cheaper
Agents wanter

Towers, Tanks and Tubs
PATENT SECTIONAL
ALL IRON TOWERS
PLAIN

ENGINES, Boilswand Machine Toolsy New

KODAKS
6.00 to \$100.00. The lightestand most practical cameras fro hand
or tripod use. An illustrated manual, free with every Kodak tells Eastman Kodak Company,
\qquad HENTSTWNTED For FINE TOOIS W EVVRYSHOP.

IDE \longrightarrow
BICYCLES.
 Mininitial cranksk made to tit
 MANUFACTURE OF BICYCLES.-A
 PIFMENT. No. SOX. Price 10 cents. To be had at this
office and from all newsdealers.

[^0]: A most useful little bound book of 150 pages, com
 prising, probably, the most extensive variety of stand ard, practical, condensed information ever furnished to the public for so small a price, only 25 cents.
 Among its contents are: The Last Census of the United States (1890), by States, Territories, and Cnunties; Tabie of Cities having over 8,000 inhabitants:
 Map of the United States - miniature outline; The Map of the United States-miniature outline; The
 Patent Laws (full text); The Trade Mark Law (full
 (fert); Paxt); The Copyright Law (full text): The Principal
 texit
 Mechanical Movements-illustrated by 150 small diaMechanical Movements-illustrated by. 150 small dia-
 grams-of value to inventors and designers of mechan-grams-of value to inventors and designers of mechan-
 ism; Medallion Portraits of Distinguished American ism; Medallion Portraits of Distinguished American
 Inventors; Valuable Tables relating to Steam, Elecuricity, Heat, Metals, Weights, and Measures.
 25 cents.
 MUNN \& CO., Publishers,
 361 Broedway, New York

