| Liquefaction of Gases. |
| :---: | :--- | \left\lvert\, \(\begin{aligned} \& cules. Metals become stiffer and tougher under cold- \\

\& At a meeting of the Astronomical and Physical \\
\& remarkably so at Professor Dewar's low temperatures\end{aligned}\right.\) Society of Toronto, Mr. Arthur Harvey, who had -become better conductors of electrical currents; but been requested to prepare a resume of the recent work of Professor Dewar in connection with the above sub-: ject, read the following notes:
The method adopted is to lower boiling points by exhaustion. You know the principle. lt comes to our notice practically in mining at or above the sum-
mer snow line in the mountains. There are several mer snow line in the mountains. There are several
camps in America so high that boiling water will not camps in America so high that boiling water will not palatable. Carbonic acid, which boils under ordinary atmospheric pressure at - 112 degrees, will, in a vacuum such as the air pump can be made to give, boil at-166 degrees. At this temperature nitrous-oxide liquefies, and, itself boiled in vacuo, lowers the temperature and
liquefies ethylene, which in turn runs down the therliquefies ethylene, which in turn runs down the ther-
mometer to - 229 degrees. At this point pressure is mometer to - 229 degrees. At this point pressure is
resorted to, and the pressure of $1,500 \mathrm{lb}$. to the inch (100 atmospheres) forces oxygen into a liquid state. The evaporation of liquid oxygen, also in vacuo, lique-: fies, under pressure, air and nitrogen, while these again, worked upon in double receivers by powerful air pumps, will produce solid nitrogen. This was first shown in January of the year 1894. Liquid oxygen is temperatures-blue in color, because it stops many red, yellow and orange rays. That is apparently why red, yellow and orange rays. That is apparently why
the sky is blue. Like the gas, it is magnetic, springs the sky is blue. Like the gas, it is magnetic, springs
from a cup of rock salt to the poles of an electro-magfrom a cup of rock salt to the poles of an electro-mag
net when the circuit is turned on, and stays there pending its rapid evaporation. Nitrogen stems to be an inert body, with no striking qualities, good to be a diluter or absorbent of the more energetic oxygen. Hydrogen remains now the only body unsubdued by cold and pressure, so a hydrogen thermometer is used to indicate these extremely low temperatures. If hydrogen be, as Faraday thought, a metal, water is a metallic oxide, and it is remarkable how easily this oxide liquefies, while oxygen only becomes fluid under the severest compulsion, and hydrogen resists it with
success. success.
Gases contract ${ }_{4}^{\frac{1}{6} \overline{6} 0}$ for each degree of temperature What is to happen when a temperature of - 460 degrees
is reached? At present it seems below the limit of possibility. All gases will liquefy and solidify before this is obtained ; so the method of successive reductions above described must fail to achieve such a minimum. But if this absolute zero is reached, will matter vanish through the total deprivation of heat? Heat is the life -become better conductors of electrical currents; but behave in the and some other substances act quite differently. We know from the everyday experience of the incandes cent electric light that heat increases the conductivity of carbon, while it reduces that of metals-a corollary of which property of the latter it seems to be that iron at 1,400 degrees is not magnetic at all; nickel at 340 degrees is also inert to the strongest magnets. If the sun is a magnetic center at all, it is not because of its iron or other metals, and this consideration leads me to doubt if the aurora has any connection with the pots on the sun, either as they pass the center or minimum frequency.
What is the cold of space? We approximate to it in these experiments. Is it permissible to think that this old-even without pressure--would liquefy and solidify gases and so facilitate the condensation of dispersed matter into suns and planets, and forbid the existence of a gas in space which would retard the motions of these orbs? Will cold, rather than gravity, thus fix a outside the atmospheres, permithg no gas still hot from condensation? Has the air there was upon the moon settled down to be a transparent sheet of ice over her surface, fixing her features in an almost ternal setting as hard as adamant?
One more singular point. Molecular couvection of heat ceases as the molecules die of cold, but energy still passes through the frozen mass. A burning glass which concentrates heat and light can be made with a spherical vessel full of liquid oxygen Radiant or ethereal heat and light encounter no resist ance on account of extreme cold, when molecular heat an scarcely creep from particle to parlicle.
Cold affects colors. Sulphur (at - 314 degrees) turns white, vermilion fades to orange, iodine in alcohol loses its violet, my authority states, but as alcoho freezes at -202 degrees, the phenomenon must be seen the solid.
Is the earth homogeneous? When it was intensely hot, too hot to hold any but elementary forms of mat ter, a time came when it was cooled as to its gaseou envelope. and oxygen, if not hydrogen, combined with its materials to a certain depth. The outer shell thu is alone com posed of oxides or rusts, for such we may cal all the rocks and other substances that contain oxygen. A time may come when the aqueous vapor and car
cules. Metals becomestiffer and tougher under cold-bonic acid of the air will come down as snow, just as
xygen and hydrogen at a given stage form water just as carbonic acid and calcium have formed the imestones-and, after that, the interstellar cold will be free to act, and the residual oxygen and nitrogen will form an ice case of eleven or twelve yards in thickness. When, in due course, something like this hap ens even to the sun, and absolute zero ís reached will matter be loosened from its affinities and disperse If so, there must be fewer dark stars than Sir Robert Ball thinks possible.

Lodgings for Seamen on ship Board.

With a view to the promotion of the health of sea en and their protection against the cupidity of owners, a new law was passed at the last session of Congress, the text of which we give below. It will be seen hat the cabins must be large enough to give every man a deck space of 12 superficial feet and a total of 7 cubic feet. This is equal to a space of 2 feet wide, 6 feet long, and 6 feet high.
The act was approved March 2, 1895, and is entitled An act to provide for deductions from the gross ton age of vessels of the United States." The act wil take effect April 1, 1895.

Every place appropriated to the crew of the vesse shall have a space of not less than 72 cubic feet and 12 superficial feet, measured on the deck or floor of that place, for each seaman or apprentice lodged therein Such place shall be securely constructed, properly ighted, drained, and ventilated, properly protected from weather and sea, and as far as practicable properly shut off and protected from the effluvium of cargo or bilge water; and failure to comply with this pro vision shall subject the owner to a penalty of $\$ 500$. Every place so occupied shall be kept free from goods or stores of any kind not being the personal property of the crew in use during the voyage; and if any such Whee is not so kept free, the master shall forfeit and pay to each seaman or apprentice lodged in that place he sum of 50 cents a day for each day during which ny goods or stores as aforesaid are kept or stored in the place after complaint has been made to him by any wo or more of the seamen so lodged. No deduction from tonnage as aforesaid shall be made unless there is permanently cut in a beam and over the doorway of every such place the number of men it is allowed to modate . . . seamen.
"That the provisions of this act apply only to vessels 1895.

recently patented inventions.

 Engineering.Construction of Vessels.-Marie V. T. Dubreuil, New York City. A means of forming two whereby the hull will be made stiff both longitudinally and transversely withoutappreciably increasing its tonnage. The vessel's sides are parallel from the stern to a little beyond the center, and thence tapered to the bowine, the bottom being tapered upwardly toward the bow for a corresponding distance. The hull comprise hull bottom following the inverted \mathbf{V} shape of the lowe embers of the braces, and thus forming two keels. giving a stability not attainable in ordinary methods of

The Propulsion of Vessels by Means of Explosives forms the subject of a furth patent by the same inventor, the construction of the vesse being'similar,' but a cannon-like conductor being located he stern, and extending from within the hull to its ex ive . A rotang recter has chanhers for the explo he conductor, a trip mechanism carried by the receiver actuating the hammer to effect the explosions, which may be made to occurat very frequent intervals, as may be needed to cause the constant forward prop
the vessel, and without jar to the vessel itself.

A Rudder specially designed for the orm of vessel above described has also been patented
by the same inventor, a rudder being pivoted to the botom of the vessel at the bow, centrally between the hull near the stern, the this located at each side of the ated to steer the vessel much more quickly than would being designed to turn almost on its center.
Regenerative Furnace Valve Gear.--John Kernan and Robert b. Yuille, Pittsburg, to connect and disconnect the gas supply and the furnace and the latter and the chimney flue. Diagonal valve seats are formed in a casing, which may be water-jack-
eted or lined with fire brick, and which is formed with eted or lined with fire brick, and which is formed with
an open top and bottom and side openings, slide valves sliding on the seats so that when one moves inward the oner mide of the casing by a weighted lever. The valves without stopping or interfering with the work of the furnace.
Angle Cock.-William J. Waldron, Fort Worth, Texas. 'This is a device to be applied only on a manually operated angle cock, by means of supple-
mental fluid pressure pipes, so that the plug cannot be turned by unauthorized persons and without the knowledge of the engineer in charge of the train. It is a de-
vice for locking the train pipe valve or plug, by means of
a connection separate from the traiu pipe and under the

Railway Appliances

Car Coupling.-Thomas Gaskins, Arcadia, Fla. Two patents have been granted this inventor or improvements in couplings of the Janney type, in
which the drawhead has at one side a knuckle to couple with a similar knuckle on the other drawhead, there being means of locking the knuckles rigidly in coupled position or turning them outwardly to be disengaged
from each other. The first invention consists chiefl in rom each other. The first Invention consists chiefly in lever which holds the coupling knuckle, whereby the draughtstrain on the pin is so reduced as to permit it to be operated by hand, even when the draught strain is on, the whole coupling being very cheap, simple, and effective According to the other patent, means are provided for so locking the knuckles that they may be freely and easily disengaged while the draught strain is on, and there is no ne.
couple.
Car Coupling.- Charles H. Smith, Birmingham, Ala. This inventor has also devised an
mprovement in couplings of the Janney type, adapting mprovement in couplings of the Janney type, adapting
the coupling for an automatic release of the coupling jaw if the securing devices that retain the coupling draw-
then head in connection with the cars should accidentally be broken or become loosened, the release preventing the coupling from falling on the track, to occasion the possible derailment of a car in the rear. The improve-
ment is simple, costs but little, and all the parte are substantial and not liable to be deranged by ordinary stantial
wear.

Nut Lock.-Henry Hagon, West Superior, Wis. This is an improvement primarily designed as a simple and effective means of joining the under the jarring and vibrations incident to train travel, the fish plates being secured to the rails and effectively braced by grip flanges or members, so that they will always be heid tightly up against the under face of the rail

Nut Lock.-Henry B. Eareckson, New York City. This improvement consists essentially of an arm pivoted on the nut and adapted toswinginto recesses on the outer end of the bolt and in the nut. While es
pecially designed as a lock on railroad rails, joints, pecially designed as a lock on railroad rails, joints, and
vehicle axles, it is also applicable to a widerange of other uses, being of simple and durable construction and positively locking the nut in place when screwed up.

Mechanical.

Heel Nailing Machine.-John F. Hines, New York City. This inventor provides an authe rand into the requisite shape and inserting it between
the sole and the heel plate. The rand-bending device
consists of a series of clips having an articulated connecconsists of a series of clips having an articulated connec-
tion with one another, a slide having a guided movement tion with one another, a slide having a guided movement
to bend the clips, as they hold the rand, around the heelto bend the clips, as they hold the rand, around the heet
supporting plate. Spring-pressed followers, arranged besupporting plate. Spring-pressed followers, arrange.
tween the clips and having a sliding connection there with, engage the outer edge of the rand and force it inward from between the clip members, a cuttersevering
the ends.of the rands, should they project in front of the the ends.of the rands,
heel-supporting plate.
Wrench.-Alf L. Winge, Miles City, Montana. This inventur has patented an improvement in that class of wrenches which have a sliding jaw ad-
justable by means of a movable rack, to retain the jaw locked at different points on the lever bar, with means for holding the rack stationary. The improvement preefficiency without adding to the cost of the implement.

Miscellaneons.

Wall Paper Manufacture.-Paul Groeber, Rutherford, N. J. This invention provides a method of and machine for manufacturing paper having an embossed face with a water color effect. The paper is composed of two firmly united layers of pulp,
one sized and the other unsized, to form an absorbent face to receive successive colors and a final embossing the processes of printing and embossine facing during water colors may be employed alone or in connection with the regular pigments, some of the rollers also applying gold, mica, flock, fitters, or other ill
rial, oil, distemper, or varnish pigments.
Roller Chitte.--Edwin W. Fuller, No. 304 Guerrero Street, San Francisco, Cal. This is an improved and extremely simple construction for use on
grades to convey sugar cane, lumber, firewood, and other grades to convey sugar cane, lumber, firewood, and other
materials. It consists of a series of sections pivotally materials. at their ad jacent ends to have a limited lateral movement, and each section having in its bottom and side walls transverse openings where rollers are journaled in plates, the plates being removably bolted to the outer faces of the sides of the chute, so that any single roller may be removed without disturbing the others. The chute is inexpensive and easily erected, may be ad thrown into it will be carried forward and downward by gravity and with but little friction.
Folder and Puncher. - Frederick C. Mehnert, Goshen, Ind. In devices for folding blank book sections and punching holes in them, preparatory
to binding, this inventor has produced a very machine adapted to simultaneously fold the sections and punch the holes, doing the work very rapidly and making the holes all alike. The table has in its top, parallel jaws adjustable toward and from each other try vary
the width of the slot, which is entered by a vertically the width of the slot, which is entered by a vertically
reciprocating folder blade baving a lower non-cutting
edge with projecting needles or perforating spurs to per-
forate the forate the paper in the fold for the binding thread without cutting the
CARPET STRETCHER AND JACK. Hosmer F. Jackson, Tyrone, Pa. This is a simple and
inexpensive combination inexpensive combination household tool, which may be
used as a jack for lifting stoves and other heavy articles, used as a jack for lifting stoves and other heavy articles,
or as a carpet stretcher, a removable crank arm of the tool being also adapted to serve as a tack hammer and claw. The implement is readily manipulated by any one capable of handling even the simplest tool.
Drapery Form.-William H. Knapp, Brooklyn, N. X. A form readily adjustable toa desired
waist or hip measurement, and held in such position, has been patented by this inventor, the form resting upon the floor or other support throughout its entire circum ference, thus dispensing with the ordinary base. The form may be worked upon without danger of toppling it over or shifting its position, and may be quickly folded
up around a central standard.
Buckle. - Solomon Z. Quin, New York City. Suspender buckles constitute the feature of this improvement, the buckle designed by the inventor veniently unlocked to be shifted on the web to shorten or lengthen the suspender. The frame of the buckle has a crossbarextending over the web at the front, while a clamping toothed bar engages the web at the back, opposite the cross bar, the toothed bar being carried by an auxiliary frame hinged on the main frame and adapted to be locked the
cheaply made.
Crumb Remover.-James B. O. Shevill, New York City. This is a simple device for table use, having a revoluble brush arranged in front of a crumb-receiving pocket. The brush and its operating gearing are inclosed in a longitudinally slotted casing, to
the top of which is pivoted a handle, the oscillation of which is limited by stops. The device is moved over the table in the same manner as a hand brush, and when lifted and taken away the crumbs held in the pocket are THI
Thill Tug.-William H. Cable, Staunton, Va. This is a simple, cheap and automatically
locking tug, adapted to snugly embrace the thill, and
readily operated to release the thill when desired. The readily operated to release the thill when desired. The
tug holding devices are so arranged that the usua draught braces are dispensed with and the pulling ano backing are effected entirely by the tug. The tug proper has a hinged member arranged to be swung up around the shaft, and be detachably connected with the other section, to which the harness is attached, and the releasing devices may be operated from the vehicle to almost
instantly unloose the animal in case of a runaway.
Lubricator for Vehicle Axles. Henry B. Eareckson, New York City. A nut is adapted according to this invention, and the nut has in its top an
oil chamber with an opening leeding to the upper end of
the feed groove on the spindle. As the chamber is an the feed groove on the spindle. As the chamber is a tion, and there is no danger of wasting the lubricant, the spindle being thus oiled without requiring the removal spindee being
of the wheel.
Overdraw Check Bit.-Joseph Carter, Blyth, Canada. This bit is independent of the driving bit, and is designed to stay in any position in
which it may be placed, not moving up or down in th horse's mouth when the horse ss checked. It has a cen ral raised section which may be covered by a cushion and the ends are slightly curved upward and terminate in eyes, cheek bars connected with the ends of the bit
receiving near their connection the check rein, while a ose band is adjustably connected with the cheek bare there being means for locking the nose strap in a give position.
Sleigh Brake. - Adelbert Mecham, Edinburg, North Dakota. Should the team stop when he sleigh is being drawn up a hill, this brake acts auto matically to prevent the sleigh from running backwara, nd when descending a hill, the action of the team olding back operates to apply the brake, and thus control the descent of the sleigh. By means of locking d o be backed. The device is inespensive and is applicabe to any form of sleigh
Police Nippers.-Leon Brewn, Chi cago, Ill. This is an improvement in chain nippers, the loose end of the chain being readily thrown over to engagement with the hande, forming a loop, which may be contracted upon the wrist of the prisoner by the man pulation of the handle.
Note.-Copies of any of the above patents will be
urnished by Munn \& Co, for 25 cents end name of the patentee, fitle of invention, and dat of this paper.

SCIENTIFLC AMERICAN

buildina edition
MARCH, 1895.-(No. 113.)

table of contents.

1. Elegant plate in colors showing a cottage at Mount oor plans Mr. H P Rapelye, architect. Mount Vernon, N. Y. An attractive design.
"The Gables," a half timbered cottage recently com leted at Glen Ridge, N. J. Perspective elevatio New York City.
. A cottage at Great Diamond Island, Me., recently erected for H. M. Bailey, Ess., two perspective island cottage. Mr. Jno. C. Stevens, architec Portland, Me.
2. A dwelling at Armour Villa Park, N. Y., recently erected for J. E. Kent. Esq., at a cost of $\$ 5,200$
complete, two perspective elevations and floor plans. A very picturesque design
3. A colonial cottage at New Rochelle, rected for C. W. Howland, Esq., two perspective
levations and door plans. Mr. G. K. Thompson, rchitect, New York City A unique example of modern dwelling.
4. The residence of Charles N. Marvin, Esq., at Montclair, N. J. A design successfully treated in the plans. Mr. A. V. Porter, architect, Brookly, N. Y ine Colonial house at Elizabeth, N. J., recently completed for Henry A. Haines, Esq. Perspective Child \& De Gell, New York City
5. A residence at Flatbush, L. I., recenily erected for C. H Wheeler, Esq., at a cost of $\$ 11,000$ comArchitect, Mr. J. G. Richardson, Flatbush, , attractive design.
cottage at Plainfield, N. J., erected for Chas. H Lyman, Esq. at a cost of $\$ 5,000$ complete. Two Mr. W. H. Clum, Plainfield, N. J. A picturesque design.
6. An elegant house at Scranton, Pa., erected at a cost and floor plans Architect, Mr. E. G. W. Dietrich, New York City.
7. Engraving showing the new building of "The Bank Oor Savings, recently erected on 22 d Street, New
York City. Mr. C. L. W. Eidiliz, architect York City.
8. Foundation piers of the American Surety Company's building, New York Citr. Four illustrations, construction for city buildings.
9. Miscellaneous contents.-An automatic gas saving
governor, illustrated.-Heating a residence with governor, illustrated.-Heating a residence with terior, illustrated.
The Sclentlfic American Building Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty hook pages; forming, practically, a large and splendid maeazine of architectribe, richly adorned with elegant plates in colors and with fine engravings, illus-
trating the most interestingesamples of Modern Architectrating the most interestingexamples of Modern Architec tural Construction and allied subjects.
The Fullness, Richness, Cneapness, and Convenience
of this work have won for it the Lazaest Circulation of this work have won for it the Laraest circulation
of any Architectural Publication in the world. Sold by al newsdealers. \quad MUNN \& Co., Poblishers,
361 Broadway, New York

Pusiness and Dersomal.

The charge for Insertion unaer this head is one Dollar a iine
for e eat For each insertion : about eiont worris to a ine. save
tisem Thursaiv mornins to appear in trie foilowins week's issue,

Try us for manufacturing your wire or sheet me
"C. s." metal polish. Indianapolis. Samples free Marine Iron Works, Chicago. New catalogue free Presses \& Dies. Ferracute Mach. Co., Bridgeton, N Handle \& Spoke Mchy. Ober Lathe Co Chagrin Falls, Handle turning machinery. Trevor Mfg. Co., Lock ,
J. T. Crowe, Truro, N. S., wants circulars of pump bor

Screw machines, minng macnines, and din presses be Garvin Mach. Co., La Canadian and foreign patents negotiated. Industria 28, Toronto, Canada Lurope. Hererenes. P. o.b
Capable, practical engineer, thorough commercial ing situation. ${ }^{-}$Capable", d o. box rizponsible mana
The best book for electricians and beginners in elecBy mail. $\$ 4$; Munn \& Co., publishers, 36 Broadway, N. Competent persons who desire agencies for a new apply to Munn $\&$ Co., Scientiflc American office. 361
Broadway, New York. Send for new and complete catalogue of Scientid nd other Books for sale by Munn \& Co.. 361 Broadwa

HINTS TO CORRESPONDENTS.
Names and Add ese must accompany all letters,
or no attention will be paid thereto. This is for our
information and not for publication information and not for publication.
References to former artices or answers should
give date of paper and page or number of question. give date of paper and page or number of question.
inciries not answered
be repeated reasonable time sorrespondents will bear in mind that some answers require not a little research, and,
though we endeavor to reply to all either by letter
or in this department. each must take his turn. Bu yers wishing to purchase any article not advertised
in our columns will be furnished with addresses of
houses manufacturing or carryin the houses manufacturing or carrying the same.
eciates of
personal rathen Information on matters of than general interest cannot be expected without remuneration.
exterent cannot be
to matice American sup had at athe office. Price 10 cents each. to may be had at the oftce. Price 10 cents each.
orks referred to prompty suplied on receipt of
price. Miner.
marked sent for labeled.
(6464) W. C. E. writes: In a town in this State the water supply is pumped from a lake to a reservoir situated at a distance of about 1,800 feet from
the pump house, and at an elevation of about 300 feet above the town: the power used to elevate the water is two Worthington compound pumping engines, with steam cylinders 12 and $181 / 2$ inches diameter respectively, water cylinders $81 / 6$ inches in diameter, all 10 inches stroke, and are of 750,000 gallons capacity each per 24 hours. As the capacity of the pumps greatly exceeds the wants of the village at present, it is proposed to use portion of the water from the reservoir to operate a 6 velop 100 horse power under 300 feet head to operate a dynamo with which to light the streets. Would this be practicable? Would it cost more or less for fuel to furnish the power for a dynamo in this manner than by an engine directly attached? A. Your pump has a ca pacity of 520 gallons per minute, and 100 horse power ly the best impact wheel requires 1,560 gallons per minute
under 300 feet head. So that the total horse power of your pumps is but one-third of the power required. It is a decided waste to pump water by steam for generat ing water power. Direct steam power for the dynamo is
proper and practicable, and the beet of all is a combined compound engine and multipolar dynamo.
(6465) J. W. H. asks: What is the loss in friction between the transmission of 100 horse power Also loss in friction between a direct connected engin and a machine driven by belt? A. The loss of powe ing upon thickness, tightness and velocity. On an average the loss is about two per cent by creepage, and he loss by increased journal pressure and tlesure of the belt is from $1 / 2$ to 1 per cent more. A total of $31 / \mathrm{pe}$
cent variable. The loss by gearing of equal size and of the larger dimensions, well made and adjusted, is ver small, embracing only the friction of the teeth, amount (6466) G. W. S. writes : I am a reader of the Scientific American, and would like to know Whether in the manufactnre of a small esperimental dy namo one would get as good results from a drum arma-
ture as a shuttle armature? And if so, ought the size tare as a shuttle armature? And if so, ought the size
and amount of wire on the armature be the same as would be used in the samedynamo on a shuttle armature? By all means use a drum armature. Make it larger; two or three times the diameter of the shuttle armature. We refer you to Supplement, Nos. 161, 599, 600 and 844 , price 10 cents each by mail.
(6467) E. W. H. writes: 1. Kindly tell me how walls are wainscoted with tiles, that is, how the tiles are best fastened to the walls, and what backing is first laid down upon which to lay a tile floor over wooden
joist, so as to insure a water tight job free from cracks. joist, so as to insure a water tight jo free from cracks.
A. Portland cement freshly mixed is the best bedding for tiles for walls and floors. For floor backing put in a
deafening floor two inches below the top of the beams deafening floor two inches below the top of the beams,
well fastened to prevent springing, and filli; with goodmor
tar concrete even with top of beams, and on this surface
bed the tiles with Portland cement. 2. What thickness of plate glass would you specify for a residence, size of lass 3×3 feet, and how thick should the frames be fo
such glass? A. If polished plate is to be used it should be $1 / 4$ inch thick. For common plate $1 / 8$ inch or 3_{32}^{3} inch is he usual thickness. Frames for the $3 / 4$ inch glass should be $17 / 8$ inch thick, for the thinner glass $1 / / 2$ inch thick. . Would Portland cement be preferable as a mortar lay brick in a foundation wall, to lime mortar temperen
with cement ? If so. please give proportions of sand and Portland cement best adapted, and say if such mortar would be unfavorably affected by the heat if it were used in laying chimney brick. A. Portland cement is best or foundation walls in varying proportion with lime according to economy desired. Lime 3 parts, Portland cement 1 part by measure makes a strong mortar with 8 to ordinary house chimneys. 4. What proportions of Port land cement and sand would be best adapted for plaster ing the inside of a brick cellar wall to make it water tight? A. Equalparts of Portland and clean sand for cellar wall plaster. 5. Is there any objection to the use of sheet ead for gutters, tlashings, and flats, and how should the edges of the sheets be soldered together? A. There is no objection to the use of sheet lead for flashings. The burned together with a hot iron without solder. (6468) H. S. L. A. asks: What is the latest theory of electricity? We have several theories of our own make, and. would ake to thow of electricity. A. Your auestion is a yery broad one. You will find ex cellent articles on the subject in the Scientific American Supplement, Nob. 666, 719,857 , and 995 . We can also supply any books on the subject.
(6469) L. B. asks: 1. In what way does he difference in distance between the carbon and platinum points in the Blake transmitter affect the intensity of the current? Does the current decrease according to the amount of air between the points of con-
tact ? A. The points are always in contact. The pressure constantly changing causes the variations in current effecting the transmission of sound. 2. If a thin ubber ball filled with carbonic acid gas were placed near to the mouth piece of a bell receiver while in this sound be retransmitted? A. It would concentrate, not increase the sound. It could be retransmitted. 3 . oo you think that it would be in any way posssible to obtain power from the rotating of the earth? Has any
one ever attempted it? A. This is among the possi. bilities, but has not yet been demonstrated to be prac icable. 4. Have made Page's rotating armature ais described in Sloane's "Electrical Toy Making," and it works well as a motor but it will not generate. Cannot surmise what the cause is. If possible suggest a remedy. A. It will generate some current if rotated rapidly telling of the advantages of salvano periodical or book telling of the advantages of galvano-cautery. A. For a
good treatise or galvano-cautery we refer you to Bige low's "International System of Electro-Therapeutics," 8vo, cloth, 1160 pages. Price $\$ 6$ by cail post paid.
(6470) J. D. says : 1. I have constructed torage battery like one described by you some time ago through in forming; size of plates $10 \times 12,7$ plates to cell, 26 cells in all? What would be number of hours they would run, and how many 16 candle power lamps would they run, and how long? A. Four ohms resistance will answer for dischargingin series. They should run ten hours and maintain about twenty 16 candle power lamps, for imperfection of construction. 2. Have motor sixteen segments to commutator, leads give one-quarter turn, brushes work on opposite sides, have three $1 / 4$ inch carbons in each brush holder, and in a few minutes' run, commu tator and brush hoders become so hot that yoa camo touch them, and in a short while so hot that it will un solder leads from commntator. Run with 50 volts about 10 or 12 amperes. Please give me cause for this, and
remedy. A. Your field may be out of proportion to your armature, but try giving it less potential. Inter pose a resistance in series with it.

TO INVENTORS

An experience of nearly ffty years, andthe preparation
of more than one bundred thousand applications for patents at home and abroad, enable us to understand tbe laws and practice on procuring patents everywhere. synopsis of the patent laws of the United States and all foreign countries may be had on applicatlon, and persons contemplating the securing of patents, either at bome o
abroad, are invited to write to this office for prices abroad, are invited to write to this office for prices
whicb are low, in accordance with the times and our ex tensive facilities for conducting the business. Address
MUNN \& CO., office Scientific Am Rrican, 361 Broad

way, New York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

March 26, 1895,
AND EACH HEARING THATT DATE
[See note at end of list about copies of these patents.]

