THE ALPINE INDICATOR.

The Alpine indicator represented in our engraving is found in Switzerland upon a hill near Aarau. This apparatus is well known to the bathers who have passe a season at Schinznach-les-Bains, for it is a classical objective of excursions. The utility of this indicator is to give the tourist the name of the mountains that be sees in the distance, and the chain of tains that he sees in the distance, and the chain of
which, uninterrupted upon nearly half the horizon, forms a arand spectacle. The system consists of a semicircular table whose rounded part is turned toward the panorama, and upon which, pivoting around an axis placed in the center of the rectilinear side, there is a rule forming as it were a radius of the circumference in which the table is comprised. Upon this rule above the pivot, there is a back siont and at the other the pivot, there is a back simhtand athe other end, near the circur Upon the table, and in their respective direc-
tions, are inscribed the principal names of the mountains that are seen in the distance.
The spectator who wishes to consult the indicator must place himself on the rectilinear side of the table and face the panorama. With the rule pivoting around the axis, he will aim at the summit whose name he desires to know, as he would do with a gun, in using the breech and muzzle sights. This done, he will find a name upon the table at the side of the sight. It is that of the mountain aimed at.
The reader will readily understand how it has ween possible for the maker to establish this indicator. He has oriented the table by means of a compass, and, placing upon it a map of the environs in the same orientation (the place where the indicator is found upon the map coinciding with the sight upon the table), has, by taking aim at the mountains of the horizon, been able to find them upon the map, and, reciprocally, by aiming according to the map, to find the mountain at the horizon. The result of these operations he has noted upon the table. In order to find objects nearer than the horizon, a map of the surroundings is transferred to the table. As the horizon in the present case is at 24 miles, the space between the back sight and the circumference of the table is divided by equally spaced concentric semicircles, having the back sight as their center, and the spacing of which represents a distance of three miles in a bee line. The object, say a belfry or castle, is sighted, and this is found again upon the map upon seek. ing it at its approximate distance along the rule. We have seen several of these tables in Switzerland, at
Lucerne and Zurich, but they had no sights. The conLucerne and Zurich, but they had no sights. The contours of the mountains had been simply drawn and the names placed beneath the corresponding points. This is much less practical.
We have seen the apparatus with sights, as at Aarau, installed upon the tower of the cathedral of Lausanne. It had been established for allowing the night watch man to recognize in darkness a village or farm in which a fire had just broken out so that aid might be sent thereto
Since the villages have been connected by telephone with the principal city, the indicator has no longer been used.

We have never seen these indicators in France. Perhaps some exist, but there are certainly many places where they might be put. In the environs of Paris, among others, one of these tables would not be out of place, nor would it be upon the terrace of Saint Germainor upon that of Bellevue. The Alps, of course, would not be seen, but it is not the Alps only that is worth of interest. We believe that it would be inter esting for some one who has the advantage of having a view over a wide horizon at home to establish oneof these tables.
A compass, one or two official maps, a flat rule a sheet of bristol board, and a plank are all the materials necessary.-La Nature.

A diamond weighing not less than $9713 / 4$ carats, an aid to be the largest in the world, has been found in These fire eaters are two young Americans who hav Edward Jorgansen. It was taken, well guardector cultivated physics and electricity considerably. When the Cape of Good Hope and put aboard a warship fitting costume of a red color which represents that o for London and deposited in the Bank of England. |the devils of fairy scenes. The stage upon which they

FIRE EATERS AT THE OLYMPIA THEATER, PARIS.
the valley below the cable is 230 feet. Suspended from the cable are steel "anchors" supporting, 2 fect apart, two parallel wire ropes, on which the pulleys of the passenger car run. The car is drawn across ky $41 / 2$ horse power Crossley oil engine. Each car hold eight persons, and two and one-half minutes are occu pied in the trip.

FIRE EATERS.
The fire eaters of whom we propose to speak, and who have been exnibiting in the hall of the
at Paris, excel in their line anything of the kind that has been seen up to the present. They not only swal low flames, but handle fire and cause it to flash from their fingers.
appear remains but dimly lighted during the entire time of their presence thereon. At the back of it there is a piece of furniture that resembles an office desk seen from the rear, but no detail of this object is dis tinguishable. The devils go behind it and seem to the ane some prepation and then they comin to the fly thin but brilliant flames to dart from their fingers.
Bringing these flames near their mouths, they seem to swallow them, and then extinguish them between their teeth.
When the two devils touch each other's hands, a crackling is heard and long flames dart forth for a few seconds from the tips of their fingers, which they continuously move.
In a subsequent experiment, without putting anything in their mouths, they blow with energy and a brilliant flame makes its exit from between their lips. They shoot forth a jet of flame tor a considerable length of time, which certainly exceeds half a minute.
While these singular phenomena are occurring, the spectators absolutely smell no odor It is probable that the combustion is due to a very volatile essence, but we are unable eithe to state precisely the nature of it or to give an exact explanation of the experiments perform ed. The red devils keep their secret, and when they are questioned remain mute

Our readers, however, may inform themselves as to many points of these curious phenomena by reading two articles entitled "Incombusti ble Men" that Mr. Guyot Daubes contribute to this journal in 1886. The author speaks of jugglers who lick red hot iron rods and of eater of lighted tow, and describes the experiments performed in 1881 by a person named Kortig, who had prepared an essence that was so vola tile that he poured some of it into his hand and lighted itwith out burning himself. Mr. Kortis held a seance at a soiree given at the Conserva toire des Arts et Metiers by Mr. Herve Mangon, then director

We were invited to this soiree and saw the operator light the liquid that he had poured into the brim of his felt hat or into the fold of a lady's handkerchief without the objects serving as a support to the liquid being in any wise damaged.
For the chemist, there are here some inter esting experiments to take up and study.-La Nature

Exhibition of the National Sculpture Society.
The second annual exhibition of the National Sculpture Society will be held, beginning Tuesday, May 7 , and continuing until May 23, in the galleries of the American Fine Art Society's building, No. 215 West 57th Street, New York. The exhibition will comprise several novel features and promises to be unusually interesting and profitable. An important feature will be a retrospective exhibition of sculpture, to which all are invited to contribute. Al workof sculpture, whetherex hibited before or not, will be hibited before or not, will be
eligible, subject to the de eligible, subject to the de
cision of a jury of inspec cision
tion.
A novelfeature will be an ex hibition of landscape garden ing, arranged with flowers and plants after the designs of Nathan F. Barret, landscape engineer, and Thomas Hast ings, architect. It is intend ed to show something of the possibilities of combining sculpture with flowers and plants in gardening and in interior decoration. The so ciety will also hold in connec tion with the exbibition a competition for a new desig for the United States silver dollar, and the plaster models presented in competition will be on view.
'T'wo prizes of $\$ 300$ and $\$ 200$ are offered for the two best designs, and if any design of sufficient merit be presented, the society will urge that it be adopted by the national government Further information may be
had by application to the society.
One of the most remarkable sights to be seen in Australia is a burning mountain 1.820 feet in height. The mountain is supposed to be underlaid with an inexhaustible coal seam, which in some way became ignited. It was burning long before the advent of white men to that part of the country.

Liquefaction of Gases.
At a meeting of the Astronomical and Physical Society of Toronto, Mr. Arthur Harvey, who had been requested to prepare a resume of the recent work ject, read the following notes:
The method adopted is to lower boiling points by exhaustion. You know the principle. It comes to our notice practically in mining at or above the summer snow line in the mountains. There are several camps in America so high that boiling water will no cook potatoes or other vegetables so as to make them palatable. Carbonic acid, which boils under ordinary atmospheric pressure at-112 degrees, will, in a vacuum such as the air pump can be made to give, boil at-166 degrees. At this temperature nitrous-oxide liquefies, liquefies ethylene, which in turn runs down the ther mometer to - 229 degrees. At this point pressure is resorted to, and the pressure of $1,500 \mathrm{lb}$. to the inch (100 atmospheres) forces oxygen into a liquid state. The evaporation of liquid oxygen, also in vacuo, liquefies, under pressure, air and nitrogen, while these again, worked upon in double receivers by powerful air pumps, will produce solid nitrogen. This was first shown in January of the year 1894. Liquid oxygen is 900 times less in volume than the gas at ordinary temperatures-blue in color, because it stops many red, yellow and orange rays. That is apparently why the sky is blue. Like the gas, it is magnetic, springs from a cup of rock salt to the poles of an electro-mag net when the circuit is turned on, and stays there
pending its rapid evaporation. Nitrogen seems to be pending its rapid evaporation. Nitrogen seems to be
an inert body, with no striking qualities, good to be a diluter or absorbent of the more energetic oxygen Hydrogen remains now the only body unsubdued by cold and pressure, so a hydrogen thermometer is used to indicate these extremely low temperatures. If hydrogen be, as Faraday thought, a metal, water is a metallic oxide, and it is remarkable how easily this oxide liquefies, while oxygen only becomes fluid under the severest compulsion, and hydrogen resists it with success.
Gases contract ${ }_{4}^{\frac{1}{80}} \mathbf{0}$ for each degree of temperature What is to happen when a temperature of - 460 degrees is reached? At present it seems below the limit of possibility. All gases will liquefy and solidify before this is obtained ; so the method of successive reductions above described must fail to achieve such a minimum. But if this absolute zero is reached, will matter vanish through the total deprivation of heat? Heat is the life
cules. Metals becomestiffer and tougher under coldremarkably so at Professor Dewar's low temperatures checomical affinity is diminished, so that alloys do not behave in the same way as pure metals, while carbon and some other substances act quite differently. We know from the everyday experience of the incandescent electric light that heat increases the conductivity of carbon, while it reduces that of metals--a corollary of which property of the latter it seems to be that iron at 1,400 degrees is not magnetic at all; nickel at 340 degrees is also inert to the strongest magnets. If the sun is a magnetic center at all, it is not because of its iron or other metals, and this consideration leads me to doubt if the aurora has any connection with the spots on the sun, either as they pass the center or appear on his eastern
What is the cold of space? We approximate to it in these experiments. Is it permissible to think that thi cold-even without pressure--would liquefy and solidify gases and so facilitate the condensation of dispersed matter into suns and planets, and forbid the existence of a gas in space which would retard the motions of these orbs? Will cold, rather than gravity, thus fix a limit to the atmospheres, permitting no gas to exist outside the calorific influence of the bodies which are nin hot from condensation? Has the air there was pon the moon settled down to be a transparent sheet of ice over her surface, fixing her features in an almost One mont
One more singular point. Molecular convection of heat ceases as the molecules die of cold, but energy still passes through the frozen mass. A burning glass which concentrates heat and light can be made with a spherical vessel full of liquid oxygen Radiant or ethereal heat and light encounter no resist ance on account of extreme cold, when molecular heat an scarcely creep from particle to particle.
Cold affects colors. Sulphur (at - 314 degrees) turns white, vermilion fades to orange, iodine in alcohol loses its violet, my authority states, but as alcoho freezes at-202 degrees, the phenomenon must be seen the solid.
Is the earth homogeneous? When it was intensely hot, too hot to hold any but elementary forms of mat ter, a time came when it was cooled as to its gaseous envelope, and oxygen, if not hydrogen, combined with its materials to a certain depth. The outer shell thus isalone composed of oxides or rusts, for such we may call all the rocks and other substances that contain oxygen. A time may come when the aqueous vapor and ca
bonic acid of the air will come down as snow, just as oxygen and hydrogen at a given stage form water ust as carbonic acid and calcium have formed the mestones-and, after that, the interstellar cold will efree to act, and the residual oxygen and nitroge will form an ice case of eleven or twelve yards in thickness. When, in due course, something like this hap pens even to the sun, and absolute zero is reached, will matter be loosened from its affinities and disperse If so, there must be fewer dark stars than Sir Robert Ball thinks possible.

Lodgings for Seamen on ship Board.

With a view to the promotion of the health of sea men and their protection against the cupidity of own ers, a new law was passed at the last session of Congress, the text of which we give below. It will be seen that the cabins must be large enough to give every man a deck space of 12 superficial feet and a total of 7 ubic feet. This is equal to a space of 2 feet wide, 6 feet long, and 6 feet high.
The act was approved March 2, 1895, and is entitled An act to provide for deductions from the gross nage of vessels of the United States." The act wil take effect April 1, 1895.

Every place appropriated to the crew of the vesse shall have a space of not less than 72 cubic feet and 2 superficial feet, measured on the deck or floor of that place, for each seaman or apprentice lodged therein Such place shall be securely constructed, properly ighted, drained, and ventilated, properly protected from weather and sea, and as far as practicable properly shut off and protected from the effluvium of cargo or bilge water; and failure to comply with this pro vision shall subject the owner to a penalty of $\$ 500$. Every place so occupied shall be kept free from goods or stores of any kind not being the personal property of the crew in use during the voyage; and if any such Wee is not so kept free, the master shall forfeit and pay to each seaman or apprentice lodged in that place he sum of 50 cents a day for each day during which any goods or stores as aforesaid are kept or stored in the place after complaint has been made to him by any wo or more of the seamen so lodged. No deduction from tonnage as aforesaid shall be made unless there is permanently cut in a beam and over the doorway of every such place the number of men it is allowed to modate ... seamen
"That the provisions of this act apply only to vessels 1895.

recently patented inventions. Engineering.

Construction of Vessels.-Marie V. T. Dubreuil, New York City. A means of forming two keels in a vessel's hull has been devised by this inventor,
whereby the hull will be made stiff both longitudinally and transversely without appreciably increasing its tonnage. The vessel's sides are parallel from the stern to a ittle beyond the center, and thence tapered to the bowine, the bottom being tapered upwardly toward the ow for a corresponding distance. The hull comprises hull bottom following the inverted \mathbf{V} shape of the low embers of the braces, and thus forming two keels. giving a stability not attainable in ordinary methods of

The Propulsion of Vesseths by Means of Explosives forms the subject of a further
patent by the same inventor, the construction of the vessel eing'similar,'but a cannon-like conductor being located he stern, and extending from within the hull to its ex rior. A rotating receiver has chamhers for the exploive material, to register successively with the bore of actuating the hammer to effect the explosions, which may be made to occurat very frequent intervals, as may
be needed to cause the constant forward proulsion of be needed to cause the constant forward propu
the vessel, and without jar to the vessel itself.

A Rudder specially designed for the form of vessel above described has also been patented
by the same inventor, a rudder being pivoted to the botom of the vessel at the bow, centrally between the hull near the stern, the this located at each side of the ated to steer the vessel much more quickly than would being designed to turn almost on its center.
Regenerative Furnace Valve Gear.--John Kernan and Robert B. Yuille, Pittsburg, to connect and disconnect the gas supply and the furnace and the latterand the chimney flue. Diagonal valve seats are formed in a casing, which may be water-jack-
eted or lined with fire brick, and which is formed with eted or lined with fire brick, and which is formed with
an open top and bottom and side openings, slide valves sliding on the seats so that when one moves inward oner mide of the casing by a weighted lever. The valves wiihont stopping or interfering with the work of the furnace.
Angle Cock.-William J. Waldron, Fort Worth, Texas. 'This is a device to be applied only on a manually operated angle cock, by means of supple-
mental fluid pressure pipes, so that the plug cannot be turned by unauthorized persons and without the knowledge of the engineer in charge of the train. It is a de-
vice for locking the train pipe valve or plug, by means of
a connection separate from the traiu pipe and under the
control of the engineer.

Railway Appliances.

Car Coupling.-Thomas Gaskins, Arcadia, Fla. Two patents have been granted this inventor which the drawhead has at one side a knuckle to couple with a similar knuckle on the other drawhead, there being means of locking the knuckles rigidly in coupled position or turning them outwardly to be disengaged
from each other. The first invention consists chiefy in rom each other. The first invention consists chiefly in年 improved construction and arrangement of the lock holds the coupling knuckle, whereby the draughtstrain on the pin is so reduced as topermit it to be operated by hand, even when the draught strain is on, the whole coupling being very cheap, simple, and effective. According to the other patent, means are provided for so locking the knuckles that they may be freely and easily disengaged while the draught strain is on, and there is no ne.
couple.
Car Coupling.-Charles H. Smith, Birmingham, Ala. This inventor has also devised an
improvement in couplings of the Janney type, adapting mprovement in couplings of the Janney type, adapting
the coupling for an automatic release of the coupling the coupling for an automatic release of the coupling
jaw if the securing devices that retain the coupling drawhead in connection with the cars should accidentally be broken or become loosened, the release preventing the coupling from falling on the track, to occasion the possible derailment of a car in the rear. The improve-
ment is simple, costs but little, and all the parts are subment is simple, costs but little, and all the parts are sub-

stantial and not liable to be deranged by ordinary | $\begin{array}{l}\text { stantial } \\ \text { wear. }\end{array}$ |
| :--- |

Nut Lock.-Henry Hagon, West Superior, Wis. This is an improvement primarily designed as a simple and effective means of joining the ends of rails and holding the several parts from loosening under the jarring and vibrations incident to train travel, braced by grip flanges or members, so that they will al ways be heid tightly up against the under face of the rail tread.
NuT
Nut Lock.-Henry B. Eareckson, New York City. This improvement consists essentially of an arm pivoted on the nut and adapted to swing into recesses on the outer end of the bolt and in the nut. While es.
pecially designed as a lock on railroad rails, joints, pecially designed as a lock on railroad rails, joints, and
vehicle axles, it is also applicable to a widerange of other uses, being of simple and durable construction and positively locking the nut in place when screwed up.

Mechanical.

Heel Nailing Machine.-John F. Hines, New York City. This inventor provides an au tomatically-acting and effective mechanism for bending
the rand into the requisite shape and inserting it between
the sole and the heel plate. The rand-bending device consists of a series of clips having an articulated connec-
tion with one another, a slide having a guided movement tion with one another, a slide having a guided movement
to bend the clips, as they hold the rand, around the heelsupporting plate. Spring-pressed followers, arranged besupporting plate. Spring-pressed followers, arrangea
tween the clips and having a sliding connection therewith, engage the outer edge of the rand and force it inward from between the clip members, a cuttersevering
the ends of the rands, should they project in front of the the ends.of the rands,
heel-supporting plate.
Wrench.-Alf L. Winge, Miles City, Montana. This inventur has patented an improvement in that class of wrenches which have a sliding jaw ad-
justable by means of a movable rack, to retain the jaw justable by means of a movable rack, to retain the jaw
locked at different points on the lever bar, with means for holding the rack stationary. The improvement presents novel details of construction, affording increase
efficiency without adding to the cost of the implement

Miscellaneons.

Wall Paper Manufacture.-Paul Groeber, Rutherford, N. J. This invention provides a method of and machine for manufacturing paper having an embossed face with a water color effect. The paper is composed of two firmly united layers of pulp,
one sized and the other unsized, to form an absorbent ne sized and the other unsized, to form an absorbent impression, the sized pulp sustaining the facing during the processes of printing and embossing. By this means
water colors may be employed alone or in connection with the regular pigments, some of the rollers also applying gold, mica, flock, fitters, or other illuminating mate-
Roller Chute.--Edwin W. Fuller No. 304 Guerrero Street, San Francisco, Cal. This is an improved and extremely simple construction for use on
grades to convey sugar cane, lumber, firewood, and other grades to convey sugar cane, lumber, firewood, and other
materials. It consists of a series of sections pivotally materials. at their ad jacent ends to have a limited lateral movement, and each section having in its bottom and side walls transverse openings where rollers are journaled in plates, the plates being removably bolted to the outer faces of the sides of the chute, so that any single roller may be removed without disturbing the others. The chute is inexpensive and easily erected, may be ad-
justed to varying curves, is very strong, and the material thrown into it will be carried forward and downward by gravity and with but little friction.
Folder and Puncher. - Frederick c. Mehnert, Goshen, Ind. In devices for folding blank book sections and punching holes in them, preparatory machine adapted to simultaneously fold the sections and punch the holes, doing the work very rapidly and making the holes all alike. The table has in its top, parallee jaws adjustable toward and from each other tes vary
the width of the slot, which is entered by a vertically the width of the slot, which is entered by a vertically
reciprocating folder blade baving a lower non-cutting
edge with projecting needles or perforating spurs to per-
forate the forate the paper in the fold for

Carpet Stretcher and Jack. Hosmer F. Jackson, Tyrone, Pa. This is a simple and inexpensive combination household tool, which may be used as a jack for lifting stoves and other heavy articles,
or as a carpet stretcher, a removable crank arm of the tool being also adapted to serve as a tack hammer and claw. The implement is readily manipulated by any one capable of handling even the simplest tool.
Drapery Form.-William H. Knapp, Brooklyn, N. Y. A form readily adjustable toa desired
waist or hip measurement, and held in such position, has been patented by this inventor, the form resting upon the floor or other support throughout its entire circumference, thus dispensing with the ordinary base. The form may be worked upon without danger of toppling it over or shifting its position, and may be quickly folded
up around a central standard.
Buckle. - Solomon Z. Quin, New York City. Suspender buckles constitute the feature of this improvement, the buckle designed by the inventor
securely fastening into the web, while it may also be con veniently unlocked to be shifted on the web to shorten or lengthen the suspender. The frame of the buckle has a crossbarextending over the web at the front, while a clamping toothed bar engages the web at the back, opposite the cross bar, the toothed bar being carried by an auxiliary frame hinged on the main frame and adapted to be locked the
cheaply made.
Crumb Remover.-James B. O. Shevill, New York City. This is a simple device for table use, having a revoluble brush arranged in front of a gearing are inclosed in a longitudinally slotted casing, to gearing are inclosed in a longitudinally slotted casing, to
the top of which is pivoted a handle, the oscillation of which is limited by stops. The device is moved over the table in the same manner as a hand brush, and when lifted and taken away the crumbs held in the pocket are Thi
Thill TuG.-William H. Cable, Staunton, Va. This is a simple, cheap and automatically locking tug, adapted to snugly embrace the thill, and
readily operated to release the thill when desired. The readily operated to release the thill when desired. The tug holding devices are so arranged that the usua.
draught braces are dispensed with and the pulling ano backing are effected entirely by the tug. The tug proper has a hinged member arranged to be swung up around the shaft, and be detachably connected with the othe section, to which the harness is attached, and the releasing devices may be operated from the vehicle to almost
instantly unloose the animal in case of a runaway.
Lubricator for Vehicle Axles. Henry B. Eareckson, New York City. A nut is adapted to be secured on the threaded end of the asle spindle,
according to this invention, and the nut has in its top an

