tHE AMSTUTZ ELECTRO-ARTOGRAPH
The advent of each year is made attractive by the development of some new and useful invention for the use of humanity, or, pessibly, by the improvement of what was supposed to be an already perfected idea. That improvements in the general use of the electrical current would continue was naturally to be expected, considering the greater knowledge of its laws each year brings to the engineer who makes a study of this marvelous agency.
When the telephone was introduced to the attention of the world, and the human voice was made audible miles away, and als• when the phonograph, with its capabilities of storing up the human voice, was made public, there were dreamy visions of other combina tions of natural forces by which even sight might be btained of distant seenes through inanimate wire
It may be claimed, now, that though we do not see an object miles distant through the wire, yet this same inanimate wire and electrical current will soon serve us, automatically, as beth artist and engraver, trans mitting and engraving at the same time a copy of a photograph miles a way from the original.
Mr. N. S. Amstutz, a well known mechanical and electrical engineer of Cleveland, Ohio, has brought out of the elements an invention by which this is accomplished. As will be seen by the workings described, it might appropriately be terned a marriage of the phonograph and telephone, as the features of these two inventions are allied in this, called by Mr. Amstutz, electro-art ograph. The object of the invention is to transmit copies of photographs to any distance, and reproduce the same at the other end
line engraving. ready for press printing.
The undulatory or wave current is used. as in the telephone, while the reproduction is made upon a synchreneusly revolving, waxed cylinder, as in the phonograph. There is required for this end both a transmitting and receiving instrument, views of each of which are shown in our illustrations, from sketches made from the instruments in use by Mr. Amstutz.
The principle by which this work is accomplished is quite sinuple, and will readily be understoed by ref. erence to the diagrams shown. Fig. 3 representing the transmitter and Fig. 4 the receiver.
An ordinary photographic negative is made of the subject to be transmitted ; an exposure is made under this negative of a film of gelatine, sensitized with bichromate of potash, and by which the effect is produced of rendering insoluble in water the parts exposed to the light passing through the thin portions of the negative, while those portions protected from the action of the light can be dissolved away; the capabilities of dissolving away varying with the intensity a way the soluble portions froin the film there will remain the same picture as appeared on the negative, but it will be entirely in relief. We show a section of such a film, exaggerated, in Fig. 5, in which the variations upon the surface represent the varying effects the light and shade of the picture.
This film is now attached to the surface of the cylinder, A, Fig. 3, and caused to revolve; a tracer or point, B , adjustably connected to a lever, C, rests upon the film, and as the film revolves, rises and falls with the undulating surface of the film and communicating an up and down movement of the end of the lever, C , in a multiplied degree. A number of tappets or levers, F, are centrally fulcrumed at D and arranged so that E ; the opposite ends of the tappets varying in distance from a horizontal line ever the end of the lever, C, as shown. When the lever, C, is at its lowest point, as infuenced by a depression in the gelatine fim, al further revolution of the cylinder, A, and an elevation in the film forcing the lever, C, upward, all of the tappets' contact with the terminals, except one, is broken The heirgt of the hill and depth of valley of the film's surfase meausuring the number of tappets in contact with the terminals.
One terminal of a battery, \mathbf{N}, is grounded and the other is connected to the fulcrum, D, of the tappers, F, and the current passes through the tappets, F, terminals, E , and resistance, H . to the main line wire, and thence on to the distant solenoid, \mathbf{I}, at the receiving end, and to the ground.
tappets touch the terminals, all the resistances are in parallel and the total resistance is least and the current greatest ; and vice versa, resistance greatest and current least as the number of tappets' contact are broken. By this arrangement of the resistances, there are hills and valleys in the current correspend ing to these on the film's surface. This variable cur rent, circulating around the solenoid, I, produces a varying pull on the core attached to the end of the or V shaped enter L , neath which is a plain gelatine or wax film attached neath which is a $\mathbf{~ p}$
With this arrangement in mind, it will readily be seen that with one revolution of the cylinder, A , as
the tracer follows the elevations and depressions upon
the film, the free end of the lever, \mathbf{C}, is made to con- fender can beadded, if desirable, but as a general thing tact with the ends of one or more of the tappets, these fenders have many elements of undesirability. permitting more or less of a current to pass through They obstruct the street more or less. They add to the ownwistance, and exerting thereby more or less of We have shll on the end of the lever, J.
picity but it will but four of these tappets for simpumb, but will readily be seen that the greater the number, the more delicate will the variations be of the pull on the core of the solenoid. The number is not limited, but Mr. Amstutz finds not more than ten as being all that would be required, while for the bold
work required for newspaper printing, a much less number would be better.
Supposing now that a relief plate or film has been fastened upon the transmitting cylinder, A, and a cylinder, M and both are revolved at the same speed One revolution would cause the V tool, L , to cut a line around the film, irregular in its depths and widths caused by the varying pull on the lever's end by the \bullet of the solenoid. A picture is not made, however by one line, but one line is, howerer, an element of a whole picture, so, as the cylinder revolves, the tracer and the V tool are moved along by the screw shown in
Figs. 1 and 2 , and, spirally, another line is prod uced by the side of the first one, with varying depths and widths of cut, Fig. 6, corresponding to the neighbor ing waves of surface on the film. The lines are thus continued over the film from end to end, and when the film on the cylinder is electrotyped it is ready to be printed from.
The twe machines which we show in Figs. 1 and 2 have the same general characteristics: A mounting frame, a traveling tracer and graver carriage, guided by the round bar at the back and moved forward over
the cylinder by the screw in frent of the guiding bar,
a rotating cylinder corresponding to the cylinders, A and M, suitable gearing at the ends for revolving the cylinder and screw, the necessary adjusting screws and nuts and a sunchronizing device for geverning the speed of each cylinder
With the perfection of detail, which is now the work of Mr. Amstutz, the class of engraving done by this methed will be of the highest order of art-line engraving. The work it accomplishes is not confined in its scope to gelatine, but designs may be chased and engraved also upon the metals, as gold and silver ware.
Neither is it necessarily a long distance or line Neither is it necessarily a long distance or line opera
tor, for the machines may be placed side by side and local work can be accomplished.
We have selected twe examples of the work done by these machines in their present form. which will con vey to the intelligent critic a faint idea of the artistic capabilities it can be made to display when its future perfection of detail is accomplished. Both the portrait of the inventor and the view of the boy and dog were engraved upon these machines in the private laboratory of Mr. Amstutz, the time required in engraving the latter being but three minutes.
It is not difficult to believe that in the future event which may take place in London or Paris may be sent from photes taken in Europe, and the reprod uction of the same in an artistic picture, appear in the next morning's New York or Chicago papers; and this with out disturbing the existing conditions of telegraphic communication further than supplying the twe offices each with machines for transmitting and receiving. Mr. Amstutz has had practical experience with and is familiar with the general requirements for illustra tive work, and is conversant with the limitations of art work as used in book and newspaper printing. In all the difficulties and overcome them in these ma chines. Improvements, however, are now in progress principally to give greater expedition, and to render either continuous or alternating currents applicable the same principle, however, being the foundation.
We are under ©bligations to Mr. Amstutz for the op portunity to present these, the first sketches ever mad from these machines; and courteusly permitting us
to lay all this interesting subject, in a complete form to lay all this interesting subject, in a complete form.
before our readers. Mr. Amstutz has signified his willingness to answer such correspondents as may briefly, desire further information.

The Fender Craze.
The mayors and inhabitants of some of our cities are going daft about fenders for street cars. It is in a way a repetition of the early craze for guard wires In some places fenders have been made compulsory, in others they soon will be. Now we have nothing to say against the proposition that a fender may save life
and limb. Probably the best feuders now on the market may be useful once in a while. But we know that sone of the fenders are dangerous delusions and that it is a better principle to avoid knocking a foot passenger down than to chance picking him up alive Seve in a more or less bruised and mutilated condition. people struck by fenders have not only been injured but killed.
To us it seems to be altogether the better way to
river's cares and demand special attention, instead of relieving him of strain and worry. They act after the event instead of before it and instead of preventing it Cable or electric street cars often make locomotiv peed. They are permitted and adopted because they an give the public such speed. If they did not, it would be better to go back to horses. But on a leco notive the cowcatcher does not replace the air brake The main, vital, essential thing tollay with all fast unning cars is to give the drivers swift, direct, easy control of the speed of their vehicles. and this is to be done only with brakes that act instantaneously. If there is to be any legislation, let it be of a kind lookin, to the adoption of good brakes. A car with its run hing gear all housed around with a light valence close to the ground and furnished with an efficient brake can maintain hish speed and will take n- life that is nt sacrificed to it. Accidents there will always be se long as humanity is weak, careless and erring; but ars equipped as we suggest will be juggernauts only - willful suicides.-Electrical Engineer.

An Unjust Patent statute.

Such is the designation to statute 4.887 of the patent laws given by Dr. Elihu Thomson in a recent article he Electrical World. He says

While the decision of the Supreme Court makes it plain that the wording of the law in relation to the limitation of United States patents by foreign patents is to be taken instead of what would seem to me to have been the evident intent of the original enact ment. I wish to point out some of the injustices unde which the American inventor has suffered from this law, as it has been and is now interpreted, in compari
son with inventors and workers abroad.
An American inventor making application for a patent has been and will still remain under the disadvantage of being required to perfect his United States patent before applying for patents abread, and in order to secure valid patents abroad he must refrain from publication of any new matter which he mav have discovered until such foreign patents have been ebtained, as the mere publication nullifies the right to take a patent in most important foreign countries. But it is practically impessible, as is well known, under our sys tem of patent examinations, to control the time of issuance of a patent in the United States, and if the application should become involved in an interference. which is more than apt to occur with inventions of any considerable importance, the issuance of a patent may be tied up for an indefinite period of years. Dur ng this period there is every prospect of the same sub ject matter being worked upon abroad, or the matte becoming published, especially if the invention under goes development in the United States. The inventor therefore, if he desires foreign patent protection, must take his foreign patents and stand the shortening of the term of the United States patent; or, if the inter rerence preceedings or other delays last during the life of the shortest foreign patent, he receives a patent which hasalreadyexpire when it issues, a "still bern" patent, so to speak.

Again, in the race between two interfering inventions, the weaker party, finding that he will probably lose the interference in the United States, may easily ransfer his scene of activity to foreign countries, while he stronger party, feeling that he does not wish to ruin his United States interest, at the same time re frains from patenting abread. In this case the party who is likely to come out ahead here does come out at the last without any foreign patents, while the other party to the interference may come out with several valid foreign patents, but n\bullet United States patent.

Now, I d• not think it requires any argument to show that the evident intention of the United States law when it was first passed was not to bring about this state of things, and se handicap the honest Arneri can inventor. Nor is this all. The position of the foreign inventor under the United States law has been that he could make his applications in foreign coun tries whenever he felt like doing se and receive his patents, and, after an indefinite period thereafter, he was at liberty to apply for a United States patent and obtain a patent only limited by the shortest teruf for ign patent. Prior publication here would not affect his rights. Prior publication dees affect the United States inventor's rights abread. Does not this ameunt - discrimination against the United States inventor And weuld it not really tend, were there not other far rable influences, to discourage invention here?

The United States is entitled to take its prope place, not only in the actual work accomplished, but n the literature which naturally accompanies the ork and without sueh a restraint as now exists. The question arises, How long is the United States worker - be se handicapped. or practically put under a ban, y ill-considered laws? This is a queston which have often asked myself, and the answer to which, have ne doubt, bas been sought by many whe have ex have ne doubt, bas been sought
perienced the same hardships."

a weekly journal 0f practical inforvation, art, science, mechanicis, chemistry, and manufactures.

