
a werkly journal 0f practical information, art, science, mechanics, chemistry, and manufactures.
 NEW YORK, MARCH 30, 1895

The manufacture of porcelain and earthenware is one of the most interesting of the technical precesses. The illustrations we present in this issue were taken in the works of the Knowles, Taylor \& Knowles Company, East Liverp•ol, Ohi也, the parent company of that city and the largest manufacturing concern of its kind in the United States, its business dating back to the year 1854.

Porcelain and earthenware are made from clay, which, while moistened with water se as to be of doughlike consistency, is shaped and is then baked or partially vitrified by firing in a furnace. On removal from the furnace it may be coated with a fusible glaze and refired se as to fuse the glaze. This completes it, unless it has to be decorated by painting, which, if done, involves a third firing to fix the color. sand are the principal constituents which enter inte the composition, all being finely ground and the feldfinely ground and the feld-
spar sometimes being calspar sometimes being cal-
cined. The different ingredients are weighed se as to secure the proper proportions and are then mixed in a pug mill, which is a cylinder containing a vertical shaft carrying mixers, which shaft rotates and forces the thoroughly mixed clay out at the betmixe clay out at the bet-
tom in a long prism. One tom in a long prism. One of our cuts sh॰ws this ma-
chine at work. Mixed with a quantity of water, the material from the pug mill is intreduced inte a large tank containing a grinding apparatus. After grinding, the material is run off inte a large tank, run of inte a large tank,
and is then passed through and is then passed through
belting cloths, termed by

the workman the＂lawn．＂It is finally passed through

 a filtering press．As a majority of pottery articles are circular in sec－ tion，the turning process in one form or another enters largely inte the manufacture．One of our illustrations shows a thrower making a vase on the historic pot ter＇s wheel．This apparatus is a horizontal table kept in rapid rotation．The mass of clay for the article is weighed out，is placed on the center of the table，and by the fingers of the workman is rapidly brought te the required shape．This is almost pure handwork but in another phase of operations special shaping tools are used，as shown in the cuts，representing
 shown as applied to plates．A mould representing the contour of the one side of the plate is laid upon the table and on it the clay is placed．The workman，or
＂batterer，＂then brings down upon the clay an ap－ preximate mould of the other side of the plate and passes the partly shaped article to the＂jollier．＂The latter places it on a potter＇s wheel，a profile mould or scraper is brought down upen it as it rotates，which shapes the surface to the exact contour required．The cut is self－explanatory．
Another phase of the shaping process is shown in the cut representing＂turning，＂where the clay is turned off on a species of lathe．The operation of ＂pressing，＂another phase of the system，is alse shown in one of the cuts as applied to the manufacture of pitchers Here sectional moulds are employed，in which the object is made in three or more pieces． The workman then rolls a lump of clay between the palms of his hands se as te form it inte a cylinderand， laying this along the joints，brings the moulds to－ gether to form the completed article．Another very ingenious way of formingarticles of complicated shape is the casting process．It should be said in advance that plaster of Paris is used universally for the moulds． This substance being very absorbent，the surface moisture is removed from the clay by capillarity，and this action is especially invoked in the casting process． The moulds for a pitcher corresponding to its exterior surface are placed together and held by a strap．The workman uses a mixture of clay and water of the con－ sistency of cream．After thoroughly mixing it，he pours it inte the mould；as the latter absorbs the moisture from the clay a film is seon formed which thickens gradually，and when the workman finds the －peration is complete，the surplus material is poured －ut of the mould，leaving in it the proper thickness of clay dried by capillarity，of the precise shape of the interior，reproducing every detail．
The articles have now to be filed，and kiln placing is thenext \bullet peration．The articles a re put in proper recep－ tacles called saggers，and are stacked up in the kiln， which is a dome－like receptacle connected with which is a furnace．When the kiln is full it is closed and the furnace is started，and for a number of hours，the period depending upon the geods to be produced，the firing is continued．When cold，the ware is removed from the furnace，and is then termed biscuit ware．
Before the glazing is applied all rough pieces are re－ moved from the goods by an operation termed＂fet－ tling．＂Each piece is carefully inspected and smeother． $\bullet v e r$ if required．It is at this stage that it may be ornamented in relief．This is done by an India rubber bag syringe．The bag is open at one end and has a nozzle at the other．It is filled with mixed clay and water of proper censistency，and the workman ejects it by squeezing upen the surface of the object，pre－ ducing various designs，as shown in one of the illus－ trations．
The glazing process comes next in order．The glaze consists of a special glass pulverized to the utmost degree of ineness，and mixe with water to a cream like consistency．The articles are dipped inte this are put inte a glazing kiln in saggers and are heated are put into a glazing kiln in saggers and are heated
until the glaze enters inte a perfect fusion．After cooling，they are removed and are complete，unless they have to be decorated．
Decoration consists in painting or imprinting de signs upen the glazed surface with special paints．
After the decorating，the article is again fired，se as to fuse the paints inte the enamel，and the article is finished．

The Knowles Works have been selected by our special artist，owing to the fact that they are the largest works of the kind in the United States．

They have 19 regular kilns in operation，in addi tion to 12 decorating kilns，which，with other kilns， bring up the total te 93 kilns．Over 700 empleyes ar occupied at the works．

Preserving the color of Flowers

The following methed of preserving the colors \bullet dried Howers，applicable to even the most delicat poppies，has been discovered by Herr Nienhaus．Am monia in the air is the main cause of flowers losing their tints；se Herr Nienhaus presses his specimens between paper which has been previously saturated wity a solution of one per cent of oxalic acid in water．

sriontific 合merian．

MUNN \＆CO．．Editors and Proprietor published weekly at

 No．： 3 G1 BROADWAY，NEW YORK．O．D．MUNN
A．E．BEACH．

TERMS FOR THE SCIENTIFIC AMELICAN One copy，one year，for the U．S．，Canada or Mexico．．．
One copy，six months，for the U．S．，Canada or Mexico．
One copy，one year，to any fore igncountry belonging to Postal．．．．．．．．．
Remion． Remit by postal or express money order．，or by bank draft or check．
MUNN $\& C \bullet$ ．， 611 Brosewas，corner of

Export EAtion of

The eafest way to remit is by postal order，express moues order
It

Readers are specially requested to notify the p failure，delay，or irregularity in receipt of papers．

NEW YORK．SATURDAY，MARCH 30， 1895.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

No． 1004

For the Week Ending March 30， 1895.
Price 10 cents．For sale by all newsdealers．
GRICULTURE．－Molasses Utilization in Cattle Feeding
Safo Cultivation

 V．CHEMISTRY，－－Acetylene for Gas Purposes．－An important
paper on the new process of making acet ylene from calcium car－
 mortant subject，ace companied by tab
Lie Preparation of titmus solution．
Liquefaction ot Oxven．

WL ECTRICITY．－－Oil Tank Fired by Lightning－A reproduction

I．GEOLOG F．－Fossil Land Surfaces of the silarinn．By W．R．

VIII．MISCELLANEEUS．－The Inquisition in Mexico．－First in．${ }_{\text {stallmeut of an interesting bistorical paper．．．．．．．．．．．．．．．．．．．．．．}}^{168}$
 Francts h．Herrick．．
 Corors．－2illustrations．． 1005 II．＇TRAVEL AND EXPLQRATION．－Interesting Discoveries in
Arrica．－An account of Lieut．Von Gotzen＇s expedition across

the electric transmission of energy．
The complexion of the world and the phases of our existence，© \quad ing te the astonishingly rapid pregress in the arts，are undergoing grave changes．The crude animal powers are heing put aside in favor of mechani－ cal ones．A few years aro ferryboats were propelled cal \quad nes．A few years ano ferryboats were propelled號 as com．Teday hers pøems．Te－day a herse beat，as they were called would appear as much of an anomaly and as archai as a horse car will te our descendants．The intreduc tion of the trolley has almost abolished what was per－ haps the greatest single field for the employment of horses．And lately man has found that he can，on a bicycle，propel himself far better than any horse can The bicycle is possible simply because of the mechani cal perfection of the machine．

Coal is now the great source of pewer．A ton \bullet col represents eight or ten thousand man power h七urs，and perhaps ©ver ©ne thセusand horse pewer heurs．It can be preduced for se small a price that in the regions of its preduction it is the smallest ele－ ment in the expense of pewer production．Ther would be little choice in the Pennsylvania coal region between a steam plant or a water power plant for the preduction of pewer．But given the pewer，the ex pense only begins．The turbine or steam engine is the first step that costs；the subsequent enes involving the distribution of the pewer require the expenditur of møney for their maintenance．Shafting and dis tribution apparatus in general have to be kept up belting wears out，lubricating material has to be used buildings must be kept in repair，and the labor and material charge for all this counts up rapidly
The phenomenal success of the trolley system of lectric railroads is due to the electrical distribution of pewer，and \bullet nly incidentally to any cheapening in its original production．It is perfectly true that steam can be produced more cheaply in large than in small units，but the soul of the trolley system is in the trolley wire．A mechanical substitute for it，and the only one in extensive use to－day，is the cable in its subway con luit．The contrast in simplicity between the twe and in the requisite capitalization is most striking．It is fair to say that electricity depends for its greatest －perations on its adaptability te simplify distribution of pewer．
This being the field of electricity＇s triumphs，and a field as yet imperfectly explored，it would appear that it would give great scope to experiment and inven tion．＇Jhe dyname builder prides himself on turning out a generator of ninety－eight per cent efficiency．The electricmotor has its efficiency tested just as rigor ously．But how much do we hear of the efficiency of the transmission processes？An immense quantity of pewer is lost between station generators and car me tors on all trolley lines and between the station and consumers in electric lighting systems．The price of copper is so high that a balance has to be struck be tween the interest charge on conductors and the los incurred by different sizes，in order to determine h•o large or how small the conductors should be．The problem is made more tantalizing by the fact that with a high enough potential small wires could trans mit a comparatively great power，while the great dan ger of high potentials prohibits their use in most cases．

Accordingly the process of producing pewer in sta－ tions by the best steam plant and of there converting \mid mechanical energy inte electric energy with scarcely any loss gees \bullet n，and is coincident with the transmis sion of power over a circuit of resistance high enough t－destroy the original econ•my，which，at the same time，is a circuit of high original cost and high interest charge Te reduce this cest the rails are used as a re turn，and a branch circuiting of the current follows，in some cases to the injury of neighboring water mains and gas pipes．
In nearly all cases of electric distribution，although the conductors may be insulated，there is inevitable waste and a balancing of interest account on the origi nal cost of conductors against the absolute waste o power．There is obviously a chance for some of the 4 greatest improvements yet effected in the electrical science in the development of a radically new，or a least radically impreved，system of delivering electrical energy to the distant motor or lamp．

$\rightarrow++\quad$ Test

An interesting test of the new Krag－Jorgensen rifle has been made recently at the United States engineer ground at Willets Point．In order te determine the penetrative power of the gun a number of pine board were fastened together till a thickness of fifty inche was obtained．Two of the shots fired at this target at short range passed entirely through it and none of the bullets fired penetrated less than three feet．The same test tried with eak planks alse gave highly gratifying results，the penetration in this case being thirty－twe inches Iron plates twe thirds of an inch thick were alse pierced．A very curious result was ebtained by firing a bullet at a series of thin iren plates placed an inch apart．The bullet was found to pass through one 042 plate after another till it melted．

