THE MANUFACTURE OF BURGLAR PROOF VAULTS. ${ }^{\text {I }}$ ime assigned has expired, it is impossible to open the The manufacture of burglar proof vaults has, like safe.
many other industries, emerged from the stone into These vaults are often very large. In this city the the steel age. In earlier times the stone and brick walled vault was considered safe. To-day the improved appliances of the burglar can onls be resisted six inches by fort bs steel. In the present issue we illustrate some of nine feet high. Nearly 400 tons of steel are used in the processes of the manufacture of burglar proof vaults, of which several very fine examples have recently been erected in this city and Boston. The walls of the vault proper are built of composite plates formed of alternate layers of soft steel or iron and of the hardest steel. In the cut, Fig. 2, the section of a plate is shown. This is a five-ply plate, with two steel layers and three iron ones. While various dimensions may be chosen, these plates are dimensions are generally used of one-half inch thickness, except the outside one, which is one inch thick. The
walls are built up of such plates, laid so as to walls are built up of such plates, laid so as to
break joints, and screwed together with flatheaded top bolts. Even the bolts are made of the same cowposite metal, twisted around. The small cut shows one of these bolts with the side cut away so as to show the steel embedded in the iron and twisted helix fashion.
When the plates are received their edges are planed and they are drilled and tapped for the
screw bolts. Each bolt goes through one plate, its head entering a countersunk hole and lying fiush with the plate and screwing into a tapped hole in the next plate. The drilling we show as executed by the Moffet steam drill. A small rotary steam engine is mounted over the drill and steam is conveyed to it by a hose. As it turns it works the drill by gearing. In Fig. 3 is shown a workman drilling one of the plates. The outside plate has blind holes only, none going through it, and these holes are all tapped. In the building the first layer of plates is bolted to it, the next laser to them, and so on until any desired thick ness is obtained.
The entire vault is built up in the factory, every plate having its own place. Next the whole is dismantled and the plates are hardened by heating to rednessand immersion in water. We have already (see Scientific American, July 21, 1894) illustrated this process as carried out at the Cornell Iron Works. The plates are heated on the water edge and immersed in the river.

This often entails warping, and accordingly many of the plates have to be rolled cold to straighten them and some have to be polished off to a flat surface with an emery polisher, shown in Fig. 4. The workman cuts down any high portions of the plate until it is adapted to bed well against its neighbor. The edges have of ten to be ground off, the emery wheel buffer shown in Fig. 6 being employed.

The doors are built up in exactly the same manner Their joints or edges are of very complicated cross section to preven wedging, as shown in Fig. 1. Here thre tongues are shown en tering grooves in the tering grooves in th jamb to afford addition al protection agains yielding to lateral wedg ing. These joints have to be constructed with great exactness, and the surfaces are all hand filed and polished. The fit alone makes them aluost air tiyht, and list packing is also em list packing is also em ployed 5 is of the great doors mounted in its vestibule; while the process of hand filing the edges is also shown.

Doors fitted as described make it impossible for the burglar to introduce gas, or a liquid, or finely divided explosive for blowing up the safe
The inner face of the door has much of the machinery of the locks exposed. OVer it is bolted a cover of heavy plateglass. In the cuts Figs. 5 and 7 the bolts for this cover are shown for this coveraresh the interior of a finished door in the cut
As a single door may weigh frown. ball-bearing hinges are employed to enable a man to close and open it. Time locks are used, which are set at uight to run a given number of hours. Until the
may be fitted up in any desired way. They may con tain a quantity of smaller safes subdivided in any desired way. Electric light may be used for lighting and as an adjunct to safety. A steam pipe may be arranged over the doors outside the vault by means of which a volume of steam may be discharged in a case wich a to even approach the vault. All these appli ances may be seen in the National Safe Deposit Company's vault already alluded to, and which was constructed by J. B. \& J. M. Cornell, of this city. In it are embodied all the features of construction described here.

A gas engine for small power.

The usefulness and desirability of small mo tors is generally admitted, but the disproportionate cost of such motors has been an obsta cle to their more general introduction. Many mechanics and amateurs have constructed small motors of various kinds with greater or less success, but when they have attempted to design and construct a gas engine (which is undoubtedls one of the best of small motors), they have generally failed, because it is no simple matter to design a successful gas engine. It is only after a long and expensive serie of experiments that success in this line is attained.

SAFE DOOR AND PROTECTIVE CAGE OF RAILS.
its construction. It has two entrances, the doors of which are controlled as regards opening by three clocks on each one. All the clocks are kept running, and any one is sufficient to release the time locks on its own door. Thus if five clocks out of the six were to break down, the locks on one of the doors would still be released when the appointed time came.
A further protection is sometimes given to the vaults by a species of cage made of special section railroad iron, which is built up around the steel structure. Our cut on this page shows this element in its si relation to the rest of the
structure. The rails are structure. The rails are closely nested, and when in with Portland cement.

The general arrangement of the vaults involves heir exposure on all sides to the watchman's patrol No part must be against a wall, as this would give burglars a chance to penetrate through the wall and work in concealment upon the sides of the vault. But even if a burglar were given free scope, it is doubtful

Messrs. A. F. Weed \& Company, of 106 and 108 Liberty Street, New York City, have perfected a mall gas engine of about one-guarter horse power weighing 70 pounds, and occupying a floor space of 5 by 13 inches, and offer for sale not only the engines but the castings of all the parts and all materials and drawings necessary for building a complete working engine, so that any machinist or wideawake amateu can with little expense and a not very large amoun of labor make the engine for his own use.
The engine will meet the requirements of those needing a light power. It is instantly started, and is simple nd manageable
The Weed gas engine belongs to the class of engines gniting at constant volume with previous compres sion.
The working cycle is divided into four parts, in which the engine makes two revolutions. During the firs complete revolution of the engine, the cylinder acts as an air pump.
As the piston moves forward, gas and air of the re quired mixture are admitted through the automatic nlet valve. When the piston has reached the for ward end of the cylinder, the inlet valve closes, and as the piston returns to the back end of the cylinder, the charge of gas and air is compressed to about one-third its original volume.
At the beginning of the second revolution, the com pressed charge of gas and air is ignited by an electric spark, which causes the explosion and forces the piston for ward until it reaches the front end of the cylinder, at which time the exhaust valve is opened, and during the return stroke the burned gases are discharged through the exhaust pipe.

This engine is what amateur mechanic have long looked for.

To Preserve Colors in

 The discoloration many flowers upon dry. ing may be attributed to the presence in the atmospherè of ammo nia. To counteract its injurious action Nien haus (Schweiz. Wochen f. Chem. u. Phar.) has hit upon the idea of pressing his plants between paper previously saturated with a 1 per cent oxalic acid solution and dried. In thi manner he has obtained most beautiful speci mens of dried flowers of papaverrhoas, one of the most difficult flow This idea dificult flow tions, do much in the way of perforating the com- ers to preserve unchanged. This idea may possibly pound plates. The hard steel is almost undrillable, \quad be extended. and if sledging or ramming were resorted to, while the hard metal might crack, it would remain so firmly bedded between the layers of soft steel that it would still resist the drill. The interior of these large vaultsOver seven thousand men it is said have been sheltered at one time beneath the branches of one banyan tree.

a WeEkly Journal of practical information, art, science, mechanics, chemistry, and manufactures.

	NEW YORK, NOVEMBER 17. 1894.	Werkit.

