the training of zebras.

Some time ago, there appeared in the Revue des Sciences Naturelles Appliquees a note upon the training of zebras, and which read as follows: "An attempt has several times been made, with more orless success, to tame adult zebras. A merchant of the Transvaal, a short time ago, bought eight of these animals, still young, that had been lassooed two months previously. At the end of a couple of months, two of them had been thoroughly broken in as draught animals. In their gait was combined both strength and sureness." This note was signed "S.," and was immediately followed by these few lines added by the editor: "It is not without interest to recall that the training of the Burchell zebra (Zebra Burchelli) has been accomplished at the Jardin Zoologique d'Acclimatation. These zebras did the hauling work of the zoological establishment of the Bois de Boulogne for several consecutive years, and worked daily in the interior service."
By what means is the zebra trained? It would be interesting to make some researches into this subject and that is the object of the present article

We shall say in the first place that there are zebras and zebras. In fact, there are three species of zebras, which are principally distinguished by their coat and which are somewhat different in character. All three belong to Southern Africa.
The zebras, says Brehm, stand midway, by their carriage, between the horse and the ass. They have a thickset body, a strong neck, the head of both the horse and the ass, quite long and wide ears, a straight mane, with hair that is not so coarse and thick as that mane, with hair that is not so coarse and thick as that
of the horse and not so soft and flexible as that of the ass. Their tail is tufted at the extremity and their hoofs are oval in front and rectangular behind. The coat of all the species known is in great part striped.
The zebra properly so-called (Hippotigris zebra) has the entire body striped, inclusive of the legs. It lives in the mountains of Southern and Eastern Africa, from the Cape as far as to Abyssinia
The dauw (H. Burchelli) has a strongly striped head and body, but the legs are uniformly white. It lives upon the plains of Southern Africa and ascends to the steppes comprised between the tenth and twelfth degree of north latitude.
The quagga (\mathbf{H}. quaccha) is the species of which the coat is least striped. The rump, thighs, belly and legs are not striped, and it is the species that most nearly approaches the horse. It inhabits the plains of Southern Africa, but does not ascend so far toward the north as the dauw.
The zebra properly so called is the one that possesses the most intractable disposition, and the one that has long been considered as untamable. The museum of Paris, nevertheless, once owned a female of this species that had been captured when young. and that had belonged to the governor of the Cape. It was very gentle and allowed itself to be approached, led and mounted.

According to Brehm, the quagga is the species that allows itself to be tamed most easily. At the Cape, says he, it is often seen in company with draught horses, and in England Sheriff Parkins had a pair that could be harnessed to a small carriage : yet Cuvier speaks of a quagga that was owned by the museum and that remained wild and untamable.
The dauw also is easily tamed, and the young born in captivity can especially be trained without much difficulty.

It is usually a question of this when we speak of trained zebras.
The processes employed for training zebras are the same as those in use for horses, and the experiments made at the Jardin d'Acclimatation have demonstrated that gentle methods succeed better than harsh ones and than the true breaking-in process. This was shown by Mr. Saint-Yves Menard, then sub-superintendent of the Jardin d'Acclimatation, in a commu nication upon the subject made to the Societe d'Acclimatation in April, 1874.
The effort was first made to familiarize the dauws by treating them as horses, and not as menagerie animals that are fed and then left to themselves Halters were carefully put upon the animals, and then they were tied in stalls alongside of one another and separated by simple partitions.
The idea afterward occurred to interpose horses be
tween the zebras, and, by putting to profit the in stinct of imitation that all the equidæ possess, one succeeded in grooming them, as they had seen the operation performed upon horses without the lat ter offering any resistance; and it is undeniable, as Mr Menard says, that an animal scarcely tamed gradually assumes confidence at the approach of man when sees its neighbor reassured.
The dauws thus showed themselves more familiar every day. They were so calm that no stable accident occurred, and allowed themselves to be groomed regularly, with the brush and currycomb. After these results were obtained they were set at liberty now and then upon a lawn surrounded with a wire fence, and quickly learned to know the way to it and how to eturn to their stalls.
Nothing further was done for five months. It was but little in appearance, says Mr. Menard, but it was much for us who could appreciate the daily progress of familiarization, and who know all the importance of it. A few premature experiments in harnessing taught us, moreover, that training ought not to be begun before their complete taming. On the con trary, the sequel demonstrated to us that, this first result obtained, each dauw in turn very readily submitted to training. Gentleness and patience were powerful means, while force and brutality could only retard us.
Six months after the arrival of the dauws, it was considered possible to begin experiments in harnessing. and for this purpose two females that seemed to be the most gentle were selected. They had already been prepared for it by being harnessed up in the sta been prepared for it by being harnessed up in the st

A few months later on, and always by the same means, one succeeded promptly in getting useful work out of the three subjects, which finally took rank with the best animals of service in the Jardin d'Acclima tation. They were harnessed to the dirt cart and were employed regularly every day in hauling eart and manure into the interior of the garden, and they even drew heavy loads from the Batignolles Station provided they were always harnessed and driven by the same gentle and patient men.
It became likewise easy to shoe them by means of the trave, a well-known apparatus of farriers and vet erinary surgeons, and very useful in the shoeing of or operating upon vicious horses.
Thus, it may be said that it is quite easy to train the zebra through gentleness. It is possible to suc eed in harnessing them two and three abreast (see figure), but no other means gives the same results, and this fact was proved at the time that the dauws ander consideration were trained at the Jardin d'Ac climatation.
A very skillful horse trainer, Mr. C., proposed to Mr. Geoffroy Saint Hilaire to take three of the zebras in question and put them in harness and train them His services were accepted without the directors of the garden giving up their own experiments; and three animals were confided to him in January, 1873. He was to receive a fixed amount upon the day that he should drive two dauws harnessed to a break, on a sustained trot, without a stop or gallop, from the Jardin d'Acclimatation to Place de la Concorde, and then fter a rest, from Place de la Concorde to the Jardin It never became necessary to pay him the a ward but the experiment was none the less interesting and permitted of comparing the means employed at the gar den with opposite ones. Mr_{r} c. had received the dauw in good condition, well fed vigorous and incompletely tamed. In order to submi them to training immediate y, he had to fight them. In stead of inspiring confidence he made himself feared. Act ing by means of contention he had recourse to weaken ing by diet or insufficien food.
With a two-wheeled cart he wade prisoners two dauws in hree shafts and then thre dauws in four shafts, so that one of the animals desiring to struggle or free himself was held by the others. More over, he drove them brutally in speaking to them in a severe tone and whipping them vigorously.
Briefly, at the end of four months and a half he had ob tained but a mediocre result. After attempting to harnes two of the animals to the break, he gave up the idea of btaining his award, and re turned to the garden thrc

ZEBRAS HARNESSED THREE ABREAST

addle, a collar and then a bridle, and afterward to eceiving a complete double draught harness. They made a resistance at first by leaps and sudden mo ions, and tried to bite when the bridle was put upon them, but thanks to the vicinage of the horses, the were triumphed over.
Once accustomed to the wearing of harness, they were led out into the garden one by one with the harness upon their back. What was curious was that t was difficult even for two men to hold them by the unge. They had not yet complete confidence, while their ordinary keeper could easily, by himself alone, hold them in check in making them walk before him. He soon walked them in this way in pairs, and accus omed them to walk side by side as in double harness, to feel the bit and to allow themselves to be driven.
Nothing was simpler afterward than to complete the arnessing. A light break was wheeled up behind the animals, and by directing the pole with caution it wa possible to fix the traces, etc. This was not very well done in the first place, but the thing became easy fter the animals had got accustomed to the two or three assistants employed. It necessitated flat straps to prevent plunging. but nothing more, for plunging was the sole opposition offered bs the animals, which were neither restive nor timorous, and which pulled quite regularly.
One turn of the garden was made at first, and after ward two, three and more circuits. Then one went into the alleys of the Bois de Boulogne, intn the Ave nue Neuilly crowded with carriages, and finally into he streets of Paris. After several exercises in walk ing, the zebras were put to the trot. Finally, at the end of three months' training, they made a trip from the garden to Place de la Concorde on a trot.
fatigued, impoverished animals, less familiar perhaps and not in a state to be utilized. It took one of them more than eight months to regain its normal plump

However, Mr. C. had shown to what point man can submit dauws to his influence He had conquered the animals rather than tamed them, but it is none the less true that at the end of four days he had been able to present one of them led by the bridle. He had even submitted these animals to exercises at liberty in a iding school.
It must be remarked, says Mr. Menard, after the ac count of the training that has just been read, that in such a case influence ceases with the man who has ex ercised it and is not transmitted. When the Jardin d'Acclimatation took back the animals that had been intrusted to Mr. C. it required some time to familiarize them anew with their guardian.
On the contrary, these same animals, treated with rentleness, readily allow of the substitution of one driver for another, as those trained at the garden with kindness have proved.
Thus, then, upon the whole, the basis of the train ing of wild animals, as well as of domestic ones, i gentleness combined with patience and, of course firmness.-La Nature.

A Curious Potato.

A correspondent from Somerset, Pa., Mr. W. M Schrock, sends us a specimen of a last year's garne potato, which, having sprouted, potatoes grew on the parent potato. On each side of the original potato are slits, from which protrude the new growths. On re moving one of these other potatoes, others are seen in the heart of the original.

Photographing the moon at Lick Observatory.
The great telescope of the Lick Observatory is no ny a powerful instrument for seeing the heavap ing them. The object-glass is three feet in aperture and it was, until very recently the largest in existence A supplementary lens, thirty-three inches in diameter is provided, which can be attached to the telescope just in front of the thirty-six inch lens. When it is so atrached, the combination becomes a great photographic camera-the largest in the world-which is especially suited to do certain classes of work. One of the things which it is particularly well fitted to do is to photograph the moon, and for the past few years considerable time has been devoted to making negatives of the moon during the course of a lunation-from new to full moon. As the shadows on the moon change materially during a few hours, it has been necessary to make a set of such pictures every hour or so, and the whole series gives a very perfect representation of the lunar topography as it is now. By comparing these photographs with others previously made (Rutherfurd, Draper, De la Rue), and more especially with photographs which will be made in the future, it will be easy to detect any important changes which occur in the lunar surface. It is certain such changes must occur, since gravity is constantly working on the moon, as on the earth, to pull down existing structures; and it is to the study of changes that we have to look for a more intimate knowledge of lunar conditions. An accurate plastic representation of the moon's surface is a prerequisite for such a study, and it will be seen that the photographs of the Lick Observatory, when properly examined, afford every desired datum. Most of the photographs made by prenot precise accuracy. The enlargements from our negatives meet every want, and enable us to construct a satisfactory diameter. One inch on such a map corresponds to about seventeen miles, or one seventeenth of an inch to one mile. A map of California on this scale would be about forty-one inches long.
The original negatives made in the focus of the large telescope are a little over five inches in diameter. ally when copied as transparencies on glass. Everything that the telescope will show is contained in these originals, but the scale is still so small that minor feaoriginals, but the scale is still so small that minor fea
tures cannot be distinguished. A mile on the moon is
only a few thousandths of an inch on the negative, for example. Hence they must be enlarged to be of use.
Without enlargement they are of small scientitic value Without enlargement they are of small scientiic value Obr. Ed
October.

A Now System of Medical Treatment.
We all know what homeopathy and allopathy and hydropathy are, but probably few know what the new "pathy," isopathy, is. The word is applied to the medical treatment of diseases of the several organs of the body by the corresponding organs, or preferably extracts of them, of animals. Thus diseases of the brain would be treated by an extract of the healthy brain of an animal, such as an ox; diseases of the spinal cord by an extract of the spinal cord of some animal, and diseases of the heart by an extract of the heart of an animal. While the system is comparatively new to modern scientists, it actually is "as old as the hills." Two thousand years ago it was hinted at by Hippocrates, was mentioned by medical writers in the middle ages and was described at length fifty yearsago by German physician named Hermann. The system died out and attracted little or no notice until about two years since, when it was revived by Dr. Williau A. Hammond, a celebrated physician of Washington, D., Surgeon-General of the United States Army. By the spinal cord, etc., for a year or more, by processes that have been fully described in medical journals, principles contained in these organs, but in an inert form, are extracted and modified in a manner similar to that effected within the human body.
These principles are rendered practically indestructible by time. Dr. Hammond says that organic beings possess the power of assimilating from the nutritious matters which they absorb the peculiar pabulum which each organ demands for its development and sustenance. The human body, as well as the body of any ani mal, makes no mistake in such selection. The brain absorbs such principles as are necessary to sustain its strength; so do the heart, the liver, the muscles, etc. In certain diseased conditions these organs lose the power of selecting the principles which they need, and sickness and sometimes death ensues. The object of the administering of all medicines is to hold disease in check while nature effects a cure. Medicines in themselves cannot cure. Nature alone can do this. The other "schools" essentially in the manner in which the
requiring them: The established schools introducethe medieines generally through the stomach, thus requiring more or less time for their active principles to be assimilated with the organs affected. In isopathy the remedies are brought into immediate contact and assimilation with the organ, without being required to pass through the digestive system. This is the main ifference, though there also is a difference in the haracter of the materia medica. It is by the direct injection into the blood of the peculiar matter that an organ requires that isopathists hope to do away with the performance of many vital processes which now are accomplished only by the expenditure of a greater or less amount of vital force.
As an illustration, suppose a person to be suffering from an exhausted brain brought on by overwork. No matter how judiciously the patient attemptsto live up to the rules of health, the condition continues. If the concentrated extract of the brain of a healthy animal be injected into the blood of the patient, the pabulum which the organ requires is at once supplied. This rule is applicable to every other organ. Just what success will attend the workings of the new system is conjectural. It is claimed that as far as it has been tried it has been followed by a surprising amount of success. The new system, if it eventually prove to be as great a surcess as at present indicated, will not interfere with the established schools of medicine. It will be an aid to all and may be adopted by the homeopath and the allopath alike without the abandonment of any of the fundamental principles so dear to the adherents of the different schools.-Troy (N. Y.) Press.

Penny-in-the-slot Gas Meter.

This is a gas meter in which automatic vending me chanism is used, so that a user of gas may purchase a certain amount of gas by simply placing a coin in a receiver, which is so connected to the meter as to allow a certain number of feet of gas to be used for a given amount. For instance, the apparatus is arranged to receive silver quarter dollars, and is so connected to the meter mechanism that, if the gas is selling at $\$ 1.25$ a thousand cubic feet, the mechanism would be so timed that upon the insertion of the quar ter dollar, 200 feet of gas could be used before the mechanism of the meter would be stopped; five quarters can be fed into the apparatus, so that $\$ 1.25$ worth of gas, or 1,000 feet, can be paid for at one time. By this means a person can pay for gas in small installments, rather than wait until the sum accumulates.

recently patented inventions.

Railway Appliances.
Refrigerator Car.-Charles S. Hardy, San Diego, Cal This invention provides means for supporting ice, the devices being adapted to fold out
of the way in the car when not in use. The ice box is formed of folding hinged members, a drain guard below the box swinging into and out of position for use. The parts fold and unfold in a simple and secure manner, and
provision is made to prevent the drippings troin soiling provision is made to prevent the drippings from soiling
the contents of the car, and to avoid the clogging of the drain pipe, while the whole apparatus is designed topro mote economy in the use of ice.
Switch.-Charles L. Lincoln, Brooklyn, N. Y. To hold the switch point or rail steadily in and easy manner, is the switch rail is also so arranged, im reference to the car track, that it will lie normally in closed position, and when opened by mechanism on the car will be automati cally shifted back by contact with the car wheels. The
switch rail has a rearwardly extending ribbed tail piece and a contact block is held to slide at right angles to on and a contact block is held to slide at right angles to on tween the contact block and the tail piece whereby th
pressing out of the block actuates the tail piece an moves the switch rail.
Switch Working Mechanism.-This is a further patent of the same inventor, for a mechanism may be opened or closed at will by turving a crank an operating a treadle on a moving car. Beneath the car platform are vertically swinging levers carrying shifting
devices, pivoted hangers supporting the levers and a devices, pivoted hangers supporting the levers and a
cross bar connecting the hangers, while on the icar is mounted a crank shaft having operative connection with the cross bar.

Car Fender.-William L. Shockley, forward end of the car and the car platform, and is normally supported so as to pass freely over any ordinary obstruction on the track, but it may be instantly release and caused to spring downward into close contact with
the track, even though the car is running very fast. The the track, even though the car is running very fast. The
fender itself is a sort of flat, skeleton scoop, having side fender itself is a sort of fat, skeleton scoop, having side
straps, and the mechanism by means of which it is held pensive character, readily operated from the car plat

Car Brake.-John C. Miner, Smyrna, Neb. This invention dispenses with the use of brake
beams, and provides a simple mechanism for setting the brakes quickly and firmly against the wheels, while at the same time track brakes are forced down upon the
rails to slightly lift the truck and prevent the wheel rails to slightly lift the truck and prevent the wheels
from sllding. Vertically movable racks, operated by a lever and gear mechanism, are carried by the car truck
and brake shoes carried by a portion of the racks engag the car wheels, while a second set of brake shoes carried
by the other racks are adapted to engage the track rails.

Ther
iill Legraph Key and Sounder. extremely simple and efficient instrument in which th ey is pivoted on a threaded stud whose lower end screw to the base to which are attached the sounder and above, and below which are nuts, a spring resting on the lower nut and pressing the under surface of the key.
F
R

Friction Brake.-Bergen Davis Newark, N. J. This device consists of a magnetized rum with a periphery composed of pole pieces separated
from one another by a diamagnetic material, electromagnets connected with the pole pieces having consecu-
tive pole pieces of opposite polarity, while a metallic strap or shoe is held for attraction to and frictional en agement with the drum. The amount of braking
effect, from a gentle friction up to locking the wheels controlled by a rheostat on the platform of the car.
Conduit for Electric Railways. Michelangelo Cattori, Rome, Italy. Combined with coris a rotatable circuit closer having a surface partly of in sulating and partly of conducting material, with station ary contact pieces adapted for continuous sliding contac with the surface of the circuit closer, the contact pieces and the insulating and conducting portions of the circuit loser being so arranged that the adjacent sections of one onductor are connected when the corresponding sectio ree of safety is thus assured and sparking is avoided while one or both rails of an existing track may be utiized as conductors.

Agricultural.

Disk Cultivator.-Andrew L. Brock, ith hart, Tex. This machine may be used with or without supporting wheels, and in operation cuts stalke tantially cup-shaped, and turn in brackets or hanger each disk frame carrying a disk cultivator at each end he disks being adjusably connected with their frame pay be set in any desired position to throw the dirt to rom the rows, and may be carried close together farther apart to regulate the width of the strip to be cal tivated.

Miscellaneous

Raising Sunken Vessels.-Edward M. Arnold, Pawtucket, R. I. According to this invenion a vessel employing the improvement has a shor hain cable firmly attached to it about amidship, ther tached to the button is a coil of rope at the end of which is a float or buoy, the latter rising to
de vessel sinks and indicating the locality. A specially which the buoy is attached, the grapple sliding over and
engaging the button, when the hawser, to which th
grapple is attached, may be drawn upon and a firm con nection established with the sunken vessel, to be after

Crevasse Closer.-Mathias A. Laska, New Orleans, La For closing breaks in dams, etc., thi
invention provides for the pivotal connection of an arm with one of the posts already driven into the ground, and for its detachable connection with one of the posta to driven, the arm being adapted to carry the post down into the water and hold and guide it into position, permitting of properly driving the post from above. A skel ton frame is also provided to pass between adjacent posts, cross bars projecting at the ends to rest on th
front faces of the posts to hold the frame in place. Pump.-Charles Rumley, Helena, Mont. This is an improvement on a formerly patented pump of simple construction, but with a valve of less surface motion, and a spurcut-off, which, in connection with the valve, absolutely prevents leakage. There is no intricate mechanism in the pump to become clogged, so that it may be used to pump water filled with mud, sand,
etc., and it may be worked in either direction, its ports being used alternately as suctiou or discharge ports, ac cording to the movement of the pump piston.
Pump Valve.-Truckson S. La France, Imira, N. Y. To prevent the valve packing from being forced into the throat of the port is the main object of tion especially designed for the valves of steam fire en inie pumps. The valre seat has an outer bearing and central bearing on which is a pad or cushion, and fitte to the outer bearing is the valve proper, underdwhich is a supporting plate arranged to abut against the cushion
of the central bearing when the valve is closed, the supof the central bearing when the valve is closed, the sup-
porting plate being formed to nearly fill the port or valve space whenthe valve is closed. The packing or valve proper 18 thus relieved of pressure, and a thinuer o
weaker rubber may be employed without danger of ite

eaking down.

Latch and Lock.-John MacLach an, West Hoboken, N. J. A tubular cese, consisting of wo semi-cylindrical sections, receives and supports in working condition the improved latching and locking evices designed by this inventor, in very compact, simpre, and cheap form, quickly applicable to any door o noderate thickness, the improvement affordmg an excelalone, if this is preferred. A lock of this kind may be Grate.-Lee R. Andrews, Bath Beach N. Y. This grate consists of a series of revoluble cylinof the bars, which are connected by gear whe shafts each other. A perforated hood is removably held on having dovetail parts engaging grooves in the bearing of the shafts to lock the latter in place on the strips. T
improvement gives the operator complete control of t
burning fuel, permitting of conveniently raking it and
WIRE SUPPORT FOR BEDS OR SEATS. ustav Dominick, Cologne, Germany. This inventio provides, within a suitable frame, two series of springs unning crosswise of each other and essentially parallel ing fastened to the frame at both ends, while the springs of the other series are secured at one end only, the other ends being guided in eyes formed preferably by twisting the springs of the first series into coils. The springs of the two series supplement each other in their action, each serier yielding to a certain extent, and a mattress made of springs so arraged sialding to the slightest
Clean ing Machine.-William Hebb, Cambridge, $\mathbf{V t}$. This is a machine especially designe or cleaning pails, tubs and similar vessels. It has a
platform with standards in which vertically moves a slide adapted to be raised and lowered to move the brushes into and out of the pail or other vessel to be arm, by which, through a bevel gear connection, the heads carrying the brushes are revolved. The vessel to
be cleaned is locked in position by a clamping and cen. be cleaned is lo
tering device.
Chocolate Dipper. - Cyprien oousset, New York City. This is a device to be used them the desired exterior coating. It consists of to open rame crosed by parallel wires, a series of cups formed of serpentine or zigzag wires crossing the frame and
resting at their upward bends upon the cross wires, while a second series of serpentine zigzag wires at right
angles to the first series have their downward bends angles to the first series have their downward bends
crossing the downward bends of the first series. It is crossing the downward bends of the irst series. It is
adapted to carry a large quantity of cream drops and adapted to carry a large quantity of cream drops and
hold them so they cannot be displaced until perfectly

Food Screen.-John H. Rhoads and Gustave H. Spannagel, Nokomis, IIl. This is a cheap and simple screen to be placed upon a table to cover the
food and all else on the table. The screen frame which holds up the screen may be easily knocked down and snugly packed. It consists of a horizontal base frame, open at one end, arched bars pivotally connected therewith, and a longitudinal rod connecting the arched bars t the top of the arch, locking bars securing the frame in
Teething Ring.-Martin L. Metzger, New York City. This invention provides for the con uection of an unbroken ring with a rubber nipple in a simple and inexpensive manner, whereby the ring will
be very durable. The stem is bent upon itself to form two opposing members, a transverse aperture in the opposing members are sprung apart and the ring forced
$\underset{\text { Montreal, Canada. This package is preferably triangu- }}{\text { Claman }}$

