seats, screw chairs, and other seata supported on a ver-
tically adjustable serew spindle. It is a spring attachticaly a jastable screw spidie. it is a spring a thach-
ment, which, hen the spindle is torned down, acto as a
bracing sleeve to strengthen and sustain the spinde, bracing sleeve to strengthen and sustain the spindle, loosen and slightly torn back the spindle after it has been turned forcibly down.
Banjo.-Charles E. Dobson, New York City. In the head of this instrument the rim is beveled on its inner side at both edges, and tubular rings reet
against the bevels, with their outer sides Iush with the gainst the bevels, with their outer sides 1ush with the outer face of the rim and their opposite faces beyond the
upper and lower edpes of the rim. The device is depper and lower eles or the The. The device is desame time strengthen the upper and lower portions of the rim of the bead without adding unduly to the weight.
Insect Trap.-Allen Y. Smith, Eddy, New Mexico. This trap is of pyramidal shape, with
smooth funnel-shaped entrance at the top, and wire smooth funnel-shaped entrance at the top, and wire gauze sides and ends, with removable sliding bottom. It
is more eapecially designed to trap roaches, affording is more especially designed to trap roaches, aff
them an easy entrance but preventing their escape.
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date send name of
of this paper.

NEW BOOKS AND POBLICATIONS

The Practical Electroplater. By don : Emile Brunor. 1894. Price $\$ 10$. This work has the advantage over several other volume published in the same line in being largely the result of many of the processes described being here for the firs time given to the public. In Paris, as well as in this
country, the author addresed himself to mastering al the details of electroplating as exemplifed in the workshoprather than as theoretically set forth. It is, there-
fore, a book for practical men, giving some two hundred articles and formulas for solations, describing proces for gilding with and without a battery, for oxidizing, fire gilding, etc.

SCIENTIFIC AMERICAN

BUILDINGEDITION

FEBRUARY, 1894.-(No. 100.)

table of CONTENTS.

1. Elegant plate in colors showing a suburban dwelling at Plainfield, N. J., erected at a cost of 84,800 com
plete. Floor plans and perspective elevation. plete. Floor plans and perspective elevation. ${ }^{\text {A }}$
tasteful deeign. Mesers. Roseite $\&$ Wright, archi tecte, New York.
2. Plate in colors showing an elegant residence at Pelham Manor, N. Y. Perspective view and floor
plans. Estimated cost $\$ 7,000$ complete. An excelleṇt deaign.
3. The Jamaica ClubHouse, recently erected at Jamaica N. Y. Perspective views and floor plans, also a Hans \& Oborne, architects, Brooklyn, N. Y.
4. A beautiful residence at Portcheater, N. Y., recently erected for A. V. Whiteman, Esq. Perspective
and floor plass. Mr. Frank W. Beall, architect, New York.
5. Engravings and floor plans of a suburban residence erected at Ashbourne, Pa, at a coost of $\$ 4,800$ com-
plete. An attractive deign. Harrison Allbright, Esq., architect, Philadelphia, Pa
6. A suburban dwelling recently erected at Edgewater Ill., at a cost of $\$ 10,216$. Floor plans and perspec
ive elevation. Mr. F. ive elevation. Mr. F. B. Townsend, architect Chicago.
7. A colonial cottage at Buena Park, ml., recently completed for Guy Magee, Esq. Floor plans and per spective elvil.
8. A modern half-timbered cottage at Wyncote, Pa...
erected at a cost of $\$ 4,250$ complete. Floor plans and perspective elevation. Mr. A. S. Wade, Phila and perspective elevatect.
delphia, Pa., architect.
9. A modern colonial residence at Oak Lane, Pa., erect and floor plans. Mr. F. R. Watson, of Philade phia, Pa., architect. An attractive design.
10. The residence of Rev. Samuel Scovilie at Stamfor Conn., erected at a cost of $\$ 6,616$. Mr. W. W.
Kent, architect, New York. An excellent deeign.
11. Examples of interior decoration and furniture in the Moorish style.
12. A Queen Anne dwelling at Jenkintown, Pa , recently completed at a cost of $\$ 5,000$. M
Dolhenty, Wyncote, Pa., architects.
13. Miscellaneous Contents: The growth of plants in odd places.-Acoustics in buildings.-Improved steam power brick machine, ill stamped ceiling, illustrated.-The telether
strater mometer or distant temperature indicator.-The improved Thatcher furnace, illustrated.-Improved
sash chains and fixtures, illustrated.-An improved sash chains and fxtures, mustrated.-An improved
sliding door latch, illustrated.-Aluminite in cement plaster.-Fire losses of 1893.-Graphit
paint.-The Columbian sash and door lock, illus trated.-An improved sash lift, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about 25 cents. Forty large quarto page, equal to about
two hundred ordinary book pages; forming, practically, a large and splendid Magazine of Architec-
ture, richly adorned with elegant plates in colors and TURE, richly adorned with elegant plates in colors and
with fine engravings, illustrating the most intereating with fine engravings, illustrating the most interesting
examplea of Modern Architectural Construction and examples of
anied subjects.
The Fullness, Richness, Cheapness, and Convenience argest Circulatio of any Architectural Publication in the worla. SRo
all newedealers. MUNN \& CO., PUBLIsBREs

Musiness and Wersonal.

fe chargef for Insertion under this nead is one Dolara a lin

 inements must t e received at pubbication office as early asThursaday morning to appear in the following weeks
issul
"U. S." metal polish. Indiaanapoiis Samples free. Air compressors for evry posible duty. Clayton A
Compressor Works, 28 Cortlandt street. New York. The Improved Hydrault Jacks, Punches, and Tube I. Duageon, 24 Columbia St., New Yort Nickel-in-slot machines perfected and manufactured Screw machines, mllling machines, and drill presses he Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps for paper and pulp mills. Irrigating
and sand pumping plants. Jrvin Van Wie, Syracuse, N. Y. Carborundum - bardest abrasive known. Send for
rices of wheels, powder, etc, The Carborundum Co. onongahela. Pa .
Emerson, Smith \& Co., Ltd., Beaver Falls, Pa., wiH
end Sawyer's Hand Book on Circulars and Band Saws ee to any address.
Split Pulleys at Low prices, and of same strength and ppearance as Whole Pulleys. Yocom \& Son's Shafting Thebestbook for electricians and beginners in elec tricity is "Experimental Science," by Geo. M. Hopkins. Patent Electric Vise. What is claimed, is time saving. No torning of handle to bring Jaws to the work, simply one Y .
Competent persons who desire afencies for a new popular book, of ready sale, with handsome proft, may
apply to Munn \& Co., Sclentific American offce. 361 roadway, New York
CF Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co.. 361 Broadway.

Mogless Ruturies

HINTS TO CORRESPONDENTS.
Vames and Address must accompany all letters,
or no attention will be paid thereto. This is for our
information information and not for publication.
infis is or our
geren enes to former aricles or auswers should
give date of paper and page or number of question. give date of paper and page or number of queetion.
rinuirien ot anserres
be repeated ; correeppondents will bear in mind that some answers require not a little reesearch, a
though we endeavor to reply to all either by let
or in this department. each must tale his tur
Bu yers wishing to purchaee any article not advertised
in our coulumis will be furrighed with addresees of
houses manufacturing or carrying the same houses manufacturing or carrying the same.
special \mathbf{W} ritten In ormation on matters of
personal rather than general interest cannot be
 Minerals sentfor examination should be distinctly
marked or labeled. (5801) F. W. G. asks : 1. In tin plating on or steel by immersion in melted meta, what mate rials are used as a flux and what as the bath after they
have been dipped A. Our Sopplement, Nos. 92,130 , 349 , gives notes on the tinning process. 2. To what reor use as sigal magnets of an elene one-half mile length, and what size of wire is best suited for winding hem ? A. The smaller the resistance and larger the wire the better. It is a practical question. 3. How many ells of Leclanche battery at each end of line will be re is used with return wire? A. Three or four 4 How many cells where No. 18 copper wire is used, and how ie this determined? A. Threeor four. All depends on the bell, how strong a spring it has and what current is needed to ring it. , We recommend for your perusal the
following works, which we can supply. Allsop's "Elec ricBell Fitting." $\$ 1.25$; same, " Electric Bell Construc ion," 81.25 ; and Bottone's "Electric Bells and Al (5802) A. M. T. asks : 1. What is gained by winding 750 feet, or 300 of No. 12double-cov-
ered wire, on an armature 6 inches long 9 inches in diameer, with an iron core $13 / 2$ inch thick? What will be the difference of the revolutions with the same fleld in each
case? A. If you refer to a motor, the more torns of wire ou put on the armature, the lower will its maximum The winding must There is no absolute gain or loss each case. Ronghly speaking the rotations will vary inversely with the length of wire. 2. Will you please
state the outside diameter of Nos. 12 and 14 double-covered magnetic wire? A. The wires are 80 and 64 mils in diameter respectively. For covering allow five mils (5803) C. E. C. H. says : 1. Please inform me as to the best form of reservoir to hold about 60,000
gallons, to be built on the surface of the earth, of brick and cement. How thick would the walls have to be to stand the pressure without fear of rupture, and what is
the best form of outlet? A. The reservoir should have a dia best form of outlet? A. The reservoir should have Brick is not desirable for reservoir walls, on account of its porous nature, and good hydraulic cement being ex pensive in Southern California, we recommend earth
banks 12 feet high, 8 feet wide at top with banks sloping on inside 45°, outside 30°, making the bank at the bot tom level not less than 32 feet wide. A 2 foot puddle wall of good clay and sand should be carried vertically
on the line of the inner edge of the top, commencing in trench at 3 feet below the bottom of the reservoir. entire bottom and inner slope of the sides All pudde should be well worked and rammed. The pipe should be
laid below the bottom and rifing through the puddleand
well packed throughout with clay puddle. Valve outaide \mid welght mas be lessened, as it will become cavernous and
of reservoir. 2. How much hay (weight) will of reservoir. 2. How much hay (weight) willa loft floor may fall on the roof of the cold room and do damage. bear 16 feet acrose and 30 feet in length, resting on 2×8 Otherwise the ice house may be used as usoal in disposing
joists 1 foot 9 inchees appart? A. The floor will carty 44/: of the ice, but in such a way as to leave the cold room inons of hay evenly distributed with eafety.
(5804) C. O. M. askshow to make a small furnace suitable for melting from 10 to 25 pounds of cast
iron; what to use to prodnce sufflient blast. A. The scompanying figores will give a very good idea of small cupola for melting iron. Fig. 1 being a perspec

vew and Fig. 2 a section of the cupola. The bod is made of heavy sheet iron, lined with frebrick, and
provided with trunnions by which it is supported on cross bars in a frame composed of two iron plates about wo feet square, separated by four $41 / 2$ foot columns of hing gas pipe, the whole being fastened togetwer by four the columns. The upper plate has a large opening and a flange or collar for receiving the base of the chimney The cupola has openings on opposite sides to receiv the blast nozzles or tuyeres, and a tap hole in front. It should be about 3 feet high, and 14 inches interna
diameter. The base of the chimney should have a door diameter. The base of the chimney should have a door
through which to charge the cupola. The blast may be supplied with a large bellows, but a small fan blowe will answer much better. For the quantity of iron men-
(58C5) J J W wo
(58 CL 5) J. J. W. writes: Is it the practice pass as the needle now points, or do they make the ne cessary allowance for the deviation from the true north ter, which course is to be taken? What is the presen correction for Warren County, N. Y. 9 Has it variedma terially in ten years? How is the deviation ascertained? A. Surveys of land should have the comses designated stated at the date of the survey in the deed and marked on the plot. The old surveyors were sometimes careless on this point or did not know the deviation of the com pass at the time. If the declination is not stated in the iuference is that the compass courses are meant. a resurvey this should be tried, by running the line with a corrected compass declination equivalent to the difference of declination from the date of the deed to
the present time, and by tbis means try to find some the present time, and by tbis means try to find some adjoining survey lines. The present declination fo Warren County, N. Y., is $12_{15^{\circ}}{ }^{\circ}$ west. In 1884 it was 1112° west, the increase being nearly $1_{10} 1^{\circ}$ per annum
The deviation is ascertained by observing Polaris when on the meridian, or at its eastern or western elongation. The method is illustrated and explained at length Gillisple's Surveying," by Staley, $\$ 3.50$ by mail
(5806) E. J. McC. asks : How would you on tork to figure long and 4 inches diameter flled water or oil, if the piston is forced in by a screw of 11 inch diameter and 8 threads per inch? The screw is driven by a pulley of 4 inches diameter on which a rope is coiled with a 150 pound weight attached to the end. A. The rule is to multiply the power by the circumference of the screw and divide by the pitch, for the total pressure. The the screw multiplied by pulley divided by the radius of sure divided by the area of the piston in square inches is ure per square inch. As in your case the $2 \mathrm{mch}=3.2 \times 150 \quad$ pounds $=480 \quad$ pounds. Then $\frac{480 \times 3^{\cdot 92}}{1 / 8}=\begin{aligned} & 15052 \cdot 6 \text { pounds } \\ & 12 \cdot 5 \text { sq. inches }\end{aligned} .204$ pounds per square inch pressure
piston.
(5807) E. P. asks : 1. Is steam visible not, what is it that is seen coming from an engine A. No. The white cloud is water in the vesicular con-
dition, or forming minute globules. 2 . Where is the fallacy in the following " proof"?

Suppose $a=b$
then $a^{2}=b^{2}$
then $a^{2}=b^{2}$
and $a^{2}=a b$
nd (taking $b^{\mathbf{2}}$ from
both members)
actoring, $(a+b)(a-b)=b(a-b)$
dividing by $(a-b)$
dividing by ($a-b$) and $a+b=b$

$2 a=a$ $2=1$

. The fallacy is in treating $(a-b)$ as a real quantity hen it is really 0 . You might just as well say
$000 \times 0=1 \times 0$, and then dividing by 0 , we find $1000=1$. (5808) R. W. M. asks whether it would be advisable m building an ice house and cold storage, if by buildinglarge, say 2,000 tons capacity, have cold storage under and use the ice from above daily for delivery Our advice on this subject will be thankfully receive A. The building of a cold storage room in or under an house is practicable,with only the precaution to make the ceiling strongenough to bear the weight of ice above, and all parts water-tight by planking and calking or with a keep the drippings of the ice ont of the cord room. A drain around the outside of the cold mom, with a connection to the ground to take away the water from the melting ice next to the cold room. The first fice sold
of the ice, but in such a way as to leave the cold room in-
(5809) E. E. F. asks : 1. When will the
tar Myra be visible 9 A. Myra (o Ceti) varies from 1.7 to 5 magnitude. Its period is $3311 /$ days, minimum magnitude about 231 days, when it begins to righten, reaching its greatest magnitude in about 30 ays, remaining brightest one week, then receding to ite
ninimum magnitude in about 60 days. It is visible to toe naked eye about 45 days. We have no record of its date of maximum brightness. 2. I have a constant flow of water that would flll a two inch pipe, with a fall of about 100 feet in 400 . Now, woald a pipe of say $21 / 8$ or 3 inches ismeter of that length (400 feet) be large enough to supply a Pelton wheel of about $11 / 8$ or 2 horse power? Also ize of wheel, number of buckets, and size of nozzle, also ou have resumed the monthly recond of the planets in ou have resumed the monthly record of the planets in
our valuable paper. A. The amount of water that will ill a 2 inch pipe is not a measure of water flow. If you an measure 60 gallons per minute at the ipringyon may realize about 1 horse power, with a 12 inch wheel, $1 / 2$ inch (5810) A. H. S. asks : 1 . How many cells of storage battery are required to run a one horse power lectric motor? A. It depends on the size of the cells. welve cells 35 ampere cells give it. 2. Can they be uired? Supposing the storage batteries can be charged y gravity batteries, how long time will be required? The motor I woald run is wound for 110 volts incandeseries for each storage cell, and put-half gravity cells le in parallel. Thus a one or two tundred cell gravity battery would be required to charge a small storage batery. But for your motor you would need 56 storage ells, and to charge these several thousand gravity batteries might be used; gravity battery charging is only a plicable to small storage cells. 3. Where can I obtain a heap practical book treating of storage batteries, their Sanomon's ""Electric Light Installations and the ManSalomon's ".Electric Light Installation
(5811) F. B. asks: 1. How can I find ut if there is too much iron in a certain distilled water or good effecte in all ordinary photographic procesees? What is the approximate resistance, voltage, and am perage of a cell composed of a shallow copper an 1 foot square $\times 1 / 4$ inch high and zinc 1 foot square, zinc separated from copper by felt pad three-sixteenths inch thick, saturated with water and sulphate of copper, sulphate pulverized and in excess. A. The voltage would be about 1 volt. The resistance might be a few han. dredths of an ohm at starting, bnt the cell would very quickly polarize in use from exhanstion of the solution and poor diffusion. 3. What is the smallest carbon, lowillumination to equal a good oillight in an optical lanhumination to equal a good oil light in an optical lan
for short distance, 5 to 8 feet circles. A. See the Scientific American, vol. 70, No. 3, page 33. Twenty or thirty volts and three or four amperes would be as ood as an oil lamp, but still very unsatisfactcry.
(5812) G. A. writes : 1. How can I con ert the dynamodescribed in No. 600, Scientific AnerriCAN SUPPlementr, into a motor 9 A. No change is ne-
cessary-wind shunt and connect wires to suit the voltage tyou-wind shunt and connect wires to suit to voltage . How can I make the same smanler, say 16 horse power using No. 18 magnet wire on armature and 16 on feld magnet ? A. Make about nine-tenths its present dimen sons. 3. How many storage cells and what size will give
me $1 / 2 /$ horse power in said motor, the cells to be charged with 6 or 8 gravity battery? A. Allow five 35 ampere storage cells for $1 / 2$ horse power. The recharging with gravity cells is not practicable. A minimon of 13 gravity cells is needed to charge, and these would be ex-
tremely slow. To ran as a motor with five storage battery cells, substitute No. 8 wire for the wire given in
the
(5813) J. B. A. asks : 1. Let me know a imple and efficient storage battery to be used in connecion with a two horse power motor to run a 27 foot by 6 ome of storage batteries. See our SUPFLEMENT, No 845. Fortwo horse power you must have about 1,50 watts; allow 4 amperes per square foot of positive plate Also please let me tof cells on the voltage require. battery, to be used for the same purpose. A. For a plunge battery see our SUPPLERENT, No. 792. The size for a steam launch will be prohibitive. 3. Also, what size propeller and propeller shaft could I use on a 27 foo by 6 foot launch, to give the best resulta A. Use a 24
inch propeller, 11/2 inch shaft. 4. Could I maintain a inch propeller, $11 / 2$ inch shaft. 4. Could I maintain a
speed of about 10 miles an hour with a two horse powe motor and propersize propeller 9 If not, what would be the best speed I could mainta
(5814) C. L. K. asks: 1. How many watts per candle power are required in themost economi cal incandescent lamp? Does it vary much in practice durability of the lamp. It varies from this to 3 watte . Is the number of volts and amperes required t heat the carbon fiber to incandescence determined empirically or theoretically, and how determined? A. It can be calculated, but the data for calculation determin on experiment. Practically speaking, it is determined empirically. 3. What books would give A. Slosis "Aithe 1 Also Dloane's "Arithmetic of Electricity," $\$ 1$ by mai
(5815) C. J. M. writes : 1. Does a common copper and zinc and blue vitriol battery require an induction coilf or the purpose of doing electrotyping on a
small scale? A. No. The induction coil would prevent the proper action. 2 What is the beat metal to bat the proper action. 2. What is the best metal to hav determine the direction the current runs? A. There is
current test with two electrodes in the bath. 3. Is a single
cell battery sufficient to do electrotyping at all ? A. Yes. cell battery sufficient to do electrotyping at all? A. Yes. metals in the battery? A. There is no fixed ratio. See SUPPLEMENT, No. 310, for details of electro-plating.
(5816) C. R. H. writes: I have a six candle power lamp which I would like to light for four
hours each evening. 1. What kind of batteries should I nse and how many? A. Use a secondary battery of 5 or 6 ase and how many? A. Use a secondary battery of 5 or in
cells. 2. Would large size plunge battery described in "Experimental Science" do, or would it have to be re plenished too often? A. It would require replenishing too frequently. 3. How long would plunge battery of same pattern ran simple electric motor described in
(5817) C. F. M. asks (1) how to make a spark coil? A. Make a bandle of pieces of iron wire, he whole owe-half inch thick and eight inches long. Wind it with No. 22 wire to a total diameter of two aches. 2. How many batteries sal ammoniac will it take
(5818) M. asks: Is there any way of communicating by the voice between places 250 foe string telephone such as I have seen boys use answer for the purpose? And if so, how are they made? Will lear between the transmitters? A An acoustic tele phone can be used. Picture wire is good for the line, and for receiver and transmit er use parchment drum heads o whose center the wire is attached. The wire must touch no inflexible object. Lea it by loops of muslin
(5819) B. M. C. asks: 1. Is it true that the Bell telephone patent runs out January 30? A. See the Scien tific Amrilcan, February 3. 1894. 2. Is the Burnleydry battery suitable for running the Blake transmitter? A. Yes. 3. Is it any better or any cheaper to maintain than the Disque Leclanche battery? A. The cost or the parpose. 4. Would one cell of either battery or the parpose. 4. Would one cell of either batter Yes. 5. Is a cipher called a figure? A. According to ecent authority, the cipher 0 is not a figure.
(5820) J. A. B. asks: Does electricity ravel on the surface of a wire, through the center of it The current intensity for given conditions varies directly with the cross section of the wire. The best illustration with the cross section of the wire. The best inlustration
of the action of the wire is to assnme that it opens a path through the ether, a path in which there is no restitutive
medium for wave formation. As the transfer ot electric medium for wave formation. As the transfer of electric energy involves no transfer of matter, and as electricity is not matter, we cannot directly answer your query
The best theory of the transfer of energy assumes that the ether sorrounding the wire does the work. Electricity (5821) C. G. W. asks : Is a copper wire woven (flexible) cable as good a conductor of electric cur rent as a solid wire A. Very nearly as good, if of the
same argregate cross sectional ares. The bending of
the wires would tend to increase the specifc resistance of the copper.
(5822) H. asks : I wish to know if the tor between conductors carrying high power and the meta supporta for the same. Cannot nee covered wire, and the insulator must be flexible. If belting will not do, can you name an article of moderate cost that will answer the conditions? A. Rubber belting will be a very good insulator, especially if shellacked to prevent
the accumulation of hygroscopic moisture. 2. What is the width of slot in cable subway? Is it sufficiently wide to allow the grip to be taken out at any point? A
About $3 / 4$ inch, not enough to permit the grip to be re moved.
(5823) G. L. H. asks : At what meridian does the day begin A. The meridian at which the da which place longitude or navigation is reckoned. The day meridian is an ocean line from just west of Behring Strait, pasaing east of New Zealand to the southern continent.
(5824) H. W. asks: What is the difficnity of the underground system of electric car traction?
A. In securing good insulation. Water, dirt, ice, and snow work into the conduit and occasion great loss of
(5825) S. H. asks : Is there any method of determining the voltage of a magneto-electric battery? or ©imilar apparatus depending on the expansion of a metal by the heat produced by the current. The curren
is alternating and the voltage varies from zero upward.
(5826) T. R. asks bow to construct a dry battery. A. For dry batteries we refer you to our Sup plemesnt, Nos. 157, 767, and to the scientific Amer
(5827) E. S. S. asks: 1. When I heat my soldering iron with natural gas through a Bunsen borner, a deposit is left by the flame, which of course ha to be scraped off before the iron is used, causing grea vent this deposit and still use gas? A. We can only suggest that you try a regular solderer's gas furnace or use brass tube kept hot by the flame and place the iron in it It may be very thin and fit the iron closely. If sur rounded by fire brick, giving about an inch space, you will get better heat. 2. What are the principal reasons that the electric cars cannot be supplied with current
from below mistead of from the overhead wire? A. Leakage of corrent owing to grounding caused by water dirt, and condensed moisture. s. What is the mai point preventing economical use of the storage car sys
tem? A. The batteries are too heavy. 4. I have heard that in the hnman body there is some chemical that is worth nearly four hundred dollars an ounce. Can you tell meits name and the reason it cannot be extracted from a corpse? A. The metal calcium is quoted at $\$ 310$ an ounce. This is present in the cheapest materials
also. 5. When two trolley cars are fed by the same wire also. 5. When two trolley cars are fed by the same wire
and are both bet ween the same feeders, why does not the
current all gc through the car nearest the power house ?
A. This would be contrary to the law of branch circuits. The current follows all possible paths and is distributed in proportion to their respective resistances. 6. What the reason that the block system on railroads is not mor extensively used? A. It is very expensive. 7. I hav the dynamo described in Supplement, No. 161. With the H armature I get scarcely enough current to ring a dynamo, if properly the voltage and amperage of tha stated? Would a drum or laminated armature give any better result? A. It should give sixor eight volts, and a our Supplement, No. 599. 8. Does not the number of ohms resistance of a piece of wire increase as thepressure
and amount of current is increased ? A. No. Your ninth query admits of no answer.
(5828) H. L. asks : 1. How many cells Edison-Lalande battery, phonograph motor type, would be required to rum the motor described in Supplem int,
No. 759 ? A. Twenty cells should give good results. o. 759? A. Twenty cells should give good results.
would 2. How many hours will it run with one charging? A. It ives 300 ampere hours. Dividing by 6 gives 50 houra How coupled ? A. Couple according to the resistanc the motor, which is determined by the winding. How many and what size cells of storage battery will
take? A. Three or four 35 ampere cells. 5. How many and what size cells Crowfoot battery to charge the same? The motor to be nsed say 5 to 8 hours, and balance of time to be'spent in charging. A. Eight in series and forty in paralel would charge 3 cells. 6. Which will be the least expensive to maintain, counting only the cost of things considered, the Lalande-Edison battery would be the best and cheapest. 7. Have you a description of a storage battery that I could make myself? A. For a de-
scription of a storage battery see our SUPPLEmENT, Nos. 838 and 845 . The diagram of connections you send is all right.
(5829) H. B. writes: Are there sufficlently correct surveys of Florida to enable you to deterTampa or not? Could a heater for a forty gallon water boiler be successfully constructedand operated from a 500 volt sireet railway current, and who could furnish such a heater? In a steam dry kiln for drying brick, at what intervals should a fan be capable of having removed or
removing the cubic contents of the moist atmosphere in removing the cubic contents of the moist atmosphere in
the kiln, or at what periods should it be removed in order the kiln, or at what periods should it be removed in order
to insure a proper state of atmosphere? Has colonizaion or missionary efforts done more for civilization Is cuniary remuneration? Would a ball fired directly up. ward go a greater distance from the muzzle of the gun (on account of decreasing resistance of atmosphere, etc.) artesian wells in the southern part of Florida, but from he well known slope of the water-bearing strata of Che Cretaceous period, on the Atlantic border from New Jersey to Florida and along the Gulf and its of Mexico out to the deep sea border, there can be but ittle doubt as to the flow of artesian wells up to or ear the surface in all the northern and cencral parts of Florida. It may require considerable depth at Tampa, probably over 2,000 feet, to obtain a large quantity at a ear surface flow, with also a possibility of a mineral characteristic, arising from its great distance from the ource of supply, which are th 3 uplands of Georgia. An lectric heater can be made for the purpose described,
ut would be very expensive in cost of plant ing. They are now used on a small scale by the Elec-
ing. ric Heater Company, Havemeyer building, N. Y. The noist air in a drying kiln for brick should not be re moved until the brick are thoroughly heated, so as to arive the moisture from the inside befgre the outside becomes dry enough to crack. The ventilation may hen proceed to a degree not to lessen the temperare until there is no more evaporation or moisture arising from the brick. Fan blowers are not needed
where natural draught for ventilation can be had. termittent ventilation as named is liable to make suriself the fre and poor brick. Colonization fer exceptions pecuniary gain has been the essential aim. A ball fired from a gun will rise higher on the vertical than at
(5830) Y. says : What is the compositains that they get from hanging on damp walls, and what length of time are the engravings left in the bath? A. Ozone can be used for removing mildew and othe
tains from engravings that have been injured by hang. ng on the walls of damp rooms. The engravi g should zone may be generated by putting pieces of clean phosphorus in the bottom of the vessel partially covered with water, or by passing electric sparks through the air in the vessel. Keep the engravings exposed to the ozone
${ }_{\text {(5831) }}$ L. T. asks : 1. Are the stars commonly called second magnitude those between magni-
tudes 1 and 2 , between $1 \cdot 5$ and 2.5 , or between 2 and 3 ? tudes 1 and 2 , between $1 \cdot 5$ and $2 \cdot 5$, or between 2 and 3 ?
A. The magnitudes of stars as generally designated are that all above $11 / 2$ are designated as of first magnitude, oo on. Astronomers now designate the magnitudes by oo on. Astronomers now designate the magnitudes by
differences of one-renth of a magnitude. 2 Suppose a person to be moving away from the earth at a speed
aster than light travels. A says that to see the earth he must be looking toward it, \mathbf{B} claims that he must be racing away from it. Which is right? If B is right, oould he not see an mverted view of it, as if reffected rom a mi ror? A. A person moving a way from a ligh ither dine 3 In light wout see no light in system, if all the ra iators but one are shut off, will that one become hotter, or does the circulation of the wate and consequent heat of the radiator depend only upon the rapidity with which the latter is cooled? A. The shutting off of all but one radiator would slightly in crease the tempe ature of the water in the circulating ra
diator, due to the saving of heat ra iated by the closed radiatora

INDEX OF INVENTIONS
For which Letters Patent of the nited States were Granted

February 13, 1894,

and EACH BeARING THAT DAT

일․ 이․

and

den
+awna

