
a Weekly journal of practical information, art, science, mechanics, chemistry, and manufactures.

A CITY UNDER ONE ROOF-THE MASONIC TEMPLE. ${ }^{\prime}$ and State Streets, in the heart of Chicago. It is con- the foot on the clay is produced. The building is of The World's Columbian Exhibition may justly be structed of granite, marble, steel and terra cotta as steel frame type, a method of construction now genersaid to have commemorated the quadricentennial of the principal materials of construction, and is fireproof ally followed in large buildings.

America, not only by the exhibition of the arts and throughout. From street level to apex it measures industries of the globe, as brought together in the three hundred and two feet; this in absolute height White city by the Lakes, not only by the lovely archi- of structure, not in the mere elevation of a lantern surtecture and land- and water-scape there created, but mounting a dome. For one of the peculiar features of by the city of Chicago proper, the worthy exponent the building is its plainness and uniformity of design, of American progress and growth, the typical Ameri- the wain features being repeated story after story can metropolis. Of all the buildings of our Western sister Chicago, none is more remarkable than the Masonic Temple, a structure which, in its functions, dimensions and construction, is one of the unique buildings of the world. In spite of its name, it is proudly claimed to be the "highest commercial building in the world." In it we find exemplified the union of Freemasonry and commerce, a four and one-half million dollar building supplying beautiful halls and parlors for Masonic rites, as well as an unequalể collection of business offices.
The building is situated on the corner of Randolph

The floor loads are sustained by steel columns; all of the building above the fourth floor is carried by steel columns, except for six piers, which are self-sustaining and support no additional load. Even the great arch in front has but a small load, a t wenty five ton girder running across it at the fourth floor level. Tension bracing, consisting of heavy steel rods, extends in two systems from top to bottom of the building in the direction of least width. The vertical columns are two stories in height, and alternate columns break joints. The general dimensions are one hundred and seventy feet front and one hundred and thirteen feet depth. It is the front which appears in our illustration. The entrance is beneath a granite arch forty feet high and thirty-eight feet wide, and opens into a great rotunda, lined with Italian marble, and opening upward, through twenty stories. Ornamental iron staircases lead up from either side. Back of this great

Masonle Temple.
Ferris Wheel.
court is a sort of semicircle of elevators arranged like lights in a bay window. There are fourteen of these, lining an arc fifty feet deep and of seventy feet chord. The court is seventy feet each way, square in front and semicircular in the rear, the rear lines being determined by the elevator fronts.
The elevator plant is one of the features. Of the fourteen passenger elevators, seven are for express service only, not stopping below the tenth floor. The others stop at any floor desired. Owing to the great height of the building, the weight of the steel suspension cables became a serious problem, and was dealt with by counterweight chains attached to the bottom of each elevator and drawn up by it. These prevent any irregularity in the weight to be raised, due to difference of elevation, which, otherwise, would have been very great. The elevators run at a speed of nearly nine miles an hour, and ascend 258 feet. Allowing continuous ten hour service for each, their aggregate travel in one year would be over 123,000 miles. Thirty seconds is ample time for the full ascent. There are also two freight elevators. The wire ropes of the elevators aggregate sixteen miles in length.
The rotunda is surmounted by a glass roof 302 feet above its mosaic floor. The windows and balconies of the twenty stories open upon this shaft. The twenty-first story is properly the roof. It is a roof garden, and is devoted to purposes of observation, and may be used for commemorative or festival occasions. It forms a great platform, inclosed by walls and ceiling of glass, with oak panels, steam heated, and capable of accommodating 2,000 people at one time. It is the highest point of observation in the city, and gives grand views in all directions.
Around the rotunda galleriesare carried for the first ten stories. Shops open on these galleries, with show windows, exactly as in a street. The stories from eleventh to sixteenth inclusive are for offices; the remainder are for Masonic uses. The general features of the court and balconies include mo saic floors, marble soffits or under surface of the balconies, alabaster-cased columns, bronze-finished hand rails and metal work, and marble-lined walls.
The water supply plant comprises pumps with a combined capacity of 2,000 to 3,800 gallons per minute. The pumping machinery circulates each day, if reck oned in gallons passed through the pipes, enough water to fill a reservoir 240 feet long, 100 feet wide and 50 feet deep. The roof tanks alone provide storage for 7,000 gallons. The ceilar has still larger tanks of 18,500 gallons capacity.

Wrought iron pipes with screw joints are used for water supply and for sewage, all taking vertical courses and placed in special pipe chambers or pockets. Part of the drainage goes directly to the sewers; part is delivered to a tank in the basement, whence it is forced by steam ejector into the sewers.

For heating about 40,000 square feet of steam radiator surface on the overhead system is provided, and a sixteen inch steam pipe is used for their supply.
The electric light plant includes some 7,00016 c. p. incandescent lamps, operated by six 1,000 lamp dynamos, the latter driven by high speed engines. Two sets of lectric mains are carried through the building, all cross connected and of large size, to prevent any danger from heating. It is estimated that there are 53 miles of electric wires, and the weight of the rest of the electric plant has been put at 50 tons.
To allow for settling, the building wasstarted a little above the proper street level. The settling was so ac curately calculated that it is now at the proper level.

Our illustration is designed to show the great size of the building. On the right of the cut is seen the great Ferris wheel, 265 feet high, next comes the Capitol at Washington, 288 feet high, the Statue of Liberty in New York harbor, $301 \frac{1}{4}$ feet from waier level to the torch, then Trinity Church spire, 284 feet high, and then the Masonic Temple. To bring it within every day comparisons we show adjoining it a typical New York City fireproof, first-class office building, and next to that, on the extreme left, a four-story "brownstone front." It will be seen that the mammoth pile dwarfs everything shown.

The silk-Spinning spider.

The silk spider of Madagascar forms the subject of an interesting article in Die Natur, by Dr. Karl Muller. Its native name is Halabe, meaning great spider. This Halabe, or Nephila Madagascariensis, spins threads of a golden color and strong enough, according to Maindron, to hang a cork helmet by. The female spider may attain a length of 15 cm ., while the male does not exceed 3 cm . A single female individual, at the breeding season, gave M. Camboue, a French missionary, some $3,000 \mathrm{~m}$. of a fine silken thread during a period of about 27 days. The thread was examined with a view to creating a new industry. Specimens tested at a temperature of $17^{\circ} \mathrm{C}$. showed an elongation of 12.48 per cent under a weight of 3.27 gr . Small textures woven of these threads are actually used by the natives for fastening flowers on sunshades and for other purposes.

Surutitic American.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
No. 361 BROADWAY, NEW YORK.
o. d. munn.
A. E. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

The scientific American supplement

Building Edition.

NEW YORK, SATURDAY, FEBRUARY 10, 1894.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT NO. 945.

on on beings are constantly moving, resting first Gene and then on the other in search of relief. witerally, they can sit down, but horses cannot do so the themselves. For generation after generation, we have kept on yoking horses by methods that compel them, in the shafts of a four-wheeled wagon, to rest their entire weight on their feet. It is not realized that a horse exerts from ten to a hundred times more force and expends that much wore energy in transporting himself from place to place than in hauling a two ton load on fairly good roads. The horse is compelled, absolutely unnecessarily, to exert himself under conditions such as no engineer in the world would for a moment think of applying to the steam horse, under which to waste its energies and knock itself to pieces in practically no time.

The result of Mr. Brigg's investigations is that, having ascertained the fundamental and economic principles involved in the haulage of vehicles, and the transportation of living or inanimate matter, he has devised a special contrivance applicable to all kinds of four-wheeled vehicles or sleighs, which he clains will, at all times, automatically afford the horse all will, at all times, autoruatically afford the horse all traveling on smooth, level roads, up hill or down, with a heavy or a light load, he cannot fail to receive a direct advantage from the very momer t he is attached to the moment he is detached. The relief is afforded while he is walking, running or even standing. The percussion on his feet is reduced at every stride during the day. His muscles are less strained, his

