

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

SOME NOTABLE LOCOMOTIVES,

If, aside from the architectural display, the World's Columbian Exposition at Chicago was more notable for any one thing than another, the distinction lay in exhibits that mark progress in various arts, especially the mechanic arts. It is difficult to realize the advancement made in anything without a comparison of the new with the old, and as an opportunity for such comparison is seldom presented, the masses are apt to remain in ignorance.

The Columbian Exposition afforded an exceptional opportunity for studying everything relating to progress, but nowhere was improvement more noticeable than in the transportation exhibits, and especially and the latest, with all the intermediate stages. We

> The performance of the Washington and of the
Lafayette, in America, led to an order for a similar Lafayette, in America, led to an order for a similar and it climbed the incline with comparative ease. So feet life, was a druggist in Baltimore, and becoming acquainted with Col. S. H. Long, when the latter was associated with the surveys for the B. \& O. road, the two subsequently entered into a copartnership to build locomotives. Long shortly afterward withdrew, and , grate surface, 23 feet 7 inches; heating surface Norris built the Philadelphia, sent it to England, 1, fre box, 122 square feet; heating surface in tubes, successful was its work that five additional engines were weight weight of engine in working order, 90,400 pounds; at once ordered, and the entire system of theration tender 60,400 pounds ; tolal of the incline changed. The demand in Europe for and tender ready for service, 150,800 pounds, in round Norris engines assumed such large proportions that he $\left\lvert\, \begin{array}{ll}\text { and tender ready for service, } 150,800 \text { pounds, in round } \\ \text { figures } 76 \text { tons. The } 600 \text { was built to run upon the }\end{array}\right.$ eventually established himself in Vienna, designing division extending from Keyser to Grafton, which inand building the Royal Works there. Norris, in early cludes the Seventeen Mile Grade, averaging 116 feet
to the mile, with curves of 600 feet radius. Forney, giving weight of average through trains, baggage, posadds facts as to the schedule time showing an average of 27 miles per hour over the entire mountain division

Lafayette.
600.
have selected from the large number there shown three locomotives which mark epochs in railroading. The earliest of these is the Lafayette, designed and built by William Norris, of Philadelphia, in 1837. It was the first six-wheeled locomotive used on the Baltimore \& Ohio Railroad.
This type of locomotive created a revolution in construction, both in Europe and in America, and was the most famous of its time. We illustrate a full size working reproduction, constructed from the drawings and details furnished by the descendants of the inventor. The Lafayette, which was built expressly for the B. \& O. road, was one of the great trio of locomotives produced by William Norris, in 1836-3738. The Washington, one of the three, was the first locomotive to overcome the steep grade at the Columbia Incline from the Schuylkill River west, at Philadelphia, and its performance in accomplishing what was deemed an impossibility was heralded throughout the world. The Lickey Incline, on the Birmingham \& Gloucester R.R., in England, had baffled all European locomotive builders, and it was the opinion that it would have to continue to be ope rated by endless chain or cable.
the Norris engines were for years the foremost in America. Joseph York, the first engineer of the Lafayette, is still living, and was in attendance upon the exhibit during the Exposition.
The second of which we make mention is the Baltimore \& Ohio Company's engine 600. This engine was the company's model locomotive at the Centennial Exposition, 1876, and the first passenger Mogul built by the B. \& O. R.R. Co. It was shown here just as at Philadelphia, having been taken from service and placed in original form. The 600 was regarded as representative of the highest type of the American locomotive seventeen years ago. Forney, in "Recent
Locomotives," 1883, gives data as follows : Diameter of cylinders, 19 inches; stroke of piston, 26 inches; length of steam ports, $151 / 2$ inches; width of steam ports, $11 / 4$ inches; width of exhaust ports, $23 / 4$ inches ; diameter of driving wheels, 5 feet; of truck wheels, 2 feet 7 inches; wheel base of engine, 22 feet 11 inches; total wheel base of engine and tender, 50 feet; diameter driving axles, $63 / 4$ inches; length, 8 inches; out side diameter of smallest ring of boiler, 4 feet 2 inches number of tubes, 165 ; length of tubes, 11 feet $101 /$ inches; outside diameter of tubes, $21 / 4$ inches; length
between the points named and one hour and five minutes up the Seventeen Mile Grade.
The Director General, 1893, the third of this series, is now the standard type of the Baltimore \& Ohio Company's eight-wheel passenger engine, with Vauclain compound cylinders. It was built by the Baldwin Locomotive Works from designs, other than the compounding of the cylinders, by Mr. George B. Hazlehurst, general superintendent of motive power, B. \& O. R.R.

The Director General will be assigned to service on the "Royal Blue Limited," between Washington and New York, and it is believed will equal, if not eclipse, he record now held by a Royal Blue engine of a mile in thirty-seven seconds, which is at the rate of ninetyeven and three-tenths miles an hour. The Director General's actual weight in working order is 126,780 pounds. Weight of tender with fuel and water, 72,081 pounds, making the whole weight in service in round figures a hundred tons. The wheel base of locomotive is 22 feet 4 inches, and of tender 17 feet, and the total length of engine and tender over all is 59 feet $61 / 2$ inches. The diameter of the high pressure cylinder is $131 / 2$ inches and of the low pressure cylinder 23 inches;
stroke of piston, 24 inches; steam ports, 24 by $11 / 2$ inches; circular exhaust ports, the same. Piston valve. The diameter of the driving wheels is 6 feet 6 inches; truck wheels, 3 feet; length driving springs, center to center of hangers, 4 feet; steel boilers, 251 tubes of two inch diameter; length of tubes over the tube plates, 11 feet 10 inches; inside length of fire box, $107 \frac{7}{16}$ inches; inside width of fire box, $33 \% / 8$ inches ; diameter of dome, $311 / 2$ inches ; height, 22 inches; working steam pressure, 180 pounds; grate surface, $243 / 4$ square feet; total heating surface, 1,693 square feet ; heating surface of the tubes, 1,544 square feet ; height from top of rails to top of smokestack, 14 feet $103 / 4$ inches.

Planet Notes for Pebruary.

Mercury will be "evening star" during February. During the first half of the month he will be close to the sun, but in the latter part will be visible to the naked eye for a short time after sunset. He will be at greatest elongation, east from the sun 18°, on the evening of February 25. His greatest brilliancy will be attained on the evening of February 21. Mercury will be 10° due south from Venus at 9 h .41 m. P. M. February 8 , central time
Venus will be visible as evening planet for but a few days in February. On the 16th, at 3 h .4 m. A. M., she will be at inferior conjunction, $i . e .$, between the earth and sun. Venus will be in conjunction with the crescent moon, 11° north of the latter, at $3 \mathrm{~h} .3 \mathrm{~m} . \mathrm{P}$. M. February 6.

Mars will be visible in the southeast after $4 \mathrm{~h} . \mathrm{A}$. M., but at too low an altitude for good observations in our latitude.
Jupiter will be at quadrature, 90° east from the sun, February 11, at 1 h .52 m . A. M. He will be in excelient position for observation during the early part of thenight. Jupiter will be in conjunction with the moon, 4' 24^{\prime} north of the latter, February 13 at 3 h .16 m . A. M.

Saturn may be observed after midnight. Look toward the southeast in the constellation Virgo, about 5° northeast from the star Spica. The rings of the planet are easily seen with quite a small telescope. They are now turned at an angle of 14° to the line of sight, so that with telescopes of moderate power the divisions may be seen. Saturn's apparent motion among the stars during February will be westward. He will be in conjunction with the moon, 4° north, at $8 \mathrm{~h} .2 \mathrm{~m} . \mathrm{P}$. M. February 23.

Uranus rises about midnight, and is in position for observation from 3 to $6 \mathrm{~A} . \mathrm{M}$. He is in the constella tion Libra, about $1^{\circ} 45$. east and 26^{\prime} south of the star α. Uranus will be at quadrature, 90° west from the sun, February 3 at 7 h .4 m. P. M. He will be stationary in right ascension February 18, and after that will move slowly westward. He will be in conjunction with the moon, $3^{\circ} 36$ north, at 9 h .58 m. A. M. February 25.

Neptune will be at quadrature, 90° east from the sun, February 29, at 2 h .36 m. A. M. He will be in good position for observation during February. He is almost stationary in Taurus, a little more than one-third of the way on a straight line from z to ε Tauri. There is no star of equal brightness, i.e., 8th magnitude, within a radius of 1°.-Astronomy and Astro-Physics.

Deep Sea Depths.

In a recent number of the Popular Science Monthly G. W. Littlehales gives the following as the latest reliable result of the sounding of the different oceans:

According to Indian Engineering, a long siphon has lately been added to the water supply system of the Nusseerabad cantonment in India. The water is drawn from a well in the overflow channel of a lake; a weir below the well preventing any serious fluctuations in the water level in the latter. Until recently, the water has been pumped by bullocks from the well into a main leading to the cantonment. Toward the end of August this method of supply was discontinuedand a siphon service put in. It is an eight-inch pipe, about four miles long, having a variation in level between its summit and the water in the well of from two to twelve feet, and a difference between its summit and the wate.

Šuntifir Ammitan.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors.

 published weekly atNO. 361 BROADWAY, NEW YORK.

NEW YORK, SATURDAY, JANUARY $27,1894$.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 943.
For the Week Ending January 27, 1894. APPLIED Frice 10 cents. For sale by all newsdealers.

