THE COAL STRIKE AND ITS LESSONS.

Some years ago, when natural gas was poured out of numberless wells in such quantities that manufac turers used it with reckless prodigality, a hope was entertained that although the supply might cease the msols learned in its consumption would not be lost. These lessons were not of a very advanced kind ; they simply went to sbow that gaseous fuel was superior to solid, that it was more manageable, and gave bette products, but no lesson of economy of fuel was taught.
Manufacturers went on in their usual way without a thought for the future.
The last six weeks have been occupied with occurrences which, grave in the social aspect, have brought the fuel question prominently forward in all its crudities. A strike among coal mirers in fourteen States and two Territories has been in progress. The central Western region, included in a general way in the quadrangle defined by Chicago, Birmingham, Pittsburg and St. Louis, is the region most affected. The coal on hand approaching exhaustior, 175,000 men on! strike, deeds of violence of frequent occurrence, the poor in cities paying three and four times the usual price for a bucket of coal, were features of the strike that made its seriousness evident. Large numbers of the miners are foreigners and of tbe most excitable nature, and liable to be carried almost any distance by their feelings.
The cause of the strike is one which brings into strong perspective the fuel question. The miners desire a uniform rate to be established to he naid them for coal as mined. This rate is some places the miners have received but 42 cents a ton in others 50 cents. Their request seer s far from ex ask is orbitant. It is clear that the price asked by them is
but little for the amnuit of combustible matter represented by tho zung ton of coal. Se cheap a rate of ovtacuon would imply a very goed combition of things for the consumer. But it ic-c altogether so
When the mir- paid for the coal which he has .nt :.... cne breast of his working, the smallest part of the cost of the coal is provided for. The coal has to go through preparation, more or less expensive, before delivery to the consumer, and it has to be transported from the mines to the furnace and factory. All this adds greatly to its cost. An addition of twenty-five cents to the ton would mean far more at the mine than it would two hundred miles distant. To the miner it means an increase of wages of fifty per cent; to the distant consumer it would mean an increase in price of ten per cent or less.
The improved regenerative and recuperative furfifty per cent or more in coal consumption. Improved high pressure boilers working compound and triple expansion engines have brought about just as great economies in steam power. Electricity, by enabling the generation of energy to be concentrated in large plants, and to be delivered efficiently in small units, has opened up further possibilities in economy which the trolley street car system illustrates, for there is an unknown development awaiting us in the future.
But the coal strike, bringing out with its other features the fact that the extraction of coal represents so small an amount, and that with superadded transportation it reaches the consumer for so low a price, tells or implies a story of extravagance of coal consumption. With more rational methods of burning it, with more advanced engines for its utilization, with boilers working up to 200 pounds pressure instead of, perhaps, a tenth that amount, the fuel question could be made a much less important one, not only in question of cost but of absolute physical magnitude. For now the trouble is to supply tons enough of coal to keep wasteful furnaces and antiquated boilers and engines in ope! ration, and to supply with fuel small isolated plants using six or eight pounds of coal to the horse power per hour. In a more enlightened and advanced state of society it is to be hoped that better sucial laws and principles may make strikes impossible and without cause or reason for existence. But outside of the sorial as pect, in the improvement of processes and in the consequent reduction of the great quantity of coal required lies one possibility of preventing these occurrences and of entitling the coal miner to better wages. If a manufacturer by substituting regenerative furnaces for his old fashioned reverberatories at one operation saves will justify the mine owner in paying the miner a higher rate.
It is in such possibilities as the above-perhaps they are hardly probabilities-tbat the scientists and inventors, the Siemens and the Bessemers, appear as the world's benefactors. It is in carrying out their processes that some of the highest wages are received by sumption to one-half its former amount; the Bessemer converter, taking its fuel from the carbon and silicon of iron, almost abolished coal consumption for the production of soft steel. In advanced processes is always sooner or later to be found the amelioration of the condition of the workman as well as the general improve-
ment of the condition of mankind. The present waste
of coal is largely responsible for the low wages of the iners and for the consequent strikes and disturbances.

Cassava Meal and Tapioca.

Next to rice and sago, there are but fewfood products of a similar character that have such an extensive use as tapieca. And notwithstanding the enori lous quan that are produced, and the cheap rate at which it is sold in the English market, but little is generally nown as to its origin and preparation
Two distinct plants, though closely botanically allied, furnish tapioca; they are Manihot utilissima, Pohl., known as bitter cassava, and Manihot aipi, Pohl., the sweet cassava. The plants are natives of Brazil, where they are extensively cultivated, the bitter cassava especially, for the sake of the starch which is containdin the fleshy tuberous root, and which forms comnercial tapioca. It is also largely grown in west tropcal Africa, as well as in the Straits Settlements. It is a half shrubby perennial, with large leaves deeply di vided into from three to seven segnents. The tuber ous root often grows to a very large size, weighing many pounds, and containing a poisonous wilky juice. The plant is known under a great number of varieties, differing in the color of the stems and the division of the leaves. The roots of the bitter kind are said not to berome soft by boiling or roasting, while those of the sweet cassava, though very tough in the center, become soft by the application of heat; so that after beins roasted or boiled, they are eaten in a similar manner to potatoes.
Besides tapioca, the cassava root furnishes several other valuable food products, as cassava meal and cassareep. In one of the monthly numbers of the Bulletin of the Botanical Department of Jamaica these products and their uses are thus referred to. Cassava wowl is prom both the sweet and bit ter sorts, the root is grated, by which the cells containing the juice and starch grains are broken up, the grated material is placed under pressure, sometimes with water pouring through it. The pressure squeezes out all the juice, while a certain portion of the starch grains passes over with the liquor. The substance left under pressure consists chiefly of the cell walls broken up, but also of some starch grains. This is cassava meal, wbich is dried on hot plates and made inte cassava cakes. The liquor which passes away under pressure being the pure juice only, or the juice mixed with water, which is allowed to stand for some time, when the starch settles to the bottom, and the liquor is poured off. The starch grains, as seen under a microscope, a....ullon ch...ped This is cassava starch proper, as uished from cassava meal. Tapioca is prepared heating moistened cassava starch on hot plates. This process alters the grains, which swell up, many bursting, and thus they agglomerate in small irregular n asses.
Cassareep is the juice of the bitter cassava root, concentrated by heat, which also dissipates the volatile poisonous principle. The same is further flavored with aromatics. Boiled with peppers, and fish or meat, it forms the West Indian " pepper pot."
Cassareep is an article of import into England. It is thick, black, treacly-looking substance, and forms a component part of most table sauces.
The following details for preparing cassareep, tapioca, and cassava cakes may be found useful: "Grate the cassava, and squeeze out the juice, which is to be put aside for about threedays; add one part of fine salt to every twelve quarts, and then boil down, until it becomes like sirup. If it is intended for long keeping, it must be boiled thick. Put aside in jars till required for bottling."
To prepare tapioca, "grate the cassava, wash it, by putting in a cloth, and pouring clean water on it till settled, and the water at the top is quite clear. Decant the water, leaving the starch at the bottom; wash again with clean water, allow it to settle, and pour off the water. Take up the starch in lumps and put it to quail a little in the sun; then mash it up fine and sieve it. Put a large baking iron on the fire, and bake it in cakes, not too thick. The iron should not be too hot, as the cakes must not be baked brown. Then dry well in the sun, and beat in a mortar, coarse or fine, as required. If sieved, it will give two qualities, fine and

For making cassava cakes, the cassava should be grated, and well squeezed, but not washed. After squeezing, let the lumps dry very slightly in the sun. Beat on a mortar and sieve. Bake on the iron, thin or thick, according as the cakes are reguired.
A Macadamized Road through Swampy Land. A Telford road recently built in Medford, Mass., by Street Commissioner John P. Prichard was constructed through low wet land, which had to be drained by a trench 4 feet deep, in which was a 6 inch pipe with pen joints. The trench was then filled with stone up to the subgrade of the avenue, which was well wet and rolled. On this was the Telford foundation, 9 inches deep at the center and gradually decreasing in thickness to 5 inches at the curb line. This foundation was
wedged and knapped, and then covered with 4 inches of $21 / 2$ inch stone unrolled, which was covered in turn by 3 inches of 2 inch stone, spread with a shovel from a cart, wet and rolled. The surface was next filled
with enough half inch stone to fill out all the inequaliwith enough half inch stone to fill out all the inequalities, more sprinkling was done and the surface again stone, well wet and rolled. This street, the Engineerstone, well wet and rolled. This street, the Engineer-
ing News says, cost about $\$ 3$ a linear foot, including ing News says, cost about $\$ 3$ a linear foot, including
the expense of grading, trenching, pipe laying, catch the expense of grading, trenc
basins, and other incidentals.

The Periodical cicada, alias Seventeen-Year by c. v. riley.
Few insects are more characteristically American than this, and few have been more written about or have attracted more popular attention. We become accustomed to the recurring seasons, and periodically recurring phenomena attract attention usually in proportion to the length of time elapsing between their recurrence. This in a measure explains the interest attaching to our periodical Cicada, for its term of life is exceptionally long and quite unique, nothing else of the kind being known among insects in any other part of the world. Most insects require but one year for their full life cycle, and few exceed for this purpose a period of three years. We are justified in indulging a little sentiment in connection with the recurring broods of this insect, since they enable us to go back in thought for centuries in the past and picture the woods in some particular locality, and in some particular year, resounding with its singular song. Thus Brood XII., which is now with us, has its largest distribution in New York and New Jersey, but reaches down to the national capital, and the ancestors of these very insects, six generations back, commemorated in their noisy way the founding of Washington in 1792, while the preceding generation, seventeen years before, made the woods vociferous during the battle of Bunker Hill.

SEVENTEEN-YEAR AND THIRTEEN-YEAR BROODS.
There are some twenty distinct broods pretty well established, each appearing at stated periods in some part or other of the eastern United States, and it often happens, as in the present year, that two of them appear simultaneously, but in different sections. There is, as a consequence, scarcely a year when in some part of the country some brood may not be heralded, and several may and do oscur in the selfsame region at different periods. This fact gives rise to the idea that there are broods of shorter period, or say of seven or there are broods of shorter period, or say of seven or
nine years. In reality, however, there are but two classes of broods, namely, the seventeen-year and the thirteen-year broods.
There are no specific differences between these broods, and so far as the insects themselves are concerned there is nothing to indicate whether they belong to the one or the other. Yet they must be considered as quite distinct races of one species, since they do not intermingle and have, in fact, an essentially different geographical range. The seventeen-year or septendecim race occupies the northernmost portion of the range of the species, extending farthest south along the Alleghany Mountains. The tredecim or thirteen year race occupies the southern portion of the range of the species. The first named is substantially confined to the transition zone, biologically speaking, exfending rarely into the boreal, while the tredecim race tending rarely into the boreal, while the tredecim race
is absolutely confined to the austro-riparian region, as defined by Dr. C. Hart Merriam.
the broods of the present year.
As shown by a circular issued from the Department of Agriculture, there are now occurring two rather extensive broods, one of each of the races. Below* are ${ }^{*}$ Brood XVIII.-Tredecim-(1881, 1894).

given the localities in which each of these broods may
be expected, and I shall be glad to have any readers of expected, and I shall be glad to have any readers
of the Scientific American corroborate or correct, from their own observations, any of the data thus
given. I would especially like to have evidence, con given. I would especially like to have evidence, con-
firmatory or otherwise, in all cases where an interro ration point has been used.

TWO DISTINCT FORMS.
With both these races there are two distinct forms, the typical or larger form, originally characterized by Linnaeus as Cicada septendecim, measuring some three inches in wing expanse and about an inch and a half from the head to the tip of the closed wings. The
inferior portion of the abdomen is more or less sufinferior portion of the abdomen is more or less suf-
fused with reddish-brown and the borders of the segments dorsally are marked with the same color. There is a smaller form, however, appearing somewhat later in the season and more completely black, which has been described as Cicada cassinii Fisher. Besides the differences in size and color, there are also some slight differences of structure, but the two forms intergrade and the species should be classified as Cicada septen decim Linnaeus, race tredecim Riley, dimorphic vari ety cassinii Fisher. The long underground life of both the 13 -year and 17 -year races has been thoroughly established on chronological and historical data cover ing nearly two centuries. There is, however, chronic skepticism as to the facts, as they are so exceptional, and this is especially true among Europeans; whence the desirability of experimental proof. This 1 have obtained since 1868 by watching• from year to year larvæ hatched from egæs placed under speciaily marked trees, and in the case of two distinct and dif ferent broods.

FOOD OF THE LARVA.

Many persons have insistec, and especially the late Dr. G. B. Smith, of Baltimore, that the larva during
its underground life nourishes upon the moisture its underground life nourishes upon the moisture of the earth and takes no other food. He believed that this moisture was abserbed through capillary hairs at the tip of the proboscis. This is, of course, an entire misapprehension of the facts. These hairs in reality arise from the sheatbs of the promuscis and have no connection with the true sucking mouth parts. There is, however, a good deal of evidence to indicate that especially in early life, when the body covering is delicate, the young Cicada larva may, when necessary, nourish from the moisture of the soil, where this soil contains, as it almest always does, nutrient qualities. The nourishment in such case would be through the general surface of the body or by what might be called environmental assimilation. But while there is no special reason for denying the possibility of this mode of nourishment, it will always be difficult to prove, and the one thing that has been proved and which I have been able thoroughly to confirm is that, as in the case of all other sucking insects, the Cicada larva pierces the roots of plants and derives nourishment therefrom. Careful observation very soon determined this fact, and I have often seen even very young larvæ attached to fine roots, while the places where the roots have been punctured by them are also easily de-

tected. DEPTH OF THE LARVAL BURROW.

The larva rarely penetrates more than two feet below the surface of the soil, though exceptionally it has been found at much greater depths, there being authoritative records of its having come up through the bottoms of cellars and of its being found at depths of 10 to 12 feet.

METHOD OF BURROWING.
In burrowing the larva scratches away the walls of its cell with the claws of the femora and tibiae, very much as we would do with our hands. The loosened earth is pressed against the sides and ends of the cell. chiefly by the hind and middle legs. When burrowing downward the soil is first gathered into a little pellet and placed deftly on the front of the head, when the larva turns round with its little load and presses it against the upper portion of its burrow.

Galleries made by the pupa.

In years of exit the pupa is found near the surfare of the ground or on it, hiding under stones and logs. There is great uniformity in the issuing of the pupæ, which takes place in the latitude of Washington from the middle to the end of May, butearlier further south and later in its northernmost range. Theyissue in the same locality, after their long underground life, almost to a day. Frequently, and especially in low soil sub-

ject to overflow, or where the soil is particularly wet or covered with masses of wet leaves, the pupa extends the burrow in the shape of a fube from 4 to 6 inches above ground, this tube looking like a diminutive crawfish tube. The purpose of this extension of the tube is easily understood in such situations, but strangely enough we also find the same sort of funnel or tube thrown up on high ground ; and the only explanation I can offer for this fact is that on high planation I can offer for this fact is that on high
ground the tubes are thrown up by larvæ hatched from eggs laid by females which had themselves been reared on low ground, and which, as pupæ, had built such funnels themselves. The tubes are generally closed at the top, with an orifice at the surface of the ground, and the pupa awaits its approaching transformation in the top of the funnel, secure against heavy rains, and finally issues from the aperture above mentioned.

FINAL TRANSFORMATION.
It is most interesting to observe the unanimity with which all those pupr which rise within a certain radius of a given tree crawl in a bee line for the trunk of that tree; and to see these pupæ, in such vast numbers that one cannot step on the ground without crushing several, swarming out of their subterranean holes, scrambling over the ground, all converging to one central point and then clambering up the trunk of the ree and diverging on to its branches, is an experience not readily forgotten and affording food for specula tion on the nature of instinct. The phenomenon is most satisfactorily witnessed where there is a solitary or isolated tree. The pupæ begin to rise as soon as the sun is behind the horizon, and the majority of them have risen by about nine o'clock. They prefer to fasten in a horizontal position for the exclusion of the perfect insect or imago, though they transform in all positions. In about an hour after rising the skin splits down the middle of the thorax and the forming Cicada begins to issue. Its colors are first creamy white, with the exception of the red eyes and two strongly contrasting black patches on the prothorax, with certain other minor black marks upon the legs and an orange tinge at the base of the wings. There is a point when the emerging imago hangs by the tip of the abdomen, being held within the cast off exuvium in which position it remains for from ten to thirty minutes or more. During this period the wing pads separate and the front pair stretch at right angles from the body, when they gradually swell, and during all this time the legs are becoming firmer and assuming the ultimate position. Suddenly the insect bends upward with a cood deal of effort, and clinging with its legs to the first object reached, whether leaf, twig or its own shell, withdraws entirely from the exuvium, and hangs for the first time with its head up. Now the wings perceptibly swell and expand, until they are fully stretche and hang flatly over the back, being transparent, with beautiful white veining. As they dry they assume the roof position, and during the night the natural colors of the species are gradually assumed. There are few more beautiful sights than to see these fresh forming Cicadas in their different positions, clinging and clustering in great numbers to the outside lower leaves and branches of a large tree. In the moonlight such a tree looks for all the world as though it were covered with beautiful white blossoms in various stages of expansion.
(To be coutinued.)
The Electric Furnace and Artificial Diamonds. At a recent conversazione of the Royal Society, an xhibit which attracted much attention was M. Moissan's electric furnace, and specimens of chemical ele ments obtained by means of it : vanadium, chromium molybdenum, tungsten, uranium. The furnace consists of a parallelopiped of limestone having a cavity of similar shape cut in it. This cavity holds a small crucible, composed of a mixture of carbon and magnesia. The electrodes are made of hard carbon, and pass through holes cut on either side of the furnace, meeting within the cavity. For the purpose of certain experiments a carbon tube was fixed in the furnace at right angles to the electrodes, and so arranged as to be 10 mm . below the arc, and about the same distance from the bottom of the cavity. This tube contains the material to be heated, and by inclining it at an angle of about 30° the furnace may be made to work continu. ously, the material being introduced at one end of the tube and drawn off at the other. A temperature of about $3,500^{\circ}$ C. is produced. The metals are reduced by heating a mixture of their oxides with finely divitled carbon, and for this purpose a current of about 600 amperes and 60 volts is employed. M. Moissan has not only succeeded in reducing the most refractory metals. but has fused and volatilized bota lime and magnesia. Nearly all the metals, including iron, manganese, and copper, have also been vaporized, while by fusing iron with an excess of carbon, and then quickly cooling the vessel containing the solution of carbon in molten iron by suddenly plunging it into cold water, or better in a bath of molten lead, he has been successful in producing small, colorless crystals of carbon, identical in their properties with natural diamonds.

