Garboatzing Metal.
One method used in Germany for introducing carbon into a molten metal bath is by mixing pulverized anthracite and lime water together, and forming the mass in briquettes under great pressure, these briquettes being then brought into contact with the molten metal ; in this way, exactly, the desired proportion of carbon for the formation of steel of various tempers and qualities can be imparted to the converter. The method of recarbonizing is stated to cost only about one-sixth that of the ferro-manganese plan, but the most important advantage presented is the greater accuracy and uniformity with which any required quality of steel may be produced, ranging all the was from the hardest to the very toughest sorts. It is anticipated that rails made according to this new system will have a life of from 35 to 40 years, while girders made in this way possess very great additional durability.-1ron Trade Revievo.

Xylolith or Wood Stone.

Xylolith, or wood stone, says the American Architect, is coming into extensive use in Grimany. A recent number of the Bautechniker gives a variety of additional particulars. Xylolith, or steinholz, or wood stone, is made of magnesia cement, or calcined magnesite, mixed with sawdust, and saturated with a solution of chloride of calcium. The pasty mass, before the cement sets, is spread out into sheets of uniform thickness, and subjected to an enormous pressure, amounting to more than a thousand pounds to the square inch. The compressed sheets are then simply dried in the air. The original inventionof this material dates back to 1883 , but it is only within the last five years that a single firm, that of Otto Sening \& Co., at Pottschappel, near Dresden, has undertaken the manufacture of it on a large scale, and has met with such success that it is already engaged in the erection of extensive additional works in the Austrian territory, to supply the South German market. In 1888, a series of tesis of xylolith was made at the royal testing station for building materials in Berlin, covering its chemical as well as mechanical qualities. In resistance to tension it was found, naturally, that the dry material was much superior to the same soaked with water, dry specimens resisting a tension of about 100 pounds per square inch, while pieces saturated with water resisted only two-thirds as much. Soaking the dry material in linseed oil increased the tensile strength about ten per cent, and freezing diminished it slightly. The resistance to compression proved to be abont 800
pounds to the square inch. This was diminished pounds to the square inch. This was diminished about ten per cent by freezing, and increased to about
the same extent by careful drying and saturation with the same ex

The specific gravity of the new substance was found to be 1:553. The fractured surfaces showed a yellow color, with a peefectly uniform and close grain. When immersed in water, unbroken sheets of perfectly dry material took up $2 \cdot 1$ per cent of their weight of water in twelve hours and 3.8 per cent in two hundred and sixteen hours. Broken piecesabsorbed in the same time about twenty per cent more water than the unbroken sheets. To try the resistance to the influences of the weather, a large number of samples were taken, and subjected to boiling in water, brine, sodalye, hydrochloric acid, and solutionsof sulphate of iron, sulphate of copper and sulphate of ammonium, alternating the boiling with sudden cooling. After several days' treatment with hydrochloric acid a loss of $2 \cdot 3$ per cent in weight was observed, but the properties of the pieces under test were not perceptibly affected. In the other cases no loss of weight could be detected, nor was there any other apparent alteration, and the liquids used for treating the samples remained perfectly clear. Expoşure to superheated steam, in a Papin's digestor, also produced no visible effect. In hardness, the material was found to occupy a position between feldspar and quartz, being scratched by the latter, but not distinctly so by the former. As a conductor of heat, the xylolith was found to rank between asbestos and cork, being, therefore, one of the best nonconductors known. To test its fire-resisting qualities, sheets were exposed for three hours to the flame of a Bunsen gas burner, by which the actual surface touched by the flame was charred, although there was no crumbling, or extension of the charring beyond the marks of the flame. Similar pieces, laid on the burning coal in the fire box of a drying oven, and kept for some time at a red heat, were 'rendered brittle, and crumbled at the edges, but kept their shape and cohesion, and showed no sign of breaking into a flame.

For use, xylolith is delivered in sheets, from a quarter of an inch to an inch and a balf thick, and of all sizes, up to a meter square. The dimensions are almost, unchangeable by dryness or moisture. A sheet measuring one meter square when perfectly dry will expand from one to two-tenths of one per cent when soaked in water, and a moist sheet will contract in drying to about the same extent. Being so little subject to contraction and expansion, it is extensively used for floors in railroad stations, hospitals and simi-
lar buildings, and for decks of vessels. It is readily planed,ssawed, bored and fashioned with ordinary wood working tools, and may be painted or decorated in the same manner as wood. It is itself nearly waterproof,
and with suitable putty in the joints, and a good coat of paint, it may be made entirely so. It is not surprising that a material possessing so many advantages should have come into extensive use abroad, and we trust that its manufacture mas be introduced here. It is sold in Germany, in sheets of thickness suitable for flooring, at abont seven cents per square foot, an the laying costs, complete, about four cents more.

experiment showine magnetic lag.

Most students of electricity know theoretically what is meant by magnetic retardation, or magnetic lag, and electrical engineers and manufacturers of electrical machines understand the causes and effects of this action in the armatures of dynamos and motors; but to most people, and especially to students who really desire to fix an idea in their minds, an experimental demons
It is
It is of course impossible to see what goes on in an armature while moving, but it is known that the armature core becomes a magnet by induction, and that its poles are of the opposite name to the adjoining poles of the field magnet. It is also known that time is required for, the magnetization and demagnetization of the armature. The time element is thus seen to be one which cannot be left out of the calculation in designing dynamo-electric machines.
A very simple experiment, which helps to an understanding of what magnetic lag is, is shown in the annexed engraving. A perforated block is inserted between the polar extremi ties of a U -magnet to re ceive a pointed spindle attached to a soft iron disk held near the poles of the magnet. The pointed end of the spindle rests upon a cross bar inserted between the arms of the magnet. Thedisk, which turns very freely, absorbs the magnetic lines and becomes strongly magnetic. When the disk is at rest, poles are devetoped in tho diok in front of the poles of the magnet, but when the disk is turned ever so little, the poles in the disk are carried forward in the direction of rotation. This is proved by the action of the disk when it stops. It immediately moves a short distance in a retrograde direction, showing that the points of greatest magnetic density in the disk lie beyond the poles of the magnet in the direction of the rotation of the disk, and that these points are attracted toward the magnet poles. Owing to the friction of the bearings of the spindle, and to the almost immediate readjustment of the magnetic lines in the material of the disk, the return movement does not represent the entire lag, but it shows in a striking manner what lag is.

The Next World's Fair.
It is announced that the next World's Fair will be held in Antwerp in May, 1894. The Antwerp Exposition will be much smaller than the World's Fair at Chicago. Antwerp has the advantage of being able to take exbibits directly from the vessels in which they are transported, as the river Scheldt will float vessels of 8,000 tons burden. Antwerp is readily reached in a land hours from Paris and all parts of Belgium, Holland, and the Rhine provinces of Germany. London and Antwerp are only eight or nine hours apart by the Harwich route or the Ostend route, while Antwerp is directly accessible from the United States by the Red Star line, which furnishes first-class accommodations at moderate rates. In Belgium there is no hostility to government appropriations and no municipal prejudice. There will be no sandbagging by the railroads, and it is to be hoped none of the disgraceful wrangles which have characterized our Fair. Although there is not the slightest possibility that the Antwerp Fair can compare with ours, still when Paris celebrates the opening of the new century in 1900 it is probable that the Chicago Exposition will be equaled if not surpassed.
Already the French engineers are making preparations for 1900, plans are being made for the railroads which are to convey the passengers to the Bois du Boulogne, for while the Champs de Mars has not grown smaller since 1867, the size of international expositions

Photographic Work says: A blue focusing screen has been suggested as eliminating the effect of color in the case of the camera image, and so enabling the photographer to better judge as to how his work will look; the colors of a landscape often giving a charm to the scene which is not realized in the photograph.
It is suggested to wash over the ordinary groundglass screen with an alcoholic solution of an aniline blue; but in this case the screen could not be readily cleaned. Hence a much better course would be to finegrind a piece of blue glass.
It is very easy to make a fine ground focusing screen by using the finest emery of the shops-sold as "flour emery." Thisshould be mixed with water, and worked on one surface of the glass with a rubber consisting of a piece of thick plate glass about an inch square. The progress of the work can be seen by rinsing the emery off, when special attention can be given to any imperfectly ground parts. It is obviously desirable not to scratch the back of the plate, and to insure this the plate should be held steadily on a flat surface while the rubber or muller is being used. A flat-topped bottle stopper often makes a convenient muller.

The August Nreteors,

Happening to be in Ithaca, N. Y., on the night of August 10, I watched for Perseids from 10:20 P. M. un til midnight, 75thmeridian time. With the exception of about three minutes, I kept my face directed toward the radiant point of the meteors during the entire interval of an hour and forty minutes. The sky was cloudless, but covered with a light haze, which slightly dimmed the fainter stars. I counted forty-five meteors Of these, thirty-five were plainly Perseids. All but one of the others traveled in approximately parallel paths from near the square of Pegasus toward or across Andromeda. None moved in any other direction except one rather large meteor, which shot from west-southwest, passing overhead about 11:45. It should be said that my view toward the west as well as toward the south and southeast below the square of Pegasus was shut off by neighboring buildings and trees, so that if any meteors appeared in those quarters moving from Pegasus as a center, I could not see them. All of the meteors just described as not traveling from the Perseid radiant were, with the exception of the one seen overhead, small and swiftnoving.
A few of the Perseids were as bright as first and secand magritade ators and left hanntifnl though evanes cent trails. These bright meteors had a distinct red dish tint. One of them, which shot straight across under neath the Pole star at 10:45, was at least as bright as Sirius. Its visible path was not less than 20° in length. It was yellow bordered with a flare of red, but at the moment of extinction these colors were swallowed up in an outburst 'of white and vivid green. After its disappearance a greenish white train, five or six degrees long, remained visible along the latter portion of its track for half a minute. This train undulated rapidly like a ribbon streaming in the wind, and gradually shrunk and faded until it vanished, when a fourth magnitude star suddenly made its presence manifest at the poiut where the last shred of the meteoric train had been seen. The star had not been noticed when t was behind the train.
At about 10:55, while my eyes were fixed in the diection of the radiant, a faint stellar object made its appearance a few degrees northeast of Chi Persei, and quickly brightened until it equaled a third magnitude star, when it vanished. It was evidently a meteor coming "end on" toward my eyes. I had a distinct impression that its light appeared drawn out into an excessively brief trail, like a short dash in the Morse al phabet, which would indicate that the meteor was not moving exactly in the line of sight. But the deviation was so slight that I could form no accurate estimate of its amount. The point where this meteor appeared was, by estimation based on a subsequent consultation of a star chart, in right ascension 2 b .50 m ., declination north 58°.
About half an hour before beginning my watch I saw three Perseids within two minutes. Two of them were large and reddish, making conspicuous trails. They appeared not more than fifteen seconds apart. Both started from near the radiant point and they noved in paths almost exactly at right angles to one another. The effect was surprising and beautiful.
It seemed to me during my watch that the larger meteors showed a gregarious tendency. If one appeared after a long interval, during which only small ones had been visible, it wasalmostinvariably followed within a short time by another of more than ordinary size and brilliancy, but not traveling in the same direc tion açross the sky. Afterward again only small ones were seen for a considerable time.

Garrett P. Serviss.
IT is estimated that about 250,000 canary birds are raised every year in Germany. The most important market is the United States, which take about 100,000 birds per annum.

