WORLD'S FAIR NOTES.

(Continued from page 115.)
The landscape gardening in the Exposition grounds is very grand. The park stretches along the southern shore of Lake Michigan and for about a mile there is a graceful curve with a low sloping beach upon which the waves splash, usually with the gentleness of a land-locked arm of the sea, but during a storm with a vigor that approaches that of the ocean itself. A broad promenade follows along the edge of the beach, giving a beautiful view of the lake and the many buildings that face it. Two canals extend from the lake into the center of the Exposition grounds, giving outlets to the waterways called the lagoons and the Basin with their connecting canal These waterways, especially the lagoons, are superb. I am told these are not natural, but that they were dredged out and the earth taken from them used to raise the foundations of the Exposition buildings above the line of the swamp of which this park consisted before the Exposition was located here. The banks of the lagoons are lined with foliage, all aquatic shrabs indigenous to northern Illinois being transplanted.
In the center of the lagoons is what is called the Wooded Island. This is the garden spot of the grounds. It comprises about ten acres and is laid out with winding paths. Nearly all of its area is given over to the exhibits of flowers and flowering shrubs and folinge plants. The Basin is a body of water of considerable size walled in on all sides by walls of staff resembling marble, and surrounded by the noblest of the Exposition buildings. In fact, the region about this Basin is called the Court of Honor; here the illuminating in the evening is done, and in this vicinity are located the grandest works of sculpture and architecture.
The collection of old watches in the Swiss section of the Manufactures building is very curious, as it shows the gradual advancement of the science and art of horology from the clumsy affairs of former centuries to the matchless timepieces of to-day. The oldest watch on exhibition bears the date 1074 of the Hegira, the watch being of Arabian workmanship. The watch has a hammered bronze case, which covers works of oriental simplicity. The hand marked the hours on a dial inscribed with Arabian numerals. A "Nuremberg egg," dated 1550 , is shown, as well as a watch which dates from the time of the French revo-
lution. The dial divides the day into ten hours and each hour into 100 minutes, according to a decree of the National Convention, which ordered that the decimal system be used for all measures. Some watches are shown which were made by the great-grandfather of Jean Jacques Rousseau. A wooden watch made by a Siberian convict attracts many visitors. The workmanship was so marvelous that such a workman could mot be lost to art, and he was pardoned. Some of the modern watches are wonderful. Watches for rings, bracelets, etc., are shown mounted and unmounted. A spring in the back of a small beetle opens, displaying a tiny wateh.

The lighting of the Ferris Wheel is effected by means of 1,400 electrical lamps.
A model of St. Peter's, at Rome, is exhibited near the Ferris Wheel, in the Midway Plaisance, by L. De B. Spindor. The model is 30 feet long, 15 feet wide, and about 15 feet high. Two men in front of the building, dressed in the orthodox uniforms of the Swiss guards of the Vatican, bid for custom with trombones. The model is made of wood, and is covered with a kind of varnish or stucco, which imitates stone. Various other models are included in the exhibit, as the Milan Cathedral, St. Agnes' Church, at Rome, the Piombino Palace, etc.
A giganticflagstoneis exhibited fromColorado. The A we is 25 feet long, 8 feet wide, and 10 inches thick. ing advice to visitontury Magazine gives the followcuriosity, to gratify your sense of wonderment and your love of beauty, to get your bearings and discover how much exertion you can support. Go all over the Fair grounds, and to the top of at least one of the big domes or towers. See the Fair, as a Fair, from its various centers and from different parts of its circumference, especially from the lake. I think you can do this in one or two drys, if you start early and end late, if you are strong, and if you have yourself conveyed by all the available means of conveyance-encircling railways, boats, and rolling chairs-and if you do not step inside a single building except for the ascent in search of your bird's eye view. Then go home, stayjn bed the following day, if you are wise, and the next day spread the wings and stiffen the spine of your conscience, and go in search of the things you have come to study-steam boilers or roses, fishes or stuffed birds, needle work or statistics of idiot asylums, methods of slaughtering men or cattle, or of preserving human life or edible fruits. Stay at this task until you have finished it, or until it has exhausted your powers of
application. Then release and relax yourself. Go to application. Then release and relax yourself. Go to see something else-palms if you have been studying
plows, pictures if you have been studying electric plows,
notors.

THE WORLD'S COLUEBIAN EXPOSITION-A VLEW IN COLUMBIAN AVETOE, PALAGE OF MANOHACTURES AND LIPERAL ARTS.
The Manufactures building is at once the wonder nd the glory of the Fair. This huge structure, which is rectangular in form, measuring 1,687 by 787 feet, was designed by Mr. Geo. B. Post, of New York, and the great fabric abundantly testifies to Mr. Post's ability as an engineer as well as an architect. The Manufaetures building is said to be the largest roofed building ever constracted, and some idea of its magni tude may be obtained when it is stated that the tota floor space of both the main floor and gallery is fortyfour acres. The Palace of Mechanic Arts at the Paris Exposition of 1889 could be placed inside the Manufactures building without touching any portion of the walls or roof, even with the Eiffel Tower laid flat on top. Seventeen million feet of lumber entered into the construction of the building, as well as 12,000,000 pounds of steel and five car loads of nails. The amount of staff used on the exterior could not be easily calculated. The total cost was $\$ 1,700,000$, and this cost would be entirely paid up if the building could be alled with an audience at $\$ 5.65$ a head, for the building would seat 300,000 people or three and three quart mes the seating capacity of the coliseum at Rome. The exterior of the building is plain, which adds to its effect of grandeur. Decoration is entirely subservient to construction, and decoration is shown chiefly in the eight entrances, over each of which is a small
dome, decorated by a celebrated American artist. All effects of color are obtained by lags and pennants on the roof. Crossing the bridge by the Electricity building, the main entrance is reached. There is really no difference in the entrances, but the one through which the greatest number of people enter the building, is called the main entrance. Passing under the beautifully decorated dome, the visitor enters the great building and in a moment stands in Columbian Avenue, the main thoroughfare
through the building. Standing at the south entrance and looking north the effect is grand. On each side rise the exhibits of foreign nations, which in many cases come from thousands and even tens of thousands of miles. In the distance the clock tower breaks the seemingly endless vista. Overhead the huge trusses show the skeleton which forms the backbone of the building. Suspended from the roof are.great coronas of are lights, which alternate with huge flags. At the left of our illustration will be seen the pavilion of a sister republic-Switzerland. The collection of watches in the Swiss section is very wonderful, and some of the tiny examples of the horologists' art seem almost too small to keep time. Directly beyond the Swiss pavilion rises the lofty tower of the Danish section. The exhibit of Denmark, and in fact all of the northern countries, is very creditable. A narrow aisle Just bes Denmark from Canada and Great Britain. Just beyond the clock tower will be noticed the obelisks surmounting the pavilion of Austria. At the right of the cut, near the bottom, is the section of Norway, which is admirably flled with the products of the land of the midnight sun.
Beyond the Norwegian section is the carved wood pavilion of Russia, which contains marvelous works executed in silver, malachite, rhodonite, and lapis lazuli This section was opened by a mitered bishop of the Greek Church, with all the pomp and ceremony of the Greek ritual. The Belgium pavilion is beyond the Russian section, and beyond this again is the very ornate façade of the French section. The entrance to
the French section is very imposing, and is justly admired. The column with the ball on the top, just beyond the clock tower, is the beginning of the United States section, the column being directly above the exhibit of Messrs. Tiffany.

Queen of the Evening sky.

Venus, after an absence of nearly a year, has again made her appearance as an evening star, and may now be seen for a short time in the early evening in the west. She will continue to adorn the western skies during the remainder of the year, growing brighter and brighter, and not reaching her greatest brilliancy until the 6th of January next.

As Vesper, the evening star par excellence, this brilliant planet, which Homer, ages ago, apostrophized in words indorsed by all succeeding generations as "the most beautiful star that stands in the beavens," is always a welcome visitor and an object of keen interest for every one whose eyes are open to the beauties of the starry firmament. As a "naked eye" object, it stands without a rival. Even Jupiter, the giant of the solar system, and Sirius, the giant among the fixed stars, pale before Venus when at her brightest.
One would sappase that Venus would form a spendid object for a telescope. On the contrary, it is one of the most difficult objects in the heavens to see satisfactorily with this instrument. Its dazzling light brings out all after dark, it is always more or less tremulous. The best telescopic views of Venus are obtained in broad
nomical studies of it are made at that time. Thus viewed, with its strong light subdued by the glare of the das and posed upon a background of blue sky, it is indeed a beautiful object, resembling the moon seen under the same conditions, but free from the dark blotches that disfigure that luminary.
Venus has no markings distinguishable with a smal telescope. It is interesting mainly for its changing phases. Being an "inferior" planet, and passing at times between us and the sun, it goes through the same changes of aspect as are familiar in the monthly changes of the moon, with the important difference that, being when "full" nearly seven times as far away as when in its most slender crescent phase, it under goes a corresponding change in apparent size.
As it appears now, having but just emerged from behind the sun, it is nearly full. On December 6 it will be at its greatest apparent distance from the sun, and on January 6 it will have attained its greatest brilliancy. After this last date it will draw rapidly toward the sun, and its crescent will grow more and more slender until it becomes invisible, except through the largest telescopes.-Phila. Record.

An Invention Wanted.

United States Consul Edward Bedloe, writing from moy, China, to the State Department, says: A fortune lies in store for the man who will discover ome process for cheaply making wood proof against white ants. These pests are the curse of existence in Amoy and every other tropical or sub-tropical city. Their voracity is incredible. They ate the framework of a new door in this consulate in three weeks. In the same period they almost consumed a large and handsome cabinet in the court room and a heavy pine settee in the anteroom. Their work is invisible. They attack the wood from a mere point, through which they bore to the interior and there eat everything until only a shell or film remains. Wood which will successfully resist these insect pests must be thoroughly charged with some powerful chemical, both poisonous and nonevaporable. A solution of corrosive sublimate, chloride of zinc, arsenic, or antimony would seem to meet the want. But how to force these into the fibers until the latter are saturated, and to do so at a merely fractional cost of the wood itself, is the problem that confronts the inventor. The American genius is so prolific in invention and discovery that I feel assured the problem will be satisfactorily solved.

The Comet through Lick Lenm.
Director Holden, of the Lick Observatory, has pre onted the San Francisco Examiner with an exact re production of a photograph made with the Lick telescope by Professor W. J. Hussey, of the comet now at tracting attention in the northwesternsky. The plate was exposed from $9: 10$ to 10:20 on the evening of Thurs day, July 13. The picture is intensely interesting.
It shows, says the journal mentioned, "what was doubtless the earliest apparition of the 'secondary' comet. In the tail of the great comet is to be plainly discerned the nucleus of an 'auxiliary' comet forming just as the Holmes comet was seen to divide into sepa rate components when Barnard photographed that very interesting object last November. Usually comets have been supposed to divide at the nucleus through some force not thoroughly understood, as in the case of the celebrated comet of Biela, or again when Sawerthal's comet of 1888 exhibited no less than three distinct nuclei. But with the Holmes comet and that now under observation, the separation seems to be effected in the tail of the comet. It wonld cer tainlyseem, from these photographs, that the tail of the comet must be composed of solid particles, else how could a secondary comet be formed from it ?"
There is norecord in all astronomical history of one comet within the tail of another. As yet there is not enough of data obtained to determine whether the comets have the same or different rates of speed, or whether they are near to or remote from each other. It may be that the "secondary" was formed out of the brighter comet, either through some internal disruptive action, or as the result of the more or less intimate ontact with some other celestial vagrant like itsol. Of course, comets have been known to dissolve. Some also have been observed to break up; but the parts have never been seen to present the like apparent relative positions as in the present instance. Theories to account for the phenomenon may be imapined in any number ; but there are not enough of well-ascertained facts to sustain a single plausible one of them.

Tiarge Guns ror the Navy.

The experience of Great Britain and Italy has not tended to predispose our authorities in favor of exceptionally heavy ordnance. The 110 ton guns have been removed from Italian ships. The war vessels Indiana Massachusetts, and Oregon are each to be supplied with four 13 inch pieces. They are nearly 40 foet in length. The diameter at the breech is somewhat over 4 feet and at the muzzle 21 inches. These guns throw a projectile of $\mathbf{1 , 1 0 0}$ pounds, with 650 pounds of powder

An Anti-Smotre Law.
The legislature of Massachusetts, at its last session, enacted the following law relating to the prevention of smoke:
"In cities of over 800,000 inhabitants, nopersonshall, after the first day of July, in the year 1893, use bituminous coal for the purpose of makingeteam in boilers in any building, unless th furnace in which said cos is barned is so built, managed, arranged, or equipped that at least 75 per ent of th moke irom said coal is consumed or oth rwise prevented rrom entering the atmosphere, thedegrco of suppression being determined by the quantity of such smoke emíted, as shown by the density and color of the issuing smoke, and the length of time which it is visible, the maximum standand of comparison belng a continuous discharge of dense, dark smoke during the itime the furnace is in active operation."

MILL ERGINES.

The illustration represents a pair of high-pressure non-condensing reversing mill engines, as constructed by Galloways, Limited, Manchester, for Messrs. Leach, Flower \& Co., of the Melyn Tin Plate Works, Briton Ferry, and shown in the Enginteer. These engines

Volatillty of motale.

Intenesting experiments with the electric farnaceare says Nature, described by M. Moisead in the current number of the Comptes Rendirs. By attaching to the fo ace a condensing tube of copper shaped like the letter U, and 80 constructed as to be surrounded by an outer jacket of cold water constantly changing under high pressure, M. Moissan has been enabed to distill and condense most of the elements which have hitherto been found so refractory. When a piece of metallic copper, weighing over a hundred grammes, was placed in the inner crucible of the furnace and subjected to the arc furnished by a current of $\mathbf{3 5 0}$ amperes, brilliant flames shot forth from the apertures through which the carbon terminals were inserted. The flames were accompanied by copious yellow fumes, due to the combustion of the issuing vapor of copper in contact with the oxygen of the air. After the expiration of five minutes nearly thirty grammes of copper had been volatilized. Under the coverof the furnace an annular deposit of globules of metallic copper was found, and upon examination of the condensing tube a large proportion of the volatilized copper was discovered condensed in almost a pure state.
It has long been known that silver is volatile; it is
limate of a deep purple color. Manganese is remarkably volatile. A quantity of the metal weighing four hundred lyrammes entirely volatilizes in ten minutes. Iron is likewise readily distilled, and is deposited in the form of a gray powder, among which are inter spersed numerous small particles exhibiting brilliant surfaces.
Not only are the metals capable of distillation at the temperature of the electric anc. Silicon rapidly volatilizes and condenses in the copper condensing tube in minute spheres and dust. Carbon becomes almost immediately converted to graphite, which distills over into the condenser and deposits in the form of light semi-transparent plates, which hy transmitted light exhibit a beautiful chestnut color. Distilled carbon would thus appear to consist of the fourth variety of the element recently described by M. Berthelot. The refractory alkaline earths, appear also to be capable of distillation in the electric furnace. The experiment succeeds best, however, with a more powerfularc. Em ploying an are furnished by a current of a thousand amperes, M. Moissan has distilled one hundred grammes of lime in five minutes, the vapor condensing in the copper tube like fine flour. Magnesia passes over some what more slowly than lime, but its distillation is ont

ROLLING MILL ENGINES, MELYN TIN PLATE WORES.
embody the results of the very large experience which the makers have had in supplying machinery for the tin plate trade and rolling mill purposes generally. The engines in question have cylinders 40 in. bore and 4 ft .6 in. stroke, the main shaft has a sin-gle-sweep crank for one cylinder, the other cylinder being connected to a crank pin secured in a disk at the end of the shaft, this disk being arranged to balance the connecting rods of both engines, as well as the sweep crank, so constituting a very simple and efficient form of connection to the mill. The valve gear, as will be seen, is on Joy's system, which lends itself admirably to the type of engine here illustrated. The platform is so arranged that the man handling the engine looks direct to the rolls, and has under his immediate control the reversing gear, steam stop valve, regulating valve, waste water valvea, and the lubricstion of the steam oylinders.

Nataral Water Plpes.

A curioas phenomenon has been discovered near Eddy, New Merico. In Dark Canyon, about three mllas fram Eddy, a number of tunnels were run in arder to tap streams of water to get a supply for the waterworks. The water.was found running in small natural pipes, made by the deposit of lime from the water. The whole space cut by the tunnels was found to be perforsted with these lime pipes.
now lound that at the temperature of an arc of the
above description silver may be brought to full ebullition in a few moments, and it distills with ease, condensing in the copper condenser in the form of globulea, whose size varies from that of small shot to spherules of microscopic dimensions, and a certain proportion is usually deposited in the form of arborescent fragments. Platinum fuses in a few minutes, and very soon after commences to volatilize, and condenses in the U-tube in brilliant little spheres and fine dust. Aluminum distills very readily, and condenses in the form of a gray powder, containing admired spherulesexhibiting brilliant metallic luster. Tin likewise distills with facility, and the condnesed product usually contains a considerable proportion of a curious fibrous variety of the metal. The distillation of gold in the electric furnace is particularly interesting. Abundant fumes of a light yellowish-green colorare emitted at thib electrode apertures, and the metal is deposited in tue condenser in the form a powder, exhibiting a besutifnl purple theen. The powder consists of minute ragularspherea, which, when exsmined ander the microecope, appear to refleet the usualiyellow color of gold. Upon the under side of the cover of the funaace three distinct annalar deposits are observed, the inner one consisting of yellow globules of considerable size, round which is a metallic deposit of smaller spheres of such a size as to reflect a bright red tint, and outside this is an annular sub-
of the prettiest of these remarkable experiments, the tints assumed by the escaping fumes and the brilliance of the incandescent vapor being particularly striking. Illustrations of the electric furnace and other interesting particulars will be found in the Scientific american for May 18, 1898, and in our Supphemrint, Nos. 888, 801, 904, 905.

A Looust Year.

The Department of Agriculture has sent out circulars making inquiries over a wide extent of territory regarding the "seventeen-year locusts," which have made an appearance this vear in eight States of the Union. The object of the department is to ascertain accurately the limits of the areas occupied by the insects. There are twenty-two known broods of them, and they turn up in different years in various parts of the country. Thoigh to some extent the infested territorief overlap, each brood comes out of the ground only once in seventeen years. Strictly speaking, the insects are not locusta, but cicadm. Some years ago it was sought to introduce these insects an an article of diet; but the experiments in that zirection did not promise success. Clearing of land has done mooh to diminish the number of these creatures; but their most destructive foe is the English sparrow, which drope every other kind of food and feeds on them exclusively when it has the opportunity.

