

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISPRY, AND MANUFACTURES.

THE KRUPP EXHIBIT AT THE GREAT FAIR. $\left\lvert\, \begin{gathered}\text { On this page we give a view of one of the many }\end{gathered}\right.$ This gun has fired sixteen rounds at the Krupp test-

Of all the foreign nations that are taking part in the World's Columbian Exposition at Chicago, Germany takes the lead, in extent, variety, cost and superiority in almost every characteristic. Of the private exhibitors; whether foreign or American, Krupp, the great, metal manufacturer of Germany, stands at the head. His exhibit is wonderful, and by its greatness almost dwarfs all other exhibits in the same lines. The exdwarts all other exhibits in the same lines. The exreached $\$ 1,500,000$. So large is the Krupp display that a special building became necessary, of which we here present a photographic view, specially taken for the Scientific American. The Krupp building is located just south of the great landing pier. The building is 200 ft . long; 82 ft . wide, 43 ft . high. It fronts on the lake and stands near the terminal lepp of the intra-mural railway.
great things to be seen in the Kruyp building, namely, one of the Krupp traveling cranes, used for slinging and moving the great Krupp guris. The massive proportions and great strength of this machine, as well as its graceful proportions and useful finish, will be evident at a glance at our engraving.
A very comprehensive description was recently given in Engineering of some of the principal Krupp exhibits, and we cannot do better than present extracts therefrom, which follow. First, as relating to the great guns for which the Krupp establishment is now famous. One of them is shown in our engravings. The largest weapon shown, and it is the heaviest piece of ordnance ever brought to an exhibition, is a 16.24 in . coast defense gun ; the total length is $33 \cdot 5$ calibers, or $45 \mathrm{ft}$.11 in . the length of bore being. 41 ft . 8 in.; the total weight /is nearly 122 tons.
ing grounds at Meppen. During these trials the fol2,200 lb., and the charge was 902 lb . of brown prismatic powder; an initial velocity of $1,881 \mathrm{ft}$. per second was recorded, and the striking energy was 18,594 metric ons. We give a photographic view of the firing of his extraordinary weapon.
The cost and trouble involved in the transport of this gun from Essen to Chicago must have been enormous. The gun was landed at. the Sparrow Point works of the Maryland Steel Works near Baltimore. For the long journey from Baltimore to Chicago a railway truck was specially prepared by the Pennsylvania Railway Company. This truck forms one of the exhibits of the railway. The total weight of the car, which is carried on thirty-two wireels, is $175,000 \mathrm{lb}$., or (Continued on page 40.)

路rientifir Ammicam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. F. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
 Remit by postal or express money order, or by bank draft or check.
MUN
CO., 381 Broadway, corner of Fraukin Street, New York.

Building Edition

Spanish Edition of the Scientific American

NEW YORK, SATURDAY, JULY 15, 1893.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 915.
For the Week Ending July 15, 1893. Price 10 cents. For sale by all newsdealers.
I. Civil engineering.-The Canal Connecting the North Sea with the Baltic Sea.-Four large illustrations of the floating elevators..
The Swinging Bridge of Tarento.-1 engraving
Pneumatic Conveyor Plant.-Full illustration
\qquad
made by Messrs. Samuel son \& Co., Banbuty, England.
II. CHEMISTRY.-Neutral Fat in Mineral Oil.-By Dr. J. Klimont. 14 Some Products of Cassava.-A paper read before the Washing-
ton Chemical Society by E. E. ElwELL and H. W. Wwex ton Chemical Society by E. E. ElwELL and H. W. WLEY On the Influence of the Average Annual Temperature on the The Chemistry and Physiology of Foliage Leaves.
Oils of Apricots, Cherries, Plums, and Peaches as
Almond Oill. -By C. Micko.
iII. HYGIENE.-Lemons in Summe
v. MECHANICAL ENGINEERING.-Nau's Mothod of Mating Cathl, Plates.-By Join B. NAU

V. MISCELLANEOUS.-A Portrait of Columbus Attributed to

The "Sap" of Trees and its Movements...................................... Extremes in the Vegetable Kingdon.-By G. C. Nexicier.... Dandelions as Weeds California Raisin Grape
vi. NAVAL ENGINEERING.-The New Battle Ship Massechuet ts.-Full description with 5 illustrations.
II. PHOTOG
III. PHYSICAL GEOGRAPHY.-The Formation and Deformation of Minnesota Lakes.-By C. W. HALL......................... Sugkry.-How to Bandage a Finger.-By S. Gro. Here
x. TECHNOLOGY.-Silicious Fire Bricks.

Transparent Toilet Soaps.
Enameling Papers...
Effects of Sulphur on Clarification.--By Prot............................. paper read before the re
Ohemists' Association.. hemists' A ssociation... skeletons of Man and Horse.-l engraving. - Comparative oste-

ARTIFICIAL BUTTER AND BUTTER SWINDLES.

 With the introduction of artificial butter, oleomarga rine, "butterine," etc., was instituted a rivalry-or rather a jealousy-on the part of the farming community, who feared the utter abolition of a market for their product. This fear has by no means been ful filled. However, farming interests were able to secure legislation of an exclusive character, whereby artificial products resembling or imitating butter are obliged to be branded and labeled; and furthermore, a tax was laid thereupon which, of itself, was intended to be pro hibitory.Not satisfied with this, in some States it is even de manded that hotels, restaurants, and public institu tions using artiscial butter, oleomargarine, "but terine," etc., shall conspicuously place large placards announcing the fact in their dining rooms. That the law, both as to sale and advertising, is in many in stances evaded must be evident. Thus these prohibi tory laws work injuries to large and beneficial manu facturing interests; but, at the same time, it must be admitted that these very restrictions have, in no incon siderable measure, contributed to theimprovement and perfection of this class of products. It is a fact that at the present moment, so-called "butterine," or oleo margarine, can be bought on the market, which, while representing in exact chemical constituents the pro ducts of the dairy, is, at the same time, much cleaner and purer and more uniform as to quality. Artificial butters have come to stay. Already they are found on the tables of the wealthier and better classes. It is no torious that manufacturers of these products prefer them to the best butters, whether of dairy or creamer production. Moreover, artificial butters possess one insuperable superiority, in that decomposition, through lactic fermentation, is impossible. Again, they are ever salvey in character.
To those who profess abhorrence to the factory pro ducts, the query might well be propounded : What object is there in fostering exclusively the dairy industry, when it forces upon the public a product that is largely inferior, extremely variable as to constituents, and, in the majority of instances, suspicious as to handling and making? So far as nine-tenths of the population is concerned, the butter purchased is in a condition closely bordering upon decomposition, whose sole claim to superiority is that it is derived from animal sources through the medium of the udder. On the other hand, precisely the same product chemically, combined in the same precise proportions, under the title of oleo margarine. "butterine," artificial butter, etc ψ_{4} is ob tained from the same source by a method absolutel cleanly and unobjectionable, without the intervention of the secreting apparatus. This is not to say, how ever, that there are no inferior oleomargarines, the re sult of working up waste, or an admixture of other fatis than those of beef, and that are sold at low prices; the purchase of these, of course, is optional, and measured by the pocketbook of the purchaser.
It is also a notorious fact that the farming community, alive to the cheapness of the products simulat ing those of the dairy, purchase the inferior grades in large quantities and mix with butter, which they re turn to the market as the latter product solely. Twothirds of the dairy product marketed in the largecitie of the West is of this character.
Again, for two or more years past, a large portion of the United States, and likewise of Canada, has been invaded with agents professing to sell a chemical composition which will not alone increase the yield of butter from cream, but likewise precipitate the same from skim milk. Among other preparations of this class sold is one which has invaded Michigan, Ohio, Illinois, and Indiana, termed "black pepsin." It is simply necessary to say there is no such thing as black pepsin and further, may be added, there is no pepsin whatever in the compound. This, as hawked about, at ${ }^{-t}$ banex traordinary price of $\$ 2$ per ounce, possesses an absolute value of less than threetents, it being simply a preparation of salt-aid annatto, with a small quantitylof ren netadū̃ed. A mere tyro in chemistry will readily recognize that this does not increase the product of butter pure and simple, but that the increased yield obtained from the milk is due to a fat that should be entirely foreign to the dairy. In other words, this so-called "butter-increasing compound" precipitates an average of 3.64 casein, in addition to 3.55 butter, in 100 parts of milk. As a result, the final "butter" is considerably worse, both as to keeping qualities and as an article of food-judging from a standpoint of nourishment alone -than the poorest oleomargarine.
It is a fact that butter contains a small portion of casein, which is taken from the milk; but the best butter contains the least. The changes in butter which render it rancid are dependent upon the alterations in the casein, which acts as a ferment and liberates fatty acids. It is readily understood, therefore, that the less casein, the better the butter will keep; and the more there is, the worse it must be for the product.
Again, butter when pure, it must be remembered. is a fatty substance, made up of non-nitrogenous elements. Casein, on the contrary, is almost wholly a ments. Casein, on the contrary, is almost wholly a
here that while butter absolutely free from casein is a comparative rarity, so also cheese that is absolutely free from butter is equally as rare. Cheese per se is composed almost wholly of casein. and a compound very difficult of digestion. Butter, on the contrary, if pure, should be assimilated with the greatest ease
An analysis of so-called black pepsin reveals :
Salt..... $0.83+$
0.15
Rennet (nearly). ... 0.0. 0.02
This, however, is not the only compound of the kind sold for the specific purpose mentioned. There is also hawked about a liquid which, on investigation, proves to be a very weak solution of a poor quality of muriatic acid. It would seem, under the circumstances, if prohibitory laws are to be enforced against artificial butter, products that are merely adulterated butter, or that purport to increase butter by commingling with it the casein matters of the milk, should also be made subject to severe inspection and legislation.

Developing Electrical Inventions.

The industry of the world, whether mechanical, lectrical or chemical, is based on the invention of some inventor, and may be very old or very young, as the case may be, but the great fact is nevertheless the ame. The extraordinary developments that have within very few years taken place in electricity have hown the world what an inventor can ${ }^{\text {do }}$ when his genius is used in the right direction and backed up with a good technical education. There is hardly any ne that requires such a thorough scientific training as our electrical engineer of to-day, and this fact is recognized more and more as time advances. It is a young industry, and, like the men that work in it, young, vigorous and pushing. Capital to the extent of many hundred millions has been invested and is continually going in for new and various applications of the science.
Nothing is too good or sacred here, and a thing that year ago was considered perfect has to-day to give way for something still better. One would naturally think that it would be a very risky business to engage in, but this does not seem to be the case, judging from he ease with which ecapital can be secured for it This is a fact, because every electrical concern keeps up with the times and does not stand still. Problems elating to measuring, transforming, transmitting heating, etc., have been presented and quickly solved n many different 等ays and so far very satisfactorily. Once, now and then, the inventor comes across a stub born and intricate question, and it looks as if all the kill and patience bestowed upon it were thrown away or nothing. They have to be solved, nevertheless, it being too important to let rest, as every new departure means honor and increased business to those who are working on it
In this category we have to class production of electricity direct; an economical way of storing it, which probably will be radically di erent from the present way; electric traction without any overhead contruction, and a more reliable lamp, with the same o higher efficiency than the present makes for out of door ilhumination. They are very hard to solve, some of these problems, and they require both capital and intelligient labor if anything good shall be accom plished. There are capitalists willing to invest money n just those things, but how shall the inventor know where they are? That is another problem, and sometimes almost las hard to solve as a difficult electrical one. This obstacle ought to be done-awzewithipy ome way. An engineer is yaty seldom also a business man; he has in fact nis time to think about money matters, and maist consequently be associated with some one whio understands that part of the business, whicl Indeed is very essential, if eventually the problem is successfully solved.
It seems to me, nevertheless, that an institution of high rank, like the Franklin Institute, or the electrical press of the country, could fill that part, if a popular inclination were directed in that direction These institutions come in contact with men of just those classes in question, and the great benefit that would be a result (if carried out) is too obvious to need any arguing. An inventor would then know exactly where to turn when he has anything new in the departments mentioned. I think in any case that it would be to advantage to have the question ventilated in the electrical press, when undoubtedly several new points would come up, throwing further light on the subject.-G. Emil Hesse, in the Electrical Age.

In the course of his researches among the mummy pits of Achmin, Professor Baeyer, rector of the University of Munich, has discovered cosmetics which had been in vogue among the belles of the land of Egypt at least three thousand years ago. The most notable of these beautifiers were found in the mummy case of an exalted titled personage, the Princess Aft. To enhance the power of the eye, a "brightener" had been employed containing an ingredient which seems to have been imported from far Hindostan, and its peculiar effect was to impart a verdant sheen to the iris.

The appearance of the World's Columbian Exposition on the 4th of July was most remarkable.
The number of paid admissions was 274,917 , but in addition to this many thousand workmen and others who have passes went through the turnstiles, so it is safe to say that the total number of persons did not fall far short of 325,000 . The crowd began to come at four in the morning. The gates were open to all comers at seven, and atseven-thirty there was a crowd at every gate. Cable cars, elevated, the Illinois Central and excursion trains poured in a solid crowd all day. The ticket sellers and turnstile men were powerless to prevent the congestion at some of the principal gates. In many cases it required half an hour to enter the grounds, but once inside there was room for all, and the people scattered among the buildings according to their individual taste. The grounds are closed at 11 o'clock at night, but the attractions were so many, and the crowd so great, that it.was nearly one o'clock before the last remnant of the day's attendance had disappeared.
The first part exercises took place about midday in front of the Administration building, where a temporary platform has been erected. The programme was simple. Appropriate addresses were delivered by Mr. J. S. Norton, Vice President Stevenson, Mayor Harrison, and by Mr. H. L. Carson, of Philadelphia. An enormous concourse of people attended, the plaza facing the platform being crowded to its limits. While these exercises were being held, the day was being commemorated in Mid way Plaisance in a manner most picturesque.

- At noon representatives of the various concessions began to gather at the west end of the Plaisance. Many Betouins dressed in their highly colBetouins dressed in their highted on
ored native costumes, and mounted ored native costumes, and mounted on
camels or spirited horses, seemed to camels or spirited horses, seemed to
take the lead. A large number of Turks with the Turkish and American colors intermingled followed after. The people from the Cairo street were fully represented in their native gala day dress. The actors, jugglers, and other people connected with the Chinese theater appeared in their richest robes. Natives from the Dahomey village and the Lapland village joined in the procession. By no means the least conspicuous feature in the gathering was a band of Pottawatomie Indians. All these and many the looking people that had gathered to most curiousthe day. At a given signal the American flag was unfurled from a lofty pole, and in an instant there was a din of cheers and shouting from the assembled multitude, a salute from the British artillery, and a mixture of noises from fifes, tomtoms and a"great variety of musical instruments from all parts of the world. As soon as silence once again reigned, the Mohammedan priest of the Plaisance, in his bright ecclesiastical raiment, offered prayer. The address at these exercises was delivered by Commissioner Burton. These exercises were carried out by the foreigners connected with the Plaisance, and Americans were interested in them only as spectators.
In addition to these special exercises, each concession observed the day in its own peculiar way. The German village was festooned with oak leaves. The Samoans sang "America" in their native tongue at the South Sea Island theater. The natives of the Javanese village bedecked themselves with American flags. The Chinese theater exhibited a flag upon which was written the Declaration of Independence in Chinese characters. The natives of the Dahomey village wore flags over their shoulders, and the American flag was conspicuous in the Street of Cairo, while in other concessions there was some special feature commemorative of the day. The Ferris wheel was decorated with bunting, and a brass band was stationed in one of the cars during the afternoon and evening, playing patriotic airs. This great wheel presented a magnificent sight at night, as the cars were illuminated and red fire burned at intervals, while the powerful rays of an enormous search light on the roof of the
upon it, bringing out in strong relief against the darkness the enormous proportions of the structure.
Elsewhere in the grounds the day was fittingly ob Elsewhere in the grounds the day was fittingly ob-
served. In the Delaware building exercises were held in connection with the new Liberty bell, which, unfortunately, was not cast in time to be present, but it was rung in the bell foundry in Troy, N.Y., where it was cast. A signal was sent by the Western Union Telegraph Co. from the Exposition grounds to the foundry The original American flag floated by Paul Jones was run up at the exercises held in front of the Administration building, and was also a feature at the exercises in the Delaware building. At the close of the exercises the people marched over to the Pennsylvania building, and this original flag was there spread over the original Liberty bell, which forms a part of the Pennsylvania exhibit. No event of the day seemed so much to touch the hearts of the people as this inc dent in the Pennsylvania building.
Appropriate exercises were held in the New York State building, and in the evening this building was brightly illuminated. Special observance of the day was also made in the buildings of Ohio, Illinois, Washington, California, Michigan, Wisconsin, Indiana, Colorado, and other States.
In the evening a grand display of fireworks was given from floats on the lake opposite the broad open space before the Manufactures Palace. This entire space, from the model battleship Illinois to Music Hall at the Peristyle, a distance of half a mile, was a mass of surging humanity. It was one of the finest pyrotechnic displays ever seen in Chicago. It began with a balloon, which sailed from the top of the Manufactures and Liberal Arts building out over the lake with what appeared to be a ball of fire hanging from

THE PALACE OF FISHERIES.
are driving along the ground to a place in the interior where they are killed. Almost every country in the world sends samples of the boats and the vast variety of appliances used to catch fish, besides pictures of fishing scenes and an infinite number of fish products. Norway is to the front in fisheries. In the exhibit of that country are models of the boats and the weapons used in assailing the walrus, the seal, and the polar bear. The Lofoden fisheries are especially well illustrated. No fewer than 30,000 men, with between 7,000 and 8,000 boats, come annually to fish for cod at the Lofoden Islands. Strange to say that among so many men there is no crime or disorder of any kind. Thirty million cod are taken each year. Gloucester, the American Lofoden, is nobly represented. A large model of the harbor shows warehouses and the fish docks with all the usual accessories. That great fishing center has now 400 schooners, of about 81 tons burden each. There is an interesting model of a fish ing scene in Boston Bay. The water on which the boats float is well counterfeited. Down in the depths the nets may be seen, and on the floor of the bay there are the fragments of wrecks, the debris of a roadstead, and marine plants peculiar to the locality.
In the same building are models of whales, sharks, devil fish, mammoth lobsters, sword fish, sturgeon, etc. A novel way of advertising a fish glue may here be observed. Two pieces of belting, glued together, suspend an old rusty cannon taken from a British frigate that had been sunk in the St. Lawrence nearly two centuries ago. To add interest and variety to this part of the show there are introduced eel traps, lobster pots, machines which automatically remove the scales rom fish, and a model of the menhaden fisheries which illustrates how these little fish are captured in nets, loaded in bulk in the holds of vessels, discharged like grain by means of ele vators, and in brief the whole method of "handling" these profitable products of the deep. . It is needless to say that in the department dealing with angling there is no other country in the world but America that could make an exhibit of anything like equal merit. Everywhere one turns, models are seen which compel admiration on account of the novelty, ingenuity, and evident efficiency of the various angling contrivances which originate in this country, are first employed here, and soon find their way to every civilized land where fish forms part of the natural resources. There is an American-made sportsman's canoe which invites attention. It is very strong and stable; it can carry three men with perfect safety; and yet it weighs only fifty-seven pounds.
No one can doubt the popularity of the aquarium in the Fisheries building. From the time that visitors are permitted to enter in the morning until late at night the corridors are crowded. Not only does every one seem to be pleased, but, without exception, all visitors appear to banish whatever might distract the attention from the instructive, beautiful, or curious exhibits. Those who have lived all their lives remote from the sea are anxious to make an acquaintance with living specimens of such fish as they have read about or have eaten with more or less satisfaction. On the other hand, the visitor who has had the music of the salt sea waves in his ears, and who has had the misfortune to be acquainted with streams and lakes that had been depleted utterly of their finny inhabitants, are just as curious to know all that can be known of the fresh water fish. It cost about $\$ 20,000$ to place the fresh water varieties on exhibition, and at least $\$ 10,000$ to perform the same service for the public with the denizens of the ocean. There is a hospital attached to the aquarium. There Dr. 8. P. Bartlett, of Quincy, Illinois, ministers to such as disease has marked. Fungus gives him a good deal of trouble. It is just as contagious as smallpox, and only the most careful measures can save the victims or prevent them being the means of communicating the fatal growths to their healthy neighbors. The favorite remedy is to bathe the parts affected with a solution of carbolic acid. Notwithstanding all the care, the mortality from this ailment is considerable, being estimated at one-half of one per cent a day. To keep the water in a healthy condition all foreign matter is carefully removed, and fresh air is introduced by a system of pipes laid along the bottom of the tanks.
Sometimes Dr. Bartlett gives an exhibition of the tameness and playfulness of brook trout. He twirls his index finger in the water, and the fish rise in a body to make a rush at the finger and attempt to bite it, pushing one another aside without ceremony in their eagerness to reach the object of attraction. Lake trout are surprisingly fearless. They permit them(Continued on page 38.)

THE VICTORIA HOUSE, CHICAGO.

We present a photographic plate of the British building, or Victoria House, at the great Fair, specialy taken for the Scientific American, and to the British Architect we are indebted for our interior view and the following particulars :
This building forms the official headquarters of the Royal British Commission. In this building Colonel Edis, the architect, has happily embodied the picturesque qualities of an Elizabethan house, both inside and out, though the comforts and convenience which it boasts will perhaps impart considerably more satisfaction to the occupants than any of its artistic qualities. The comforts which Her Britannic Majesty's Commission may enjoy in this Victoria House are certainly in striking contrast to those which a nobleman enjoyed in the times of good Queen Bess, when "blessed with a large family and a retinue of 150 servarts, he was content with but one large table and three long benctios, as sole furniture for his great apartment of state."
Messrs. Johnstone, Norman \& Co. have carried out the decoration and furnishing o the Victoria House, and it will be evident no effort has been wanting to make the British Commission offices worthy of their important function at the World's Co lumbian Exposition.
The modeled plaster ceiling of the hall is copied from ceiling in that well-known example of old work in Wales, Plas Mawr, Conway. The seiling over the staircase and srincipal landing of the hall is after an old example at Haddon Hall. The furniture herein is after the Italian Renaissance, and facing the entrance is a cassone, |quetrie built up with ivory, ebony, box and mother-o'reproduced from an old Florentine example in the pearl on pearwood: A table, copied from one at Aston Royal Palace at Naples, enriched with carving (in Hall, a fauteuil (elbow chair) enriched with tarsia and parts solid gilt), and a painted frontal panel, with carving, a King Charles chair of ebony, a side table of gilded ground, representing the "Departure of ebony, an arm-chair, a "Knole" chair, a "Cluny" Columbus from Spain," by F. Hamilton Jackson. A large arm-chair near displays in sculptured relief the discovery of America. The companion fauteuil, rendered in Francois Premier, is of that old kind known as "Caqueteusc," i.e., cackle or gossip chair. Other furniture includes two fine old settles, copied from examples in the Pitti Palace at Florence. The tables were suggested by one in the Museum at Exeter. Two pedestaled knights in armor stand near the stairway, and the hall also contains an interesting specimen of a chiming "grandfather" clock.

In the reception room the modeled plaster ceiling is

THE WORLD'S COLUMBIAN EXPOSITION-THE BRITISH BUILDING.
chair, etc., samples from Haddon, Hardwicke, Speke, Ham House, and Hampton Court, are all comprised in the elaborate and costly furnishing of this apartment, and the whole makes a fine exhibit in itself of English cabinet making. The well-known ability of Mr. Owen W. Davis, in conjunction with Mr. Thomas J. Norman is to be credited for the beauty and completeness of all this work.
The library is of oak with ribbed ceiling in geometrical pattern, and the furnishing is of a simpler and quieter character, as more befitting its uses. Here again old examples have largely served as models.
reproduced after the bangueting hall of Crewe Hall, and forms a counterpart of one used by Colonel Edis in building the ball-room at Sandringham for the Prince of W ales. In the furnishing of this fine recep tion room are included four beautiful cabinets, one an adaptation of Archbishop Sharpe's, a well-known example of "moulded cabinet work;" another copied from an old scotch "aumrie" (French "armoire") time James I., after one in the possession of the Ba amily at Burton-on-Trent; the third, a richly carve example after a kind of Flemish design in the Clun example after a kind of Flemish design in the Cluny
Museum; and the fourth, a walnut cabinet on cabriole Museum ; and the fourth, a walnut cabinet on cabriole
legs after a Dutch design, a very fine example of mar-

The dining-room has a modeled plaster ceiling, reproduced from the famous one at Campden House the London residence of the Duke of Argyll. The oak paneling and furniture are of a simple treatment, suited to a modern room of Elizabethan style. The embossed leather, which is a noticeable feature on the walls here, as on the rand staircase and elsewhere, is one of the good things for which we are so much indebted to Messrs. Jeffrey \& Co., of Islington, whose wal paper designs have been used throughout the Victoria paper design House. The pattern of embossed leather in the dining room is the same as that specially designed for the Prince of Wales' ball-room at Sandringham for Col. Edis.
The Commissioners' room is a handsome apartment on the first floor, for use of the mem bers of the Royal Commis sion, and serves the uses of a club and a business room The furniture is of oak of antique character, designed by Mr. Owen W. Davis.

For the carpets throughout the building hand-woven Axminster have been chosen from the Royal Carpet Works, at Wilton, near Salisbury, by Messrs. Yates \& Co. The stoves, fenders and fireplac fittings were designed and executed by Feetham \& Co., of Clifford Street. The iron * backs to the hall stoves with the royal arms are replicas of one designed for the state vestibule of Windsor Castle by Messrs. Johnstone, Norman \& Co., in 1887.

The three beautiful stained glass windows on the grand staircase were specially de signed and executed by Messrs. Campbell, Smith \& Co., without whose admirable productions it appears no English exhibition would be complete.

The very cleverly treated electric fittings are by Starkie, Gardner \& Co., who also made the locks and hinges of wrought and polished iron largely after old examples.
We are indebted for some particulars of our descrip tion to Mr. C. Eyre Pascoe's dainty little souvenir of the Victoria House.

Contrary to the opinion of very eminent geologists, Prof. Bonney contends that glaciers exert no excavating action, and this conclusion he bases on facts observed by him in the Swiss Alps. He had followed up many of the valleys in Switzerland, and the work of the glaciers in every instance should, he believes, be classed rather as abrasive than erosive. In the absence, however, of the erosive theory, it will be difficult to ac count for the present character of many of the lochs on the west coast and in the interior of Scotland.

The Wrationg flall

Combination Cement and Iron Bridge.
A new bridge was recently completed over the River Neutra, in Hungary, according to a system devised by Robert Wunsch, and consists of beton arches in which iron skeleton framework has been incorporated. The iron work comprises not simply single iron rods, but complete trusses made up of horizontal upper and parabolic lower chords. Cross girders and tie rods, however, have been entirely omitted and are supplanted by the beton. The wooden false work of the bridge was built to form a series of moulds, each mould constituting one complete bridge arch, and after the iron work had been put in place the beton was dumped in and thoroughly rammed. The work was divided up, so that the beton filling of each arch was completed in one day, and the false work was kept in place for an average of 37 days for each arch. The bridge piers also consist of beton. There are, in all, six arches. The total length of the bridge is $3771 / 2$ feet and the width 19.7 feet. The whole work of construction was completed in four months, including the time consumed in driving piles for the pier foundations.

AN IMPROVED CAR COUPLING.

This coupling is so secured to the cars as to prevent its pulling out, and its interlocking jaws render the telescoping of the cars impossible. The improvement has been patented by Mr. Robert N. Ervin, of Cleburne, Texas, a locomotive engineer of twelve years' experience, and at present an employe of the G. C. \& S. F. R.R. Fig. 1 shows the application of the device in a bottom plan view of the meeting ends of two cars coupled, Fig. 2 being a horizontal section and side elevation of a drawhead. Each drawhead has its hooked nose transversely recessed to receive a tongue of an adjacent coupling, preventing vertical displacement, and is adapted to receive the link of an ordinary link and pin coupling, for which a pin hole is provided. Each drawhead has an interior passage, the inner end of which has a nipple to receive the coupling device of the train pipe of an air brake system, while its outer end opens into a vertical tapering socket in the interlocking face of the hook, such faces, when engaged, forming a seat for a plug, as shown in Fig. 3, having a straightway port to make the passages continuous from car to car. The plug preferablyhas a metal core, surrounded by a rubber jacket or packing, and an eye by which it may be chained to the car. The shank of the drawbar is shorter than usual, and side bars, between which the drawhead is loosely secured, are bolted to the draw timbers or sills, springs being interposed on either side of the pin or key. The drawheads are close up to the dead-blocks or bumpers, so that the force of meeting cars will be largely expended on the bumpers. Only a small portion of the rear end of the drawbar is confined between the draught timbers, thus allowing the body of the car to move from one side to the other in rounding curves, while the jaws of the drawhead remain rigid, and are subjected to a straight pull all the time. For uncoupling, a push piece is arranged in a transverse cavity of the drawhead, and jointed to a lever connected by a rod with a hand lever at the side of the car. This lever may be placed in such position as the construction of the car may render convenient. It is impossible for the coupling to part

ervin's car coupling.
by one car dropping lower than the other, and with this coupling all danger to trainmen in coupling and uncoupling is avoided.

Glycerine for a Cough

In severe paroxysms of coughing, from whatever cause, a tablespoonful of glycerine in hot milk or cream will give speedy relief.-Annals of Hygiene Med. Rec.

THE SILVER STATUE OF COLUMBUS.

Among the more remarkable exhibits at the World's Columbian Exposition is the silver statue of Columbus, which pertains to the splendid exhibits made by the Gorham Company.
The statue depicts the hero in his most important role. The figure is designed and modeled by Bartholdi, the contemporary French sculptor, who is so well and favorably known to the American people from the statue of "Liberty Enlightening the World."
As a work of art, this statue has been pronounced by

BARTHOLDI'S SILVER STATUE OF COLUMBUS.
connoisseurs to be a masterpiece. Life and vigor are implied in every line and feature, and the general effect is one of great beauty. Combined with this fact is the significance as being probably the largest figure ever cast in silver and the success attendant upon its conception and production. The statue is somewhat more than life size, being slightly over six feet in height and standing on a silver pedestal about a foot high. Thirty thousand ounces of sterling silver, $925-1,000$ pure, was used in the casting. The finish is such as best to preserve the whole vigor and spirit of the sculptor's model rather than as a specimen of the chaser's art. The metal is finished in the oxidized form, thus allowing much more expression in light and shade effects than as though highly polished. The latter style of finish would give simply a colorless, lifeless picture, unrelieved by darker tints.

The process of casting was not essentially different from the ordinary mode of procedure in bronze, except that more care was taken in the details. The sculptor first made in clay his complete model exactly as it is to appear in the finished statue. Then a mould was taken of the model by applying a heavy layer of plaster of Paris. The plaster mould was then removed in arched sections, so that being removed they could be placed together so as to form a complete figure with the outlines on the interior. From this mould a plaster of Paris cast was made, thus reproducing in plaster the identical figure first modeled in clay. The plaster cast, covered first with a coating of shellac to prevent the absorption of moisture, was then ready for the founder, and in this form was shipped from the studio of the sculptor at Paris to the works of the Gorham Company at Providence, R. I.
At the foundry the plaster cast was first put on a soft bed of sand and covered with a layer of moulder's sand shaped into arched sections, as was the plaster mould, and a sand mould thus formed which could be taken off the cast and put together again. An out side frame of sand, beaten hard over the sections, served to keep the layer intact. After this step was completed, the sections were removed and a coating of liquid plumbago or black lead applied to the inner surfaces. The moulder's, or French sand, is of a pecu-
liar nature, containing the qualities of a pliable clay and a coarse sand, which will allow, by its porous composition, the escape of gases generated in the interior. The lead-coated sections, after being put together, were secured by perforated iron pipes running through the figure in all directions, like a venous system. second cast was then made from the second mould by
packing the mould fall of sand mired with a flour
paste, so that the particles of sand will cohere; the sand model being held together and in place by the iron pipes which traversed the interior of the mould. Again the sections of the sand mould were removed, the plumbago still adhering and remaining on the interior surface. The sand model or core, bared from the outside shell, was then shaved down to a depth corresponding to the thickness of metal in which the statue was to be cast, and then painted with a layer of plumbago as the interior of the shell or mould Both shell and core were then ready for the oven, and after being subjected to it three days' bake they were dry enough for the operation of pouring. Then the sand shell was built up again over the core, and the whole fastened and held together by an iron frame Thus the final mould for the casting consisted of the space bounded on the outside by the sand mould, giving the exact outlines of the original plaster and clay models, and on the inside by the sand core, which has been reduced in all parts, corresponding to the depth of metal to be cast. The entire mould was then covered with a heavy outside coating of sand through which channels are cut leading to all parts of the interior space. These channels are for the pur pose of causing an even and rapid distribution of metal, and extend from the top or mouth of the mould where the metal is poured, through the outside layer in tortuous pipe-shaped passages to the various parts of the mould.
Four black lead crucibles containing the ton'and a quarter of precious metal were placed in the furnaces after the completion of the final mould. After about four hours the molten contents of the crucibles were at a white heat and all was in readiness. One by one each crucible was lifted by a chain fall and the contents poured into a large iron bucket and thence to the huge mould buried in sand. After a few hours the casing was sufficiently cool to allow the removal of parts of it ; enough to show, to experienced eyes, that the casting was practically perfect.
Thus was brought forth in almost heroic size the picture in silver of Christopher Columbus; a masterpiece of the great sculptor and a perfect exemplification of the ability of the founders to successfully overcome the difficulty of casting a life-size figure in solid silver.

A FLUE AND CHIMNEY CLEANER

This is a simple and inexpensive device which may be readily passed into and through a chimney or flue, to clean it, its flexibly connected handle sections conforming to the shape of the flue, so that it may be introduced from a room and moved upward or downward as desired. Fig. 1 is a longitudinal section and Fig. 2 a perspective view of the device, which has been patented by Mr. William H. Bliss, of Kansas City, Mo (Station A.) The brush section has a central eye bolt on the outer end of which is a conical cap and lock nut, the eye bolt being surrounded by a tube and three or more disks, the latter forming clamps between which the brush material is held, and the disks being drawn together by bolts provided with suitable lock nuts as shown in Fig. 1. A cord attached to the eye of the eye bolt of the brush section extends through handle sections of spool-like form, the number of sections employed varying with the length or height of the flue or chimney to be cleaned, the other end of the cord being knotted or attached to a nut on the outer

BLISS' FLUE AND CHIMNEY CLEANER.
end of the last section. The latter section also has a side recess in which is pivoted a cam adapted to engage the cord to hold it taut after the different sections have been put in place. In introducing the brush into a chimney or flue, the spool sections are added until the brush section has been forced practically through, when the outer handle section is added and the cord tightened, after which the cleaner is moved in or out as deemed necessary.

WORLD'S FAIR NOTES.

Continued from page 35.)
selves to be fondled very freely and do not appear to dread any harm, even when the hand is thrust in among them with some violence. Rare beef and sea lettuce are much relished by fiddler crabs. The humanlike action of the claws displayed by these animals when selecting certain morsels and conveying them to the mouth is'at first very interesting to note, and a strange impression is produced when an identity of process in effecting the same end is observable in creatures so far removed in the scale of creation as a human being and a crab. Visitors make, apparently, an endless number of discoveries for themselves in their inspection of the tanks. No one leaves with an appearance of weariness, and many persons can be seen day after day, whatever other attractions there may be elsewhere, hastening to have a glimpse, however brief, at the contents of the aquarium.
The Scenic theater, which has a seating capacity of one hundred, is lighted and cooled by electricity, and the performance is entirely electrical. The performance is called "A Day in the Alps." A perfect Swiss view is shown, with snow-covered peaks and valleys, while in the foreground are pleasant Swiss chalets. The opening scene is just before daybreak; after a faint glimmering of stars the sun begins to gild the snowcapped peaks, the mist is dispelled, and you can hear in the distance the peasants singing the "Jodel." A storm then comes up. This is a very realistic per-formance-thunder, lightning, and rain follow each other in quick succession. The sunset follows with the never-to-be forgotten after-glow, the moond comes creeping up behind Mont Blanc, and the stars shine brightly. The effects are very wonderful, and the audiences are delighted.

The second spun glass dress ever made is now the property of the Infanta Eulalia, the first being made for an actress. The glass was spun at the great Exposition in the Libbey building in the Midway Plaisance. From a glass cylinder half an inch in diameter and a yard in length, over 12,000,000 feet of filmy thread was spun, and this, it is said, was woven into twelve yards of material, which was made up into a dress for the Infanta by a New York modiste. The wheel on which the glass was reeled is 18 feet in diameter, and revolves 350 times per minute, or at the rate of about 70 miles per hour. The extremity of the glass rod, from which the thread is drawn, is heated to a high degree, so as to melt the glass, which is then drawn out by the wheel into a fine thread and wound on the poriphery of the wheel as fast as it is formed. The fabric looks like heavy white satin, but has a most beautiful sheen. Such dresses may do to look at, if kept in a glass case, but their use would be rather dangerous, owing to the small bits of fine glass that break off in handling, and are likely to float in the air and enter the eyes and nose.

The Blackening of Incandescent Lamp Bulbs.
A recent paragraph in the Digest, referring to one of the theories of the blackening of lamp bulbs, namely, that it is due to the evaporation of carbon, recalls a paper by Prof. Elihu Thomson, published in a recent number of the Lehigh Quarterly, which shows that he has held this view for many years, his experience since then having tended to confirm his views. The paper is entitled "The Life of Incandescent Lamps, and contains a number of points of
which may not be generally known.
In answer to the question, Can a filament be made which will not deteriorate and therefore not blacken the interior of the bulb? he is inclined to think that it cannot, if carbon is adhered to, and carbon as yet seems to be the best material in existence; it is so on account of its infusibility and its apparent volatility. It actually does soften at extremely high temperatures, and will bend readily when so softened. It does not melt at the highest known temperature, but it readily vaporizes in the are lamp. It is very probable that carbon, infusible as it seems, could be fused at arc temperatures while under pressure. Thus, an electric arc in an inert gas at high pressure would probably drip melted carbon, which would form graphite in masses or crystals.
The deterioration of incandescent lamps has often been laid to the bombardment of gas molecules, but Prof. Thomson has long been convinced that in a well exhausted lamp it is due almost entirely to evaporation by high temperature. Just as ice evaporates in vacuo, so carbon acquires in vacuo a certain volatility at an increasing rate of the temperature. He assumes, of course, that the vacuum is so good that none of the bluing or visible discharge of current takes place, which of course wears the filament by actual carriage of carbon. He thinks that it would be very strange if carbon maintained at so high a temperature in a vacuum did not evaporate at all, as it is well known that almost all substances raised to a sufficiently high temperature do give off insensible vapors, and that melted metals frequently behave as mercury does at the ordinary temperature; the mercury does at the ordinary temperature; the
presence of foreign substances and gases will in some
instances accelerate the action or perhaps in other cases retard it. In a lamp a certain evaporation takes place which is independent of the size of the bulb, from which it follows that the age coating will become much less as the bulb is greater in size, for the same deposit will yield a much thinner coating of carbon over a large surface than over a small one. If one lamp were made with the smallest possible bulb and another with a large bulb, the former might be rendered opaque, while the latter would only be slightly darkened, other conditions being the same. He puts great stress on the uniformity of the filament, and gives the reasons. It appears to be true, he says, that the limit of practical improvement in the efficiency of incandescent lamps is to be found in the properties of the element carbon, and particularly its volatility. It is fairly safe to say that no other less volatile substance has yet been found, and that carbon, as pure and perfect in structure as possible, is likely to hold its place, at least for some time to come, as the material for incandescent lamp filaments.

Family Lite Among the Tibetans.
Some very interesting sketches have been given in Leisure Hour by Miss Isabella Bishop, descriptive of her journeyings in Tibet, that inaccessible and rarely visited corner of Asia
Family life, she says, presents some curious features. In the disposal in marriage of a girl, her eldest brother has more "say" than the parents. The eldest son brings home the bride to his father's house, but at a given age the old people are "shelved," i. e., they retire to a small house, which may be termed a "jointure house," and the eldest son assumes the patrimony and the rule of affairs. I have not met with a similar custom anywhere in the East. It is difficult to speak of Tibetan life, with all its affectionand jollity, as "family life" for Buddhism, which enjoins monastic life, and usually celibacy along with it, on eleven thousand out of a total population of a hundred and twenty thousand, farther restrains the increase of population within the limits of sustenance by inculcating and rigidly upholding the system of polyandry, permitting marriage only to the eldest son, the heir of the land, while the bride accepts all his brothers as inferior or subordinate husbands, thus attaching the whole family to the soil and family roof-tree, the children being regarded legally as the property of the eldest son, who is addressed by them as "Big Father," his brothers receiving the title of "Little Father."
The resolute determination, on economic as well as religious grounds, not to abandon this ancient custom, is the most formidable obstacle in the way of the reception of Christianity by the Tibetans. The women cling to it. They say, "We have three or four men to help us instead of one," and sneer at the dullness and monotony of European monogamous life! A woman said to me, "If I had only one husband, and he died, I should be a widow; if I have two or three, I am never a widow!" The word "widow" is with them a term of reproach, and is applied abusively to animals and men. Children are brought up to be very obedient to fathers and mother, and to take great care of little ones and cattle. Parental affection is strong. Husbands and wives beat each other, but separation usually follows a violent outbreak of this kind.
It is the custom for the men and women of a village to assemble when a bride enters the house of her husbands, each of them presenting her with three rupees. The Tibetan wife, far from spending these gifts on personal adornment, looks ahead, contemplating possible contingencies, and immediately hires a field, the produce of which is her own, and which accumulates year after year in a separate granary, so that she m
not be portionless in case she leaves her husband!

The long distance transmission plant of the San Antonio Light and Power Company, Pomona, Cal., has now been in successful operation for the past six months, transmitting a distance of twenty-eight miles. The hydraulic part of this plant, the Electrical Engi-
neer says, was installed by the Pelton Water Wheel neer says, was installed by the Pelton Water Wheel
Company, and one of the principal attributes to the successful operation of the plant is their new regulating apparatus, which, it is stated, controls the speed of the wheel perfectly under the most exacting conditions as o variation in load on the generators.
With this new system of regulation which has been developed by this company, the successful operation of any plant which they install is now assured. The regulating appliances heretofore used in connection
Perhaps the most severe test that a water wh governor was ever subjected to is in the case of a Pelton wheel running a set of circular saws at the mill of the Red Cross Lumber Company, in the northern part of California. The wheel is operated under a vertical pressure of 485 feet. The saws require to drive
them through the log at full feed 125 H . P. They take about seven cuts per minute, thus varying from full load, namely, 125 H. P., to only what is required to drive the saws running free. During this operation the variation in speed is not perceptible.

One of the most valuable features of the regulator is that it is positive in movement, and there is no danger whatever of its racing, thus admitting of its being geared so as to be extremely sensitive and to meet the requirements of electric railroad work, in which the changes are tremendous.

Magnetism is Without Effect on the Human
Mr. A. E. Kennelly, of the Edison laboratory, and Dr. Frederick Peterson, of the College of Physicians and Surgeons, have reported to the American ElectroTherapeutic Association the result of their experiments on the effect of magnets on the human body. Experiments were tried on cats, frogs, boys, and themselves. Human and frogs' blood failed to show any traces of polarization, movement, or vibration. In the case f live frogs, no influence of the magnet on the lood cells or the movement of the blood could be ound.
To test the German theorists' claims that magnetism increases the resistance to conduction in motor nerves and causes paralysis, a small dog was placed in a cylinder between large field magnets and kept there for five hours under the influence of a strong magnetic current. The exposure seemed to have no effect on the dog, and he came out as lively as he went in. Then a boy was placed between the magnets and a magnetic current was turned on. There was no' effect upon the boy. The magnetic current was strong enough to balance a heavy bolt in the air and to contract wires of iron and to hold iron chains so strongly that it required the efforts of several men to detach them. Then the experimenters themselves and their men took turns in lying down on a board placed between the poles of a huge magnet with the current alternately turned on and off. One observer would hold the wrists of the subject and take sphygmographic tracings of the pulse. The second observer would observe the respiration, and the operator would turn the current on and off. No changes were observed in the tracings, or in the respiration, or in any other way. One subject held a steel screw in his hands, while he could tell from its attraction whether the current was on in the magnets. He had no sensations of any other kind. The observers concluded that the human organism is in no manner affected by the most powerful magnets known, and that the brain and the nerves get no sensations or impulses from the magnets. They say that it may be possible that some day magnets may be invented where the number of reversals to the second is high enough and the force strong enough to produce effects on the nervous system, but that so far as the experiments show, electromagnetism seems to have no influence whatever on the human body.

Fighting the Gypsy Moth.

The Massachusetts Agricultural Society employs one hundred men in fighting the gypsy moth. Each man has charge of a district about a mile square. Whenever moth clusters and nests are found, they are collected by the wagon load and burned. Paris green in large quantities has been used in spraying the infected trees and grass. The work of extermination has been going on for the last five years, and until this year the results were far from encouraging. The pests had spread over 200 square miles in the northeastern part of the State, causing desolation equal to that by fire or flood, and $\$ 275,000$ had been appropiated by the State legislature for their destruction. The moths are said to have been introduced in this way: M. Trouvellot came to this country from France about twenty years ago, and, settling at Medford, studied the cultivation of the silkworm. One day he placed half a dozen eggs on the window ledge of his home. During a brief absence the eggs were blown off and scattered through the yard, so that their recovery was impossible. From these eggs were produced the army of moths that have done much to depopulate a large part of Massachusetts. Professor Lintner has suggested the discovery and introduction of a parasite that would feed upon and so destroy the moth.

A New Prepared Paper.
The Droguisten Zeitung is responsible for the statement that in Germany a patent has been refused, and the manufacture and sale have been prohibited, of a paper so prepared that any ink-writing upon its surface could be erased by the simple application of a moist sponge. The paper was made of the ordinary ingredients, with the addition of asbestos and parch-ment-glue. The paper pulp, after rolling, was immersed for a short time (from six to thirty-five seconds, according to the thickness of the paper to be prepared from it) in concentrated sulphuric acid at 20°, diluted with 10 to 15 per cent of water. It was then pressed between glass rollers, passed successively through water, ammonia solution, and a second time througb water, strongly pressed between rollers and dried on felt rollers, and, finally, on polished and heated metal rollers. The finished article is said to be precisely like ordinary paper. Its sale has been prohibited on acordinary paper. Its sale has been prohib.
count of the misuse to which it can be put.

The History of Patents.
To the Practical Engineer (London) we are in debted for the following facts and anecdotes relative to early patents, the names of many discoverers, and the date of the inventions: While the lawyers and the treasury were wrangling over who could consume the greatest amount of seed corn wrung from inventors, about the year 1775 the treasury made one of its fiscal errors (so costly to the nation), which had an important bearing on patents of invention. Just as it shamefully overtaxes impoverished inventors now, without rhyme or reason, on a fiscal error which has lost it (or rather the public) $£ 50,000,000$ since 1852 , so in the year 1775 it tried taxing the American colonies in the matter of tea entering Boston harbor. The colonies would not pay its exaction, and, fortunately, were far enough off to resist. A war followed, lasting many years, until on September 3, 1783, we had to acknowledge the independence of the colonies, and swallow the unpleasant fact that the fiscal error of the treasury had lost us America. One effect of this separation of the colonies was that all the old " $£ 4$ 16s. 6d. extra fee" colonial patents running in America were, of course, canceled thereby. New patent laws were required in America in place of the old law, deceased, and the outcome was the creation, in 1790-1793, under George Washington, by Jefferson, of the best patent law that has ever existed-a law which has not only scattered untold benefits throughout America, but from which we in this country are also receiving reflected benefits. The fundamental principle of the American act is that "inventors and authors have equal and similar claims to the protection of the legislature"-in other words, that protection to inventors should be valid, and not a sham, and that lawyers and the treasury should not be allowed to plunder them. It is not difficult to realize why America took such care to cut absolutely clear from our chancery system. It would result from the fine object lesson chancery had previously given the world in their treatment of James Watt. If our patent system had been anything but a delusion and a snare, it would have protected an inventor such as James Watt, who gave the world the steam engine. It did nothing of the kind, but let him in for ruinous lawsuits, that ate up the whole of his profits for the natural term of his patent. What likelihood could there possibly be of protection for any humbler inventor, after such treatment of Watt? None whatever. The protection sold by the British Patent Office was evidently a farce, a very costly farce, too, at about $£ 400$ per patent for the United Kingdom. To such a miserable strait had the wrangling lawyers such a miserable strait had the wra
brought our patent laws at this period.

The establishment of the American patent system in 1790 was the protest of business men against the violation of all the true interests of invention by lawyers, who could not appreciate them. The movement was to invention what Luther's movement was to the abuses of the old Catholic Church: the spirit of invention was preserved, but the mummery was thrown tion was preserved, but the mummery was thrown
aside. Inventors should remember that date-1790-as aside. Inventors should remember that date-1790-as
that when invention asserted its freedom. To avoid that when invention asserted its freedom. To avoid
the old chancery trickery over worthless titles, leading to endless lawsuits, the American system introduced the preliminary examination system, and granted only patents which were as valid and safe from lawsuits as they could possibly be made. It gave these valid titles with business dispatch, instead of with endless legal delay, it printed its specifications in English, on paper, so that they could easily be consulted by inventors, instead of "engrossing them on skins, in black hand, in the Latin language," which was only fooling with invention. It gave 17 instead of 14 years for the duration of a patent, or 21 per cent more time. It charged only $£ 7$, instead of $£ 400$ for a United Kingdom patent, or only one fifty-seventh part of thè lawyer's price. Here was abuse done away with at a stroke, but the effect on the fee hunters of chancery and the treasury would make them hate the American patent system as the Pope hated Luther. First, they would hate it because they would feel that for 167 years they had betrayed their trust, and been plundering instead of encouraging invention. Secondly, they would hate it because the business men at the head of the American Patent Office would be no party to the issue of worthless titles to patents out of which the lawyers could make "six or twelve fold law costs" in subsequent trials. Third, they would hate it because, if America issued patents at one fifty-seventh of their charges, it demonstrated beyond question that fifty-six parts out of the 57 charged had never been other than shameless extortion. Fourth, above all they would hate it from the fiscal error of the treasury having lost the American colonies, so that nothing coming from America could possibly have any merit in it whatever. The effect of this deep hatred of all things American 100 years ago has blinded us to the intrinsic merit of America's patent system, and withheld from the English people that which in their own interest they ought to have had from the very first.
The American patent system, working in the interest of the public, demonstrated to them its commerest of the public, demonstrated to them its commer-
cial value in the first few years. In 1791 Fitch, and
in 1793 Fulton, invented practical steamboats. In 1794 Whitney invented the cotton gin. Cotton planting at that time was languishing, and Whitney's invention made it exceedingly prosperous. Congress voted sums to assist invention, and at Washington a fine museum was erected, containing models and records of considerable public interest. When General Ross took Washington, in 1812, and burnt the Capitol, it was proposed to treat the Patent Museum after the same fashion. "A loaded cannon was trained upon it, when its director, Dr. Thornton, put himself before the gun, and in a frenzy of excitement exclaimed, 'Are you Englishmen, or only Goths and Vandals? This is the Patent Office, the depository of the ingenuity and inventiveness of the American nation, in which the whole world is interested. Would you destroy it ? If so, fire away, and let the charge go through my body.' The effect is said to have been magical upon the soldiers, and to have saved the Patent Office from destruction." Our soldiers would report this incident when they returned home to England; news would be constantly reaching our persecuted inventors of the success of friends and relatives in America, under its patent system; many of our ablest inventors would leave this country for America in consequence, while a general feeling of unrest under our vicious, lawyerridden system would spread far and wide in this coun try. The knowledge among inventors that justice i granted them in America, and withheld them here has led to the frequent forcing of the patent question on Parliament during the century. The 1790 prejudice against the American system has, however, alway been sufficient to continue gross abuses in our patent system down to the present day. We have seen what came of a fiscal error of the treasury in 1775. Is it not about time it dropped the present one paralyzing invention?
During the 167 years from 1623 to 1790 , the discouragement of! the chancery system was such that only one useful invention appeared at an average of $31 / 4$ years interval.

The best list of useful inventions that can be made out for this period only gives 14 of such for the first 100 years, and 37 for the remaining 67 years, up to 1790 Many of these inventions were not patented under chancery at all. They are as follows:
1623. Mannsell's glas patent.
1630. Ramsey's fire engine patent.
1643. Torricelle's barrometre.
1649. Pascal's hydraulic press.
1650. Otto Gueriche's air pump.
1650. Otto Gueriche's air pump.
165.
1664. Hill's breechloader.
1672. Wooden railroads.
1676. Barlow's repeaters.
1688. Papin's steam engine patent.
1698. Savery's steam engine patent.
1716. Floating docks.
1721. Halley's diving apparatus.
1723. Streets lighted with hydrogen gas.
1727. Leupold's high pressure engine.
1732. Ledemour's pump.
1736. Hull's steam tug.
1738. Iron rails nailed to wooden sleepers.
1739. Emerton's wood preserving patent.
1747. Watson's electric telegraph.
1748. Paul's carding patent.
1752. Franklin's lightning rod.
1756. Strutt's stocking frame.
1756. Dolland's achromatic telescope.
1758. Dolland's achromatic telesco
1762. Wedgewood ware patented.
1762. Wedgewood ware patented
1764. Blackley's tubular boilers.
1764. Blackley's tubular boi
1767. Hargraves' spinning jenny.
1768. Lace machinery.
1769. Watt's steam engine patent.
1769. Arkwright's spinning frame patent.
1771. Crompton's mule patent.
1771. Crompton's mule pa
1774. Lesargis telegraph.
1774. Lesargis telegraph.
1776. De Jouff roy's steamboat trial.
1777. Bushnel's torpedo.
1780. Pickard's crank patent.
1780. Leblanc's artificial soda.
1780. Burgand's argand burners.

1783-4. Cort's iron patents.
1784. Bramah's lock patent.
1784. Montgolfier's balloon.
1784. Watt's locomotive patent.
1785. Cartwright's locomotive patent.
1785. Arkwright's power loom patent.
1786. Lebon's gas light.
1787. Betancourt's electric telegraph.
1787. Hamer's wool shearing.
1787. Symington's steam engine patent.
1788. Miller's steamboat trial.
1789. Galvarni's batteries, etc.
1789. Present rails and wheels invented.

Three new torpedo boats have been ordered of Yarrow \& Co. by the British naval authorities. They are to be 140 feet long by 14 feet 6 inches beam, and to a little over 31 miles speed of 27 knots , which is equal to

Garrespondence.

Scald the Scoundrels.

To the Editor of the Scientific American
I see in some of late newspapers that five masked men halted and boarded a locomotive of the California express, June 10, 1893, and forced the engineer to take a sledge, batter in the door of theexpress car, wounded the messenger, and robbed the express. Now, I am an old engineer-too old to do good service, nearly 73 years old-and it grieves my soul to read of an engineer being forced to compliance to such devils as those. I think every locomotive that travels on those long, lonesome roads should be furnished with a hot steam jet, one on the fireman's side and one on the engineer's side, with elastic pipes that they can point the jet in any direction and blow a masked man's eyes out with steam before he had time to use a revolver, or any other suspicious character that comes within 20 feet of the locomotive. Now, please make this idea known to the master mechanics or superintendents of locomotives everywhere, and I know they can furnish them and extend a steam jet into the express car, so that they can turn steam into the car and scald train robbers to death before they could get out of the car, and put a mark on them that they could be distinguished for a month after. I am too nervous to write much. Please scatter the idea as broad and as quick as you can, and oblige an old man that loves his fellow man that is honest and hates a dishonest person.

Thomas R. Allen.
Lucas, Lucas County, Iowa, June 17, 1893.

Shapes of Eggs.

Various attempts have been made to account for the diversity in shape seen in eggs. A recent study convinces Dr. Nicolsky that the differences may be all traced to gravity, and he finds his idea confirmed by all the eggs in the zoological collection of the St. Petersburg University. He supposes that pressure by the sides of the ovary tends to elongate the egg before the shell has hardened. In birds which keep a vertical position while at rest, as do the falcon and the owl, the soft egg is made short by the action of the weight of the body against the ovarian pressure; while in birds that, like the grebe, are nearly always swimming, the egg is lengthened because the bird's weight acts with the compression by the ovary. The egg is made more pointed at one end than at the other in birds that, like the guillemot, are frequently changing their positionsometimes swlmming and diving, sometimes perching on the rocks, etc.

Soapsuds as a Lubricator

I had a curious lubricating experience a few years ago that I would like to put on record, observes Gulf in Railway Appliances. The machine that gave me the trouble was for experimental purposes, for what purpose it matters not. The trouble lay in the lubrication of a shaft that had to make 4,000 revolutions per minute. It was about four and a quarter inches in diameter, with journals from eight to nineinches long, and carried a weight of 1,800 pounds. The thing simply wouldn't run cool. We cut oil grooves in the boxes; we scraped them; we used every kind of metal that we could think of ; we hitched on a pumpand pumped gallons of oil through those bearings ; and yet, in from five to ten minutes, they would commence to heat, and nothing seemed to be able to stop it but the stoppage nothing seemed
One day, in a fit of despair, we put soapsuds in the tank instead of oil and started to pump that in. Presto! The bearing had found the food for which it was craving, and proceeded to do its work with the cheerfulness of an old campaigner. It seemed that it was not so much the quantity of lubricant that was needed as a regular and continuous supply. The oils that we were able to use had a consistency that unfitted them for reaching the remote points under the rap idly revolving bearings, so it heated, while the soapy water was thin enough to be forced over the entire surface and keep everything all right. I presume that there are oils that would have done the same thing, only we did not happen to get hold of them. But if you ever attempt to use water, remember that you will need it all the time and in large quantities.-Railway Review.

Use of Compressed Air to Cool Journal Bearings. In any place where air compressors are used steadily, or where an air supply is convenient, it is quite convenient to conduct a pipe so as to blow air upon the heated bearings, and thus cool their heated brows, as the air will conduct heat away nearly as well as water. Air has an additional advantage in the fact that it cools in expanding so as to still further aid in the cooling of boxes where this scheme is applied. We are inclined to agree with an exchange that it may seem visionary, but if you have a good chance try it, and see if it don't help keep them cool, the help depending upon the flow of air and the pressure from which it expands, as ex panding air cools very rapidly.-Railway Review.

THE KRUPP EXHIBIT AT THE GREAT FAIR. (Continuedfrom first page.)
about 80 tons, and the total load on the rails was, therefore, nearly 230 tons. It was illustrated and described in the Scientific American of April 22, 1893.
The next gun that attracts attention is of smaller caliber, and though less monumental, is a far more caliber, and though less monumental, is a far more
serious weapon than the 122 ton gun. This is the 12.01 in . caliber ; it is not a new gun, but is far more interesting on that account, for it has already withstood the severe test of 98 rounds, and is still in service as a naval gun. This is a specially interesting exhibit, because it is mounted complete on its turret carriage, and the hydraulic arrangements for working and loading are very well illustrated.
The 28 cent. (11.02 in.) gun is the next that attracts attention; this, as exhibited, is mounted on a coast defense hydraulic carriage, but the same type is also used for naval purposes. The length of bore is 40 calibers, or 36 ft .6 in., and the total weight is 43 tons. This gun is mounted on a carriage which permits it to have a maximum elevation of 45 deg., at which angle the range is 20 kilometers ($121 / 2$ miles) ; the weight of projectile fired is 759 lb. , and the charge is 352 lb . of brown prismatic powder. With this charge an initial velocity of $2,066 \mathrm{ft}$. has been obtained. This gives a striking energy at the muzzle of $6,979 \mathrm{metric}$ tons, reduced at a distance
axles. This part of the exhibit at least is of particular commercial value, because the Essen works have a large trade with America in this branch of their industry.
Of cast steel there are some notable examples. The largest is the bow frame for a new German ironclad the part shown weighs 24 tons, and is 42 ft . high; this is made in three parts. There is also a portion of a is made in three parts. There is also a portion of a
stern frame for the same ship, in two pieces, weighing respectively $12 \cdot 8$ and $11 \cdot 3$ tons. It may be mentioned with regard to these castings that they could not be conveniently transported by rail, and were brought all the way from Essen to Chicago by water. There is also an engine bedplate of 6.3 tons; there are some examples of steel locomotive side frames, and a number of other objects, the most important of which is a reproduction of the screw of the German Lloyd steamers Spree and Revel.
There is also quite a collection of mining machinery, which has always been a specialty of Essen. The walls of the pavilion are hung with a number of views illustrating the Krupp works. At the end of the main hall are seven large. drawings, three of them-the largest-being of the works, and the others plans of the Meppen testing grounds and dia grams of the progress and development of the Krupp industry. Beneath are two very interesting me morials, the first contri buted by the workmen and employes in honor of the of 2 kilometers to 5,300 metric tons. This exhibit is made all the more attractive because it is inclosed within a shell-proof casemate, and it may be mentioned that as the gun was constructed last year, it may be considered to represent the latest Krupp type of heavy artillery.

A similar range of $121 / 2$ miles is that assigned to the next gun of the series shown in the Krupp pavilion; this is the 24 cent. ($9 \cdot 45 \mathrm{in}$.), intended for coast defense, and mounted on a coast defense carriage; the bore is 40 calibers in length, and the total weight of the gun is 31 tons; the maximum elevation that can be given is $441 / 2$ deg. A special interest attaches itself to this particular gun, because it was tested in the presence of the German Emperor at Meppen on April 28,1892 . On this occasion a range of 20,226 meters, or nearly 13 miles, was attained.

Various other guns and their mountings are shown. plates monufactured the Krupp works. Of these perhaps, the most interesting are some compound and nickel steel plates. There is a compound plate, 15.75 n. thick, a nickel steel plate, 11.8 in., and a third

thick.

THE KRUPP BUILDING AT THE WORLD'S FAIR employes in honor of the
plate section of the Krupp works, we come to those sent out of the plate mills of a lighter type. Probably this part of the exhibit will illustrate more clearly to a greater number or visitors the magnitude and resources of Essen. First comes a section of a boiler, weighing nearly $31 / 2$ tons; it is 12 ft .10 in . in diameter, and the thickness of the plate is 1.5 in . The next heaviest plate weighs 16 tons; it is made of Siemens Martin steel, and is 65 ft .9 in . long and $1 \cdot 26 \mathrm{in}$. thick. There are also some fine specimens of stamped and flanged steel plates for boiler work. The largest casting shown is to form part of a 5,000 ton stamping press; it weighs 62.4 tons, and is 12.2 in. thick; the length is 27 ft ., and the diameter 44 in .
In railway material there is shown a group of 54 steel tires, a number of complete wheels, and a collection of
founder, the late Alfred Krupp, and the other a repre sentation of the old dwelling place of the founder, a modest house that speaks eloquently of the developed fortunes of the family, thanks to the energy, talent, and opportunities of the founder. This house has been preserved intact as a memento, and is highly prized by all those associated with the works. A num ber of portraits of the more prominent directors and photographs of the more famous guns built at Essen complete this very remarkable exhibit. We have said enough, says Engineering, to show that not only has Mr. Krupp fully maintained the reputation of his firm by this remarkable exhibit, but he has added additional glory to the German section, and has con tributed more than any other single exhibitor to the success of the World's Fair.

THE KANSAS EXHIBIT OF MOUNTED SPECIMENS OF and mounted family of buffalo. Upon the plains lip, and great flat antlers, it forms a most striking obtHE ANIMALS OF THE STATE which they inhabit vast numbers of antelope-the ject. The Kansas exhibit is rich in mounted speciThe exhibit of the State of Kansas at the World's pronghorn-lived, and back of the buffalo a group of mens of this animal. In one group an animated reproFair presents no more interesting feature than that of these animals is appropriately placed. The prong- duction of a battle between two of the bulls is shown, the superb group of specimens of its fauna, mounted in horn is interesting as being one of the two representa- destintd, it may be imagined, to end in an interlocking the highest type of taxidermy. In the cuts we illus- tives of the antelope tribe found in America, the Rocky of the antlers, with death of both combatants. As if trate some of the more striking features of this incom- Mountain goat being the other. The pronghorn is with some such expectation as this, a party of wolves parable exhibit, whose size renders the reproduction of the whole within the limits of our columns quite impossible. The first group contains a number of the Rocky Mountain goats; one of the most difficultly procured specimens of this country. Mounted on the crags, this rock antelope-for it has now been relegated to the class of true antelopes -is seen at different stages of its growth expressing in its characteristic attitude and in the background on which it is mounted the life habits of the animal. Toward the foreground a beautiful group of deer present an object more familiar to the sportsman and naturalist. The great rarity of this antelope and the difflculty of reaching it in its almost inaccessible home makes the group one of the very highest value.
Next comes a specimen of the American elk or wapiti, one of the noblest specimens of the deer tribe that has ever existed, and surpassed in size by very few members of the deer family. Toward the background of this cut may be seen a bear looking forward toward the spectator

But a few years ago the plains of

GROUP OF ROCKY MOUNTAIN GOATS. are awaiting the issue of the combat.
The more peaceful aspect of the moose's life is shown in the next group, where the family-father, mother, and fawns-are shown peacefully assembled. When it is noted that this animal may stand seventeen hands high, or as high as a very large horse, the impressive aspect of these groups may be imagined.
The illustrations will give the reader some idea of these triumphs of the taxidermist's art. In other parts of the exhibit the very rare moufflon, or mountain sheep, the bighorn of the trappers, is shown in great abundance and in many lifelike attitudes, as it stands upon the craggy eminence provided for it. Bears, wolves, and other characteristic specimens of the fauna of Kansas are also shown. The entire group from the point of view of the naturalist is of the highest value.
A correspondent sends us the following :
KANSAS STATE EXHIBIT OF MOUNTED

> ANIMALS.

In the north wing of the Kansas building is one of the most remarkable exhibits to be seen at the great Fair.

family of elk.

combat of moose bulls.

BUFFALO AND PRONGHORN ANTELOPES

FAMILY OF MOOSE

THE WORLD'S COLUMBIAN EXPOSITION-THE NATURAL HISTORY EXHIBIT FROM KANSAS.
Kansas swarmed with countless herds of buffalo; so|an exception to the antelope tribe in the fact that it \mid refer to the natural history display made by the plentiful were these that passengers on a railroad car sheds annually the sheaths of its horns, in a measure Kansas University.
used to indulge in the brutal amusement of firing at similar to the deer family.
them as the train passed by the herds; now the animal The greatest member of the deer family, the shootis well nigh extinct, but a few hundred being left in the entire area of North America. Kansas accordingly presents among her other specimens a finely stuffed

This exhibit is the work of a man who is recognized ing of a specimen of which is one of the greatest glories of the American hunter, is the great moose. by naturalists as the best taxidermist in this country, if not in the world, and a specialty of his is the larger mammals of North America. To this branch of the study of animal nature Professor Lewis Lindsey Dyche
has given many years of his life. The exhibit which he has brought to the World's Fair is the result of ten years' work in thefield collecting and fourteen month work in the taxidermic shop, with five assistants.
In this collection there are 105 mounted animals and 20 heads.
In the southwest corner of the wing will be found one of the grandest groups in the whole collection. This is a group of seven moose, shown in photographs sent. The herd is headed by an enormous bull, that stands 9 feet 2 inches from the ground to tip of his antlers. Near the bull is an old cow with twin calves. The cow is riding down a tree in order to give her calves a chance to browse the leaves.
On a little rise of ground, off from the moose, stands a herd of nine mule deer of the Rockies. On a promontory of rock above the mule deer is a group of themost remarkable animals-the Rocky Mountain goat, seen here as in his home. Under the ledge of rocks at the bottom of the craggy mountain on which are the goats is a mountain lioness and her two cubs.
On the eastern end of the wing stands another fine collection of animals, very artistic in arrangement. This is a group of six elks. The group is headed by a bull, said to be the finest ever taken from the mountains. He stands 10 feet and 9 inches from the point of his toe to the tip of his antlers.
The last group along the wall is on the extreme southeast, and is one that never fails to attract attention. It is a group of buffalo, or the American bison. An immense bull, the largest ever mounted, not except ing the famons bull in the American Museum, is the leader of this herd of five. The group is one of the most natural of the entire exhibit.
There is a group in the left center that cannot be spoken of too highly. The action is perfect, as can be seen by our cut. It is a pair of fighting bull moose. These animals are struggling hard for supremacy, and the details of the work done on the group makes it a masterpiece.
Artists and professional men from all over the world Who have seen it say this is the finest group of mounted animals they have seen, and that there is nothing like it in the world.
F. D. Palmer.

A Lightning Calculator.

There has arrived in London from Paris, M. Jacques Inaudi, a gentleman to whom Babbage's calculating machine would be a poor second. He gave an exhibition of his abilities revently to a small party at the Hotel Victoria, and did some virorous ready
reckoning. M. Inaudi is a little man with a pleasant face crowned by a large square forehead and ornamented with a heavy crop of upright hair and a small mustache. He has other subjects of conversation than decimal fractions and the extraction of cube roots, and does not mind in the least talking about the weather or the Panama Canal while doing complex sums. The banqueting room of the Hotel Victoria, where the seance was held, was reminiscent of the class room, as it contained a row of blackboards with attendant chalks. Everybody wanted to pose
M. Inaudi with racking sums in all the varieties of arithmetic, but he was equal to the occasion-to half a dozen occasions, in fact-for at one time he played dominoes, found the square of a number which ran into billions, carried on a conversation in French, and announced his results in English. The names of the numerals form nearly all the English he knows. In four minutes and twenty seconds he worked out-carrying on a conversation at the same time-a sum in addition with six figures in each of six lines, a sum in subtraction running into millions, divided six millions odd by eighteen thousand odd, found the square of an eight-figure number, the cube root of one sum and the square root of another. This all was done without a figure in sight or any aid to calculation further than that afforded by occasionally resting his finger tip on the tip of his nose. What was more, he proved that the gentleman who was checking his results on the blackboard was wrong in one instance. Then, in an airy way, he recited, still without having seen a figure, every number on the blackboards behind. Here
is a little sum in subtraction, which M. Inaudi worked is a little sum in subtraction, which M. Inaudi worked
out in less than a minute, the component numbers being dictated to him by various of the gentlemen in the room:
$974,325,436,501,212,741,682,412$
$489,425,179,111,237,103,426,014$
Result- $484,900,257,389,975,688,256,398$
M. Inaudi, who will shortly give a public exhibition of his powers, is a self-trained calculator, starting life when eight years old as a shepherd.-Daily Graphic.

Completion of the Great Dam Across the Colorado

A press dispatch from Austin, Texas, dated June 7, says: The regatta which began here to-day has brought together the world's greatest oarsmen and the prospects are good for flne racing during the four days it lasts. The regatta is in the nature of a celebration
in honor of the completion of the great dam across the

Colorado River, which is a remarkable piece of solid masonry. The length of the dam is 1,150 feet, it is 66 feet high, 60 feet broad at the base and 16 feet at the crest. It has formed a lake 22 miles long with an average width of 1,200 feet, containing $21,000,000,000 \mathrm{gal}$ ons of water, or enough to supply the city the purpose of the dam is to furnish a water supply and power for the electric light system of the city. Besides accomplishing these purposes, 14,000 horse power has been developed, which will be disposed of to manufacturers at nominal cost. The cost of the dam was over $\$ 600,000$. AMERICAN of September 24,1892 .

The Oldest Book in the World.

The only complete work that, without question, can lay claim to being the oldest book in the world is known as the "Papyrus Prisse," and now forms one of the treasures of the Bibliotheque Nationale. It was presented to the great library of Paris by a Frenchman of the name of Prisse, who discovered the papyrus at Thebes. The tomb in which it was found contained the mummy of one of the Entews of the eleventh, or first Theban, dynasty. The date when the manuscript was written cannot, therefore, have been later than 2500 B . C. But if the exact age of this identical copy should be doubtful, we know precisely, from the text itself, the date of its composition, as it states it was compiled by one Ptah-hotep, who lived in the reign of King Assa. The full title runs "Precepts of the Prefect Ptah-hotep, under the King "Precepts of the Prefect Ptah-hotep, under the King
of the South and North, Assa." As this king was the of the South and North, Assa." As this king was the
last but one of the fifth dynasty, Ptah-hotep, who flourished in the reign of this Pharaoh, and held the distinguished office of "prefect," must have compiled his work about 3350 B. C. Divided into forty-four paragraphs or chapters, the work is something very much more than a mere literary curiosity. It is written in the Egyptian hieratic character; is rhythmic, if not poetic; is addressed to the educated classes and embodies throughout high and noble principles for
the regulation of individual life and conduct and for the maintenance of good government. The man in authority is enjoined by this very ancient writer to labor at all times to be a true gentleman, lest from his own defects of character he suffer the authority given him by favor of the Supreme Being to be weakened. An Egyptian prefect was the highest dignitary in the land, second only in authority to Pharaoh himself. It was the office held by Joseph in the Biblical story:
"Only in the throne will I be greater than thou." "Only in the throne will I be greater than thou." or royal granaries, to which no entrance could be obtained without the production of the prefectorial seal. The holder of the office was at once the Egyptian First Lord of the Treasury, Chancellor of the Exshequer, and, in his judicial capacity, Lord Chief Justice of Egypt.
All our greatest Egyptologists bear testimony to the extraordinary civilization of ancient Egypt. The work of Ptah-hotep fully confirms this position. It testifies to a height of culture and refinement obtaining in Egyptian society 5,240 years ago that to our Western circumscribed notions of modern superiority are simply inconceivable. The teachings of the "Precepts" more than justify all that has been said by Egyptologists. "It is certain," says Professor Renouf, "that at least 3,000 years before Christ there was in Egypt a powerful and elaborately organized monarchy, enjoying a material civilization in many respects not inferior to that of Europe in the last century." Leptius writes: "The fourth dynasty as
cended the throne about 3124 B. C., and at that time long before our usual ideas of the development of nations, there is found a people highly instructed in all the arts of peace; a state carefully organized; a hierarchy firmly foundeã, minutely divided and organized to the smallest external matters; a universally diffused system of writing and the common use of papyrus in short, a civilization which in all essential points has
already attained its full maturity, and only by close investigation is further development in some directions discovered." So also Professor Maspero: "In one of the tombs of Gizeh, a high officer of the first period of the sixth dynasty (B. C. 3703) takes the title of 'Governor of the House of Books.' Not only was there already a literature, but this literature was sufficiently large to fill libraries, and its importance was so great that one of the court officers was specially designated for the keeping of the royal library." The wisdom and high moral teaching embodied in the precepts of Ptah-hotep abundantly confirm this testimony. This old writer urgently enforces on rulers the cultivation of the doctrine of "Ma," an Egyptian dogma, compre-
hending " the true, the beautiful, the good." "Ma" is the principle of order and harmony in everything; it is the steadfast pursuit of wisdom, knowledge and obedience-obedience as the best of all. Although, as in modern expression, we should say "extremely
liberal " on many subjects, politically, Ptah-hotep displays an oriental horror of innovators and innova-
tions. Ideas that may be new to the generation are
not necessarily new to the world, and changes do not always imply progress.
According to Ptah-hotep, contemporary estimates of human actions are not always the most reliable or the most enduring. "Not of the counsel of the flatterers of to-day is it needful to take heed; it is of the judgment of posterity rather which renders justice to righteous actions."

Only by a consistent life of reverence for knowledge and wisdom; by observing a just moderation in everything; not abusing authority, but by seeking to inspire love rather than fear, can we hope to appear before posterity with honor." In sixteen different instances in which Ptah-hotep speaks of God he does so in the singular number-an argument happily no longer needed to establish the monotheistic character of the Egyptian religion. He ends by saying: "I have reached one hundred and ten years of life, blessed by the favor of the king, among the first of those who have exalted themselves by their works, doing the pleasure of the king in an honored position." "The Precepts of Ptah-hotep" have been translated from the hieratic into French by M. Virey, and retranslated into English by Professor Osgood. They reveal throughout the mind of one who all his life has been accustomed to the higher walks of society in a well ordered state. The sixteen pages of the "Precepts" are in the manuscript preceded by a few leaves of a King Seneferu, of the third dynast Had this work been complete, we should have been able to boast of a book older than the Pyramids and dating from 3,780 years before Christ-a book 5,650 years old!-J. H Mitchiner, in Knowledge for June.

The Discovery of Lithography.

One of the greatest discoveries ever made was the result of the purest accident. It was in the year 1796. The citizens of Munich had just witnessed the first triumphant performance of Mozart's opera "Don Juan," and the theater was deserted by all save one man, Alois Senefelder, who, after making a round of inspection in the building to see that no sparks had ignited anything combustible, retired to his room to stamp the tickets of admission for the day following. When he entered his apartments he had three things in his hand-a polished whetstone which he had purchased for sharpening razors, a ticket .stamp still moistened with printing ink, and a check on the treasurer of the theater for his weekly salary. As he placed the latter upon the table a gust of wind swept it high up in his room for a moment and then deposit ed it in a basin filled with water. Senefelder dried the wet paper as well as he could and then weighed it down with the whetsfone, upon which he had before carelessly placed the printing stamp. When he returned to his room the following morning he was astonished at seeing the letters of the stamp printed with remarkable accuracy upon the dampened paper. A hought came to him. He wondered whether by some such means he could not simplify his work of continually copying the songs of the chorus. He went out and purchased a large stone, commenced making experiments, and, as we all know, finally discovered the art of printing from stone-lithography.-Stone.

Novel Foundation Laying.

Several novel features of construction will appear in the new building of the Manhattan Life Insurance Company, in course of erection in lower Broadway, New York. The great structure will have a steel skeleton frame, and will tJwer aloft to an elevation of 300 feet above the curb line. The supporting piers of the building are to be sunk to bedrock by what is known as the pneumatic process. The reason for the employment of this plan is that the soil is a fine sand for a depth of about fifty feet overlying the rock. It would be a great risk to build so heavy a structure on the sand, and to excavate to such a depth would very likely result in undermining neighboring buildings, especially as the soil is very wet. The difficulty is to be overcome by sinking pneumatic steel caissons, fifteen in number, by the same means that are often employed in laying the foundation for bridges, and which was used in connection with both towers of the Brooklyn bridge. When the caissons reach bedrock, the workmen inside level the rock, so as to give a firm bearing, and then fill in with concrete, so that the space from the top to the bottom of the caissons is solidly filled, and upon these piers in turn will be placed huge cantilevers, from which will be built up the skeleton steel structure of the building.

Bottles in China.

It is stated that the Chinese much appreciate European bottles. They have a great liking for them, and will resort to subterfuge, if necessary, to get hold of them. The common people worry thenedical missionaries considerably upon this point, shamming sick in order to be supplied with a bottle of medicine. The authority for this report does not furnish anyinformation as to what our celestial friends do with the bot-

Chinese Cheap Labor.

American medical missionaries are now very popalar in China. They are everywhere welcomed, more especially because they offer both medical advice and medicine gratis, prefaced with religious exercises. The Chinese appear to appreciate this kind of practical religion. In a recent letter to the Missionary Herald, Dr. Chapin tells of his missionary successes in the vicinity of Pang Chuang, and says:
"On this trip I learned for the first time that there are in this part of China a number of 'counterfeit' foreigners. I was myself taken to be one of that class, because of an ability to make myself understood in Chinese. It seems that one or more enterprising Celestials have gone into the work of dispensing medicines after the manner of the American physician. Usually two or three men go together. One of these dresses in foreign costume and talks a gibberish which is not understood by the natives, and so passes for a foreign language. In imitation of American physicians, all medicine is given away, but, unlike that fraternity, the bogus representative of America is quite willing to receive contributions of grain to feed the animal which helps convey him from village to village. In consequence grain pours in upon him by the quantity. This is disposed of by a confederate at the nearest fair, and then Ah Sin departs for 'fresh fields and pastures new.' "

The High Atmosphere.

Beyond 29,000 feet above sea level, the height reached by Glaisher, in 1862, man has never been able to navigate the air. Various problems concerning the region farther away-such as the temperature, the pressure, the quantity of moisture, the composition of the air, etc.-have attracted the attention of physicists, and have at last led to the experiments of M. Hermite, who, during the last few months, has been sending up pilot balloons, carrying registering apparatus. These balloons are very light, with a capacity of about 100 to 200 cubic feet. Falling at distances from Paris ranging up to 200 miles, the balloons have nearly all been returned by their finders, as requested on a card attached to each, and one has brought down records from a height of 30,000 feet. The instruments used are very light and simple. With larger balloons and systematic exploration, it is hoped that the secrets of the air up to at least 40,000 feet may be made as familiar to us as those of the deepest and darkest depths of the sea are gradually becoming.

THE FIN CUTTER LENI LENEPE

The changes and improvements which the ingenuity of modern man is constantly producing are well illustrated in the new type of sailing boats which are now rapidly coming into use. We here give a photographic portrait of the Leni Lenepe, a fin cutter, built by Clay \& Torbensen, of ter, built by Clay \& Torbensen, of
Gloucester City, N. J., who rank Gloucester City, N. J., who rank
among our most progressive and scientific architects, not only in the line of sailing yachts, but steam and sail craft of every description. Com pared with the clumsy, round-bottomed boats of our forefathers, the new style of sailing craft here shown pre sents an odd and strange appearance

The Leni Lenepe, probably, in point of construction, is the lightest fin kee cutter ever built in this country and is also one of the fastest of her class Dimensions are 29 feet on deck and 16 feet 10 inches on L . W. L., extreme beam 6 feet 4 inches. The boat is a marvel of lightness and strength; planking is of $5 / 8$ inch white cedar ribs of white oak, straight grained and steam bent, $11 / 4$ inch by $11 / 2$ inch, spaced 10 inches on centers; floor timbers are of iron, keel and deadwoods of white oak. Fin keel weighs 2,000 pounds and is bolted through keel with composition bolts. All rivets and fastenings are of brass and copper, and the method of planking is such that no calking is re quired; no seams are visible. The hull is finished as smooth as glass. Hull, spars and rigging weigh only 1,750 pounds. We are informed this yacht has outsailed and outpointed all boats of her class with which she has competed.

Foreign Honors to an American Architect.
Architect Richard M. Hunt, of this city, has just re ceived at the Royal Institute of British Architects, the Queen's gold medal. Mr. Hunt is the first American on whom this honor has been bestowed. It is understood that Mr. Hunt received the medal on account of his excellent work at the Chicago Fair. Mr. Hunt has spent considerable time abroad, and much of the refined taste exhibited in his wipipus works can be attributed to his cosmopolitan ex riences.

THE FIN CUTTER LENI LENEPE.
ner lining of red felt, then an air space of one inch ; sheathing of matched boards comes next, then an air space of one foot, then a layer of tarred paper ; another sheathing of matched boards is followed by a layer of tarred paper; a four foot corridor comes next, and the boxes of supplies form the outer wall. The house will be heated by steam and lighted by electricity. The launch engine and boiler will be taken out of the boat when navigation closes, and will furnish steam for heating and for running the dynamo. Coal oil will be burned. Lieut. Peary's house certainly has all the modern improvements.
The Falcon will be sent back after landing the cargo and is under contract to return in the summer of 1895. answer well.

THE PEARY ARCTIC EXPEDITION.

The first chapter in the history of Lieut. Peary's new Arctic expedition was opened on the 2d of July, when the ship that is to bear him and his party to the polar regions took her departure from New York. The vessel, known as the Falcon, is a strongly built sealing steamer, belonging to St. Johns, N. F., and has been pecially chartered for this service.
We give a small portrait of the ship.
The Falcon will touch at Boston, Portland-which is Lieut. Peary's old home-and at St. Johns, Newfoundland, where the crew of the vessel belongs. From St. Johns the vessel will sail direct to the Arctic seas, mak ing the first landing at Inglefield Gulf, where Lieut Peary will establish his station.
The Falcon is bark rigged, 162 feet long, 26 fee beam, draws 17 feet, is 311 tons burden, and has twin screws. She is strong and capable of ramining the ice. On deck she carries a steam launch and whale boats.

PEARY'S SHIP, THE FALCON.
Besides Esquimaux dogs, eight Rocky Mountain bur os are carried. Lieut. Peary will teach the burros to walk on snow shoes, and they will be taken on the in land trip to carry the provisions; when their load is used up, they will be killed for food for the dogs. A cote of carrier pigeons is also taken along. Among the curiosities we saw in the cabin was Lieut. Peary's sleeping bag, which is made of the winter coat of the reindeer. The weight is $101 / 4$ pounds, hair side inward. Lieut. Peary says he has slept in these bags in perfect comfort when the thermometer registered the very low temperature of 45° below zero F. Packed away in the hold along with the three years' provisions is the house which will be erected in Greenland and which will shelter the party for two winters. The following particulars in regard to the house were furnished the Scientific American by Lieut. Peary. The house will be 33×14 feet on the ground plan, and $71 / 2$ feet high, and will be divided into compartments. The walls of the house are divided as follows: First, an in-

The expedition will now consist of fourteen members The list is: Lieut. and Mrs. Peary, Mrs. Cross, of Brooklyn (Mrs. Peary's maid); S. G. Entrikin, West Chester, Penn.; James W. Davidson, Austin, Minn. E. R. Baldwin, Oswego, Kan., meteorologist; Dr. E Vincent, F. W. Stokes, Philadelphia, artist; W. J. Swain, Indianapolis, stenographer; Hugh Lee, Meriden, Conn.; G. H. Carr, Chicago; Evraud Astrup, the Norwegian geologist; George Clarke, Brookline, Mass.; and Matthew Hanson, a colored valet.
On the east side of Inglefield Gulf, Greenland, in about latitude $78^{\circ} 45^{\prime}$ north, 35 miles somewhat north of east of Redcliffe, Lieut. Peary has selected the site of what may be termed the headquarters of his Arctic expedition. It is 400 miles north of the most northern station now occupied in Greenland. There will be reconstructed the winter house above described, and thence Lieut. Peary will make exploring advances, and perhaps approach the north pole.

Ivorytypes.

by ago. a. rockwood
Recently, in overhauling my establishment, I unearthed some ivorytypes which were made fully twenty or twenty-five years ago. They were in such a fine state of preservation, and make such beautiful and permanent pictures, I am about to revive them.
As many of the fraternity don't know how to make these pictures, I send you a description of the methods used. I think they will be a good thing to reintroduce. Many fine styles of pictures have had their "day," and have been dropped for some novelty-often, I think, unwisely. The ivorytype is one of the illustrations of this tendency. It is no step backward to make them.
Process.-First.-Make a print on plain paper, strong and brilliant; now edge a common clean glass to the width of a quarter of an inch with glue or starch dampen your print a little and put it on the glass, picture side up. When dry, the print will be stretched nicely on the sheet of glass. The glass should be a little larger than the desired picture, for the reason that when colored and completed it is cutoff from the glass. Having your print in this condition, stretched on the glass, it is to be very brilliantly colored in water col ors. Altogether the picture presents a dark, strong, brilliant effect. Lay this, glass and picture, upon a lat slab of soapstone-of course, the picture side upand gradually heat the soapstone on a gas or oil stove until the plate is hot enough to melt wax. Now break a cake of white wax (not paraffine) in two, and rub the surface of the picture with the wax, which gradually melts and saturates the picture. Your picture at this stage looks very much like a "gone goose." Now cut it very carefully at the edge with a sharp knife and lift the picture off from the glass; you will then have a translucent picture. Now heat a sheet of white plate glass in the same manner as you did the other, and when hot lay your wax, face down, upon the glass; it will soon melt and adhere to the glass. With a piece of wax (the sharp edge of the wax used as a squeegee) rub out the air bubbles. So soon as this is done, pick up your glass and let it cool. Now put drops of wax around on the picture to keep the cardboard from absolute contact with it, and put a piece of cardboard behind it, and you have the prettiest picture on earth.Anthony's Photo. Bulletin.

Malaria.

Dr. H. M. Clark has printed a me moir of his experience with malaria during a residence of nine years in India. How formidable a barrier to civilization malaria is may be inferred from the fact that to this disease alone is attributable not less than half the deaths throughout the world. It is not confined to rich, low-lying soils, but is found even in sandy deserts devoid of any vegetation. Once it finds a lodgment in the system, it cannot be wholly eradicated, and it is beyond the reach of acclimatiza tion. Only two races are proof against it, the negroes of the grain coast o Western Africa and the Taurus of Northern India. Modern medicine and sanitation are equally powerless in dealing with it.
In some places in India, where the cities and towns are built in defiance of all the rules of health, malaria never is known. As preventives, the doctor suggests the turning of swamp lands into lakes, and the planting of such trees as will retain water and shade the soil. For such purposes the eucalyptus is, therefore, useless ; but the plantain and banana should

The excavation at Hell Gate reef was attended by 21,000 soundings and 8,000 borings.

RECERTLI PATENTED INVENTIONS. Engineering.
Stram Engine. -- Elijah H. Allred, Randleman, S. . . The cylinder of this engine is sup ported apon an upright centrally located on a base plate
near one end of which is an upright forming a pivotal near one end of which is an apright forming a pivotal
point for one end of a toggle arm, while at the other end point for one end of a togie arm, while at the other end
is an upright supporting a pulley. and a crank from nds of both being connocted in the central pright where they are also connected with the piston rod, the reciprocation of which operates the toggle arms to re-
volve the crank and driving pulley. Rods connected volve the crank and driving pulley. Rods connected
with the toggle arms actuate the steam and exhaust

Steam Actuated Valiee.-Ernest A. Menking, Pittsbrig, Pa. This is a valve of simple and durable construction, deaigned to prevent undue wear, the main piston valve being completely balanced, $\begin{aligned} & \text { so } \\ & \text { that } \\ & \text { it requires but a small amount of live steam to }\end{aligned}$ actaste the valve. In the cylindrical steam chest slidies a main piston valve formed with four pistons in frich
tional contact with the interior surface of the chest toonal contact with the interior surface of the chest, port at all times communicating with two of the spaces, with one of the spaces. The valve presentsts varions novel features, and the friction is rednced to a mini num.
Lubricator.-Miles W. White, Brook lyn, N. Y. This is a simple and inexpensive device fo
feeding oil to high or low pressure steam engines, af fording convenient and reliable means for the graduated periodical introduction of labricating liquid into the steam chest. An oil-feeding cap taps the side of chamber perforated at its base to receive steam pressure,
while a a slide block in the chamber is grooved to receive an increment of oil from the cap when in lowered ad through an aligned passage when the slide block is ele vated.

Rallway Appliances.

Rail Punch. - Elijah B. Cornell, Philadelphia, Pa. This is a hand implement for punching the webs of rails, etc., and consists of a U-shaped frame
having pivoted in the lower ends of its depending arms a trangverse screw carrying a female edie and a transverse
silde carrying a male die, a vertical shaft extending down throgh the frame being connected at its lower vertical screws engage the upper edge and opposite sides of the raill or bar to be punched. The entire device is very light, so that it may be conveniently carried by a workman, and by the movement of a single lever or its equivalent a hole may be made in the web.
Train Table.-Andrew J. Culbertson, San Andreas, Cal. This is an apparatus to facilitate the making pp of trains in a train yard. The main traek in
 and dadapted to align with it, and each of a length to re ceive a single car, whereby a whole train may be made
up by a single eshifting of the respective tables. Each table has a piston and cylinder, the latter connected with a fluid presure sapply pipe, whereby power may be readily applied to slide the table in either direc
tion.
ajuxtlary Car Motor.-William H. Scholliol, Chester, Pa. This is a spring motor to be
connected with any car axle, and especially adapted for connected with any car axie, and especially adapted yor
useon cable cars, to enabe the cars to crose another
cable er to change from one cable to another, or to i side track, or it may be used on electric cars where the circuit is broken. The spring is wound up by the move-
ment of the car, and automatic means are provided for ment of the car, and aatomatic means are provided for
throwing it out of gear with the axle when fully wound ap. Provision is also made for the prevention of any cableman. The spring is designed to be strong enough to move the car some little distance, and obviate the ne cessity of employing horses for making such transfers as animal power is sometimes employed for on cable o electric roads.

Mechanical.

Boiler Flue Expander. - Leopold Bidale, Raton, New Mexico. This is a roller expander Bawe,
in which the rover Nor casing is formed with an anpertured
end and provided with ongiondinal slots to receive the rollers, an apertured cap screwing in the head of the casing abatting against the ends of the rollers to hold them in place within the casing and to take ap the
strain. The device is of simple and durable construction and is arranged to rednce the wear and tear of the tool to a minimam.
Machine for Forming Ornaments. - Louis A. Encker, Hoboken, N. J. This machine is dexigned primariliy to monlo ornaments from glass or
other subetance, either pliable when cold or when heated, and secure to the ornaments at the time they are formed a shank of wire or other material, cutting the shank to
the proper length. Combined with. dies, one of which is movable toward and from the other, is a clamp for by the dies, and means for operating the clamp from the movable die. The machine is designed to make cleaner and quicker work than heretofore possible, as the dies
or moalds are nearer the fire and well above and at one or moolds are nearer the fire and well above and at one
side of the table of the machine, enabling the operator at all times to conveniently note the progress of the work.

Agricuitural.

Plow.-John T. Lucas, Centerville, Washington. This is a gang or caltivator plow, the
frame of which is of strong and simple construction and trame of which is of strong and simple construction, and
permits of the shares being quickly and conveniently
sttached and readity revered regulatitg the depth thast the exhares shall enter the
travel in a straight line only, or be ullocked so that it will have a swivel connection with the frame, thus cornersor or rquarely around. The sharee may be readily
levated from the ground when the plow is to be taken levated from the gro
Corn Husking Machine.-Augustus mith, Scotland, South Dakota. A machine which anapp, the corn troum the stalla. and then rapidy and
ffectively husks i it has been devised by this inventor effectively hasks it has been devied by this inventor.
A gatherer and separator mechaniem is supported at the A gatherer and separator mechaniem is supported at the
front end of a main frame carried on wheels, there being husking devices at the rear end of the frame, and the wo being connected by an elevator which carries the separated corn ears to the husker. The husking me-
chanism comprises an open bottom trough.like chamber with side walls formed of corrugated rollers amranged logitudinally and in a plane parallel to the feed. The usked ears are discharged into a box on the under side of the hasker.

Miscellaneous.

Dumping Bucket.-James A. Quinn, Brooklyn, N. Y. The scoop sections of this bucket are
nited by a pivo bolt surrounded by ring connected with united by a pivot bolt surrounded by rings connected with
he sections by chains of a length calculated to maintain he rings out of engagement with the bolt when apward tension is exerted, so that when the bucket is elevated no strain is brought upon the pivot boit, and the sections
may be opened and closed with equal facility nander all conditions.
Dusting Apparatus.-Lewis F. Neal, Waltham, Mass. A revoluble brush is held in a casing the casing containing also a wind or fan wheel operating the brush by the air drawn through to the exhanast apparatus. The device is deeigned to stir up dust or other matter and draw it away by suction, and it may also be ased for brushing furs, fabrics, and the like, or for renoving dandruff from the head, etc.
Pipe Fitting.-John McIntyre, Jersey City, N.J. A coupling has a threaded connection with a follower provided with a second thread adapted to be angaged br the pipe to be cocunped, while a p packing ring
having an interior and exterior screw thread is arranged having an interior and exterior screw thread is arranged
between the conpling and follower, so that the latter on between the conpling and follower, so that the latter on coupling and the pipe to be coupled. The packing ring compresible, and has screw threade engaging simuling and that of the pipe.
Extension Table.-Achilles R. Stebbins, Wateontown. Pa. A subetantial and durable table hich may be made into a variety of sizes and shapes to fit
in any desired part of a room, or to conform in in size and shape to the necessities of a family, has been provided by this inventor. It has extensible wings at right angles to each other, folding sapports extending from the outer end of one wing to the onter end of the other, the sup-
ports folding in the middle and having a central leg, and ports folding in the middle and haring a central leg, and the sumparta carrvini implementai leares hewween the
Stiep Ladder and Bench.-Ensign S. Stebbins, Lake View, Mich. This is a combination Lonsehold article, the bench being adapted to support
wash tabs and other articles while the step ladder wash tabs and other articles, while the step ladder
oormed is very solid and stable, the change being readily and conveniently made from one to the other.
Pencil.-John J. Gillespie, Colorado Springs, Colorado. This is an improvement in pencilis
which the lead may be adjusted as it is worn down which the lead may be adjusted as it is worn down, na wiln not have to be sharpened. The improved penor rleeve within the bore having a laterally projecting
clamp to engage the interior of the body and preventreclamp to engage the interior of the body and prevent re-
traction, with an extension through the slot for moving traction, with an extension through the
the alide toward the point of the pencil.
Bottle Corking Tool.-Karl Kirschner, Jr., Radlic, near Prague, Anstria-Hungary. This
inventor has provided a tool for lead stamping or sealing botle corks, provided with punching surfaces adapted to impress marks on the ends of a lead wire, with a gauge plate on one side against which one end of the lead wire abats and a a mife on the opposite eside which
cuts off a suitable length of the wire. A lead stamp or cats of f a suitable ength of the wire. A lead stamp or
steel may thus be affixed which will surely indicate when the bottle has been opened.
Lace Fastener.-Alexander Klinger, Telluride, Col. This invention relates to fasteners for
hoes, gloves, corsets, bags, etc., in which two disbs or buttons lying near each other serve to hold by friction the fastening end of the lace. The derice is mainly made up of apper or outer and lower or inner buttons corruggted on their approximate faces, a central square
or angular post between them, and croeeing bar spring on angular post betwen them, and croeeing bar eprings

Cable Protector.-Albert W. Lackey, Gold Hill, Nevada. Metallic cables used in mines for raising buckets, propelling carse etc., are, acsurfaces consisting of a staple whose two prongs are to be driven into the cable, and having a large concave head of these staples is driven into the cable, and their heeads prevent the rubbing of the cable itself on the flanges he pulleys or dnums over which the cable pasees.
Preserving Fruits, etc.-Milledge B. Wever, San Antonio, Fia. The preserving of citrons fruits, Buch as oranges, lemons, limes, and grape fruit,
and also fruit and vegetables contaning as the apple, cucumber, egge plant, etc., are eeppecially contemplated by thisi smproved methon, which provides
a means by which they may be ketperfectiy freeh for long time, as to taste, , mall, and color. The methodon-
sists in packing the fruit in an air-tight boo between laysists in pecking the frait in an air-tight box between lay-
ers of olled cotton batting, and covering the contents of the box with a sheet of rabber. The box shonld have an packing, atter which the oppantug may be cloped by wax
 Grimes, Murfreesborongh, N. C. This improvementpro-
vides a means of operating a fan by a rocking chair, to fan a person in the chair or one lying in a bed. The fan is suspended by means of a hanger from a bracket with a spring bar on the back of the chair, the rocking of
the chair then vibrating the fan back and forth. The the chair then vibrating the fan back and forth. The hanger can be placed at any desir
be readily adjusted as to height.
Bicycle Saddle.-Edward S. Cross, Myria, ohio. This is a simple and inexpensive sadale in which the spring is formed of aforward and rearwand section, arranged to overlap, and held to adjusted posi-
tions by a single clip device, which is also adapted to be stached to the seat bar. The arrangement is such that the forward spring reinforces the rear spring against any strain
Clothes Pounder.-George W. Ainsworth, Montpelier, Vt. This pounder has on the lower end of its handle an outer inverted funnel, within which
is an inner founel or convex disk, the fonnel and disk is an inner founnel or convex disk, the fannel and disk
each having numerous perforations, and both being coneach having numerous pertorations, and both being con-
nected by the handle. The arrangement of the funnels is deigned to facilitate the quick cleansing of the clothes
the pounder, without danger of tearing them.
the pounder, wilhout danger or tearing them.
Shaft Tug.-William F. Sweet, Webb's Mills, N. Y. This tug is so made that its inner or wearing freah portions of the leather to the friction of the shaftto or thills. The tug gtrap is adjustable in length to
adapt tit for any size of thill and by means of the imadapt it for any size of thill, and by means of the im-
provement a much longer use than usual of the tug strap provement a much longer use than usual of the tog strap sattained, the surfaces becoming worn being moved ou
contact with the shaft.
Bed Slat Support.-George Luppert, Williamsport, Pa. Δ slat-supporting bar on the side rail is, by this improvement, held in a series of spring sup-
porta, each formed of a stont wire bent to form a wide bail with a spring coil in each vertical portion, and port the thats can be ouickly the rall. in tht this sup. port the slats can be quickly placed in position, their
accidental displacement is almost entirely avoided, and the resilient properties of the springs are aniformly disbuted over the entire bottom.
Axle Nut. - Joseph Bermel, Middle Village, N. Y. This invention relates to an improve ment on a formerly patented invention of the same in
ventor, providing a nut which may be quickly and conveniently locked upon the axle withont the locking me chanism being seen. The interlocking portions of the
axie and the nut are so shaped that the two may be quickly engaged and disengaged, and whe two may be ocking pooition they cannot be accidentally sepparated.
Bath.-George Elliott, New York City This is an improvement in portable cabinet baths in the bottom, and operated by the occupant of the bath t. Yorce water into spray pipes in its apper portion. The
casing is
oreferably made in two sections
unitod
 the water is forced into a dome, flowing from various pipes which afford top and cross sprays, as wed

through two flexible spray pipes for use as | as thro |
| :--- |
| aired. |
| Po |

Portable Fefice. - Henry Knee, Kent, Pa. This is a portable and reverrible fence, with
batten strips and cross bars, and swiveling eye bolte connecting the horizontal bars to the end poste pivotally to permit of reversal and adaptation to a hill side. Tii hooks connect the swiveling eyy bolts on the outside of the bend in the fence, and the locking bars are arranged
on the inside. The fence panels may be turned upeide on the inside. The fence panels may be turned upide
down and adjusted with equal facility in either way to down and adjusted with equal facility
form a atrong and subetantial fence.
Fence Post.-William H. Hunt and Charles O. Morris, Trenton, N.J. This post is made of
T-iron, with its shank member having a series of re-T-iron, with its shank member baving a series of re-
cesses in its outer edge, each recees having an upper cesses in its outer eage, each recese having an apper
curved channel extending downwardly and in wardly, a ower curved section meeting the channel and extending diagonally beneath it, while spars are formed in the most in bullding wire fences and is ver light and durable, and may be readily driven into the ground.
Petrolevm Cask.-John D. Sprunt ondon, England. This is a non-collappible receptacle terial, witha flexible side of parchment or glued pape
then that will yield to the contraction and expansion of the
contents of the veesel, the surfaces being coated with contents of the veseel, the surfaces being coated with
glue to cloes the joints and render the material imglue to close the joints and render the material im-
pervious. There is an aperture for filling and dischargpervious. There is an aperture for filling and discharg-
ing in combination with a collapsible funnel. The receptacle is especially suited for liquids of a penetrating nature.

Designs.

Embroidery fabric. - Julius Frelloehr, New York City. Braids or strips form the background of this design, and they are ornamented o top with a raised network of individual threads in zi
zag line, the crossing angles forming small figures.
Spoon.-Charles Otero, Pueblo, Col The handle of this spoon represents a hammer around
which is draped a flag, the end having a medallion fe male portrait on one side and on the other a mountain dew, while in the bowl is a
Spoon.-Charles Barclay, Lead, South Dakota. The handle of this spoon has on its outer end watching the vessel.
Covered Dish.-Robert L. Johnson, Hanley, Fngland. This dish is elongated and has attened base, and at its ends are outwardly curved

sides of the dish. The edges and knob of the evorer

like ornamentations.
Show Stand. - Allben L. Yearons, Eagle Grove, Iowa. Upon a suitable base is a post havng marked divisions of decreasing size separated by
cylindrical portions from which radiate arma, each arm cylindrical portions from which radiate arme,
Norr.-Copies of any of the above patents will be urnished by Munn \& Co., for 25 cents each. Please on this paper.

NEW BOOKS AND PUBLICATIONS.

Common Sense Health Notes. By A. R. Horne, D.D. Chicago: A. By A.
gan. 1893. 12mo. Pp. v, 305.

Contains many useful suggestions for realizing and
Sapoleon: A Drama. By Richmond Leonard \& Co.
The author has sought here to portray some of the for scenic representation and acting on the stage. A work so ambitions would be really a very great accomplishment, if successfully carried out, bat its success on the stage is yet to be achieved.
The Peter Adams Company, of New York City, manufacturers of American art papers, have erent kinds of paper, with artistic printing of varions casses on the special kinds and qualities of paper made for each class of work. Printers and publishers getting
"The Book of the Fair," of which Part . has just been published by the Bancroft Company, of hicago and San Francisco, promises to be one of the
ichest and completest of the many more or less elaborate pablications projected in this field. It is a large quarto, on heary calendered paper, of a quality well adapted to bring out the details of the many half-tone and other en-
gravings with which its pages are richly embellished, gravings with which its pages are richly embellished,
and the text is in fine, large, beautiful print, with geneand the text is in fine, larpe, beautiful print, with geneous margins. It is designed to be "in the strictest sense
work of art, as well as of material and moral instruc ion," and the repatation of its anthor, Mr. Hubert Howe Bancroft, affords a good guaranty that it will well come p to such promise. The parts are furnished at one dolar each.

SCIENTIFIC AMERICAN

BUILDING EDITION.

JULY, 1893.-(No. 93.)

table of contents.
. Flegant plate in colors, showing the handsome residence of s. E. Walton, Esq, at Springfield,
Mass, at a cost of $\$ 10,000$ complete. Floor plans mand., arspective elevations. A pleasing deesign.
2. Plate in colors showing the residence of Wm. \mathbf{H}. Fitzgerald at Bridgeport, Conn., erected at a coost foor plans. J. W. Northrop, Ese., architect for plang. . Wort, Conn. An attractive design.
3. Adwelling recently erected at Chester IIM, N. Y. Perspective view and foor plans. A model de-
sign. Cost 86,850 complete. Mesers. Munn \& Co., New York City.
Colonial modern dwelling recently erected at Montclair, N. J., at a cost of $\$ 5,500$ complete. Floor \& Co., architects, New York. An excellent deaign.
5. Engraving and floor plans of two designs of cottages recently erected for Mr. D. H. McKay, at
Boston, Mass., at a cost of about $\$ 1,600$. A. W. Pease, architect, Boston, Mass.
6. Floor plans and engravings of a stone residence
erected for George w. Childs, Est., at St. David, erected for George W. Childs, Esq., at St. David,
Pa. A very attractive design. Cost $\$ 7,600$ comPa. A very attractive design. Cost $\$ 7,600$ com-
plete. Messrs. F. L. \& W. L. Price, architects, Philadelphia, Pa .
7. An old colonial style dwelling at Belle Haven, Conn. Floor plans and prospective elevations. A pic-
8. A residence at Belle Haven, Conn. A anique design. Perspective elevation and floor plans. Messrs.
Boring, Tilton \& Mellin, architects, New York City.
9. Bird'seye view of the World's Columbian Exposition The Fifth Avenue Theater, New York--View showing the orchestra chairs and seating arrangeme
Mr. Francis H. Kimball, architect, New York.

1. Miscellaneous contents: A change in name.-A
tufted metal ceiling, illostrated.-Hanlon's anto arted metal ceiling, illustrated.-Hanlon's anto raising water to house tanks, illustrated.-Copper statue, "Flying Dutchman," at the Columbian Exposition, illustrated.-Naphthalene as a timber pre-
servative.-Ornamental parquetry floors and bor-servative.-Ornamental parquetry floors and bor-
ders, illustrated.-An improved wood working machine, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, wo hundred ordinary book pages; ; forming practically, a large and splendid Mlagzine of ArchitretURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Follness, Richness, Cheapness, and Convenience this work have won for it the Larargt Crbculation

2Business and \$ersonal.
The charge for Insertion under this head is one Dollar a line
for each insertion; about eight words to a line. Adverisements isertion; about eight words to a line. Adver Thursday morning to appear in the following week's issue Order pattern letters \& flgures from the largest vari-
ty. H. W. Knight \& Son, Seneca Falls, N.Y., drawer1115. " U. S." metal polish. Indianapolis. Samples free. Kemp's Manure Spreader, Syracuse, N. Y. See Adv.
Bankrupt Machinery Sales. Am. Tool W'ks, Clev., \mathbf{O} Chain Belting \& Grain Dryers, F. H. C. Mey, Buffalo, N.Y Hoadley Portable Engines.
Geo. T. McLathlin \& Co., 120 F Fulton St., Boston, Mass. Universal and Centrifugal Grinding Machines.
Pedrick \& Ayer, Philadelphia, Pa. Handle turning machinery. Trevor Mfg. Co., Lockport, N. Y.
Wm. Jessop \& Sons have a handsome display of steel
in Mining building at the World's Fair.
Manufacturers who wish to manufacture a
ax, address Frank X. Schuster, Raber, Mich.
The Improved Hydraule Jacks, Punches, and Tu
Expanders. R. Dudgeon, 24 Columbia St., New York.
Hydraulic Wheel Presses a specialty. The J. T.
sehaffer Mfg. Co., Rochester, N. ₹. See adv. page 399 . Stow flexible shaft. Invented and manufactured by Stow Mg. Co., Binghamton, N. Y. See adv., page 30 . Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps for paper and pulp mills. Irrigating and sand pumping plants. Irvin Van Wie, Syracuse, N. Y. Guild \& Garrison, Brooklyn N. Y., manufacture steam
pumps, vacuum pumps, vacuum apparatus, air pumps. pamps, vacuum pumps, vacuum app
Split Palleys at Low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St., Philadelphia, Pa
Perforated Metals of all kinas and for all purposes, general or special. Address, stating requirements The The est k, The best book for electricians and beginners in elec
tricity is "Experimental Science," by Geo. M. Hopkins By mall, s4; Munn \& Co., publishers, 361 Broadway, N. Y. Canning machinery outfits complete, oil burners for
solde ng , air pumps, can wipers, can testers, labeling machings. Presses and dies. Burt Mfg. Co., Rochester,
Competent persons who desire agencies for a new popular bcok. of ready sale, with handsome proft, may
apply to Munn \& Co., Scientific American office, 361 Broadway, New York. LI Send for new and complete catalogue of Scientiff
and other Books for sale by Munn \& Co., 361 Broadway,
New York. Free on application. T

4THedenurins

HINTS TO CORRESPONDENTS.

Names and Address must accompany all letters,
or no antention will be paid thereto. This is for our
information information and not for publication.
ef erences to former articles or answers should References to former articles or answers should
give date of paper and
Inquiries nor answered m neasonaber of tuestion. nquiries not answered n reasonable time should
be repated; correspondents will bear in mind that
some answers require not a little research, and, though we endeavor to reply to all either by letter
or in this department, each must take his turn or in this department, each must take his turn.
Special WVriten Informaation on matters of
personal rather than general interest cannot be
expected withont remuneration. expected withoat remuneration.
cientific
to man be had at the onfice. Price 10 cents reacerred Scientince American Supplements referred
to may be had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt of Minice.
marked sen labeled.
(5176) W. H. B. writes: I have several pieces of steel in the form of horseshoes. How shall I
proceed to magnetize them to get the best results? I have access to dynamos, batteries, etc. How should steel be tempered for magnets 9 A. Heat the polar extremities of the horseahoe to a red heat. Harden them by cooling in water, draw the temper to a dark straw
color verging on a parple, and if the poles of the fleld color verging on a parple, and if the poles of the fleld
magnet of the dynamo are near enough together to allow magnet of the dynamo are near enough together to allow
the poles of the horseahoe to rest one upon each of the the poles of the horseshoe to rest one upon each of the
dynamo poles, all that is necessary in order to magnetize poles; but if the poles of the dynamo are too widely eparated for this, you can apply one pole of the horse shoe to one pole of the field magnet and the other pole of the horseshoe to the other pole of the field magnet.
(5177) F. H. T. asks : 1. On page 407 of our Cyclopedia, No. 14 of hydrodeveloper, I find this Now what is meant by cryst. soda? A. Cryst. soóa means crystallized sodium carbonate (washing soda). 2 I also notice in several places you say nentralize with
different chemicals. I would like to know how the process of neutralizing is done, i. e., to know when enough of the neutralizing chemical has been put in? A. To nentralize is to add acid or alkali to a solution as required
until it is neither acid nor alkaline. Acid is added to nentralize an alkaline solution, and vice versa. Litmus paper may be used to determine neutrality. 3. How can I make litmus paper? I cannot buy it here, and how
long will it keep? A. See page 371 of the Cyclopedia. Litmus paper will last a long time if kept out of strong light
(5178) T. H. DeS. asks: 1. Will you kindly tell me how to make a spark coil ? I am putting
up in my bedroom an automatic electric gas burner and want spark coil for igniting gas. Kindly state of what nealed iron wire. 2 Name diameter and length A nealed iron wire. 2. Name diameter and lenghi. A.
$\$ 4$ of an inch in diameter and 8 inches long. 3. What the core be wound with ? A. No. 18. 4. State the quantity of wire required for winding. A. Use enongh of the magnet wire to make the depth of the winding abou require about 2 pounds.
(5179) H. K. asks: Can you tell me of any process by which copper can be melted in a crucible
and poured in sand moulds, and then taken after they and poured in sand moulds, and then taken after they forged out on an anvil. I have tried to cast some solder ing coppers and, upon forging them, they would all crack to pieces. I used best lake copper fluxed with about 1 per cent of aluminam, and casting withont this flux they would become porous and unfit for use. A. There should be no difficulty in forging good copper. The aluminum tends to harden the copper and may be the cause of the difficalty in forging. Soldering coppers are usually orged from rolled copper rods. By making the casting casting the coppers with 1 per cent of tin instead of
(5180) W. H. R. asks: If you had cell of battery giving say 10 amperes and 100 ampere had a resistance of 1 ohm or 3 ohms A. By increasin the resistance of your motor, you would be able to ran it for a longer time, though with less power.
(5181) E. E.-The latest observations show that the little world is about 100 miles in diameter and 67,000 miles distant from the surface of its great ing and father.
(5182) T. D. M. writes : We have a mar-ble-topped sideboard on which some Horsford's acid phosphate has been spilled, torning the dark red stone a the color 9 A. Try other alkali, stain with dragon's blood dissolved in ben-
xine, and repolish. Your restoration will probably be ine, and repo
very imperfect.
(5183) S. D. L., Jr.-The method of cutting down trees by means of electrically heated wire has
proved a failure for the reason that the ashes accumulating in front of the wire prevent the wire from coming 0 contact with the wood.
(5184) W. H. C. asks: 1. Is a gravity Woll saitable for ranning induction coill A. No. 2 . A. No. 3. Does the primary coil or the electro-mag et induce the corrent? A. Both
(5185) C. C. F. asks : About what degree of heat is produced when the gange shows 60 pounds
pressure of a boiler? I mean the dry steam. A. Steam pressure of a boiler? I mean the dry steam. A. Stea
at 60 pounds pressure has a temperature of $307{ }^{\circ}$ Fah.
(5186) G. L. F. writes: I have some wild plum trees that become badly infested with worms very summer. The worms spin a web which soon covers the entire tree, spoiling leaves and fruit. Is there anything which will rid the trees of the worms and not
injure the fruit for eating? Have tried a solution of injure the fruit for eating $?$ Have tried a solution of
insect powder, also slaked lime, without effect. A. Reply by Professor C.V. Riley.-Without seeing specimens of the worms described it would be difficult to give a specific determination, but from the description the insect is evidently either one of the tent caterpillars (Olisiocampa spb.T or tire wommou fatt web worin (IItyphantria cunea). If the former, one of the best preventives is to cut off, during the winter time when the
trees are bare, the egg masses which encircle the twigs and which are readily visible. At this time of the year, however, the best remedy will be to destroy the nestwhen it first appears, either by pruning it off and burning or by bal top upon the tree by means of a mop saturated with coal tar and ignited, or a brick soaked in kerosene, fastfor this work. If this method is neglected until later in the season, when the nests have spread over larger
branches, one of the quickest methods of treating a branches, one of the quickest methods of treaung a large with Paris green water in the proportion of a quarter of a pound of the poison to about 50 gallons of water. I have received many complaints the present year of the inefficacy of Paris green sprays, and have no doubt that in the great majority of instances this is due to an inferior article of Paris green, and every one using this arsenical should be careful to have the samples tested, so as to make sure that they are not so thoroughly adulter(518) A. W.
(5187) A. W. P. writes: The writer, with others, in paseing through Delaware and Raritan Canal recently, was led into a discussion as to the cause the peculiar action of water on the banks. The swell level, and was preceded by a depression in the water of abont the same, that is, the woter at sides of canal from a point about opposite the bow of the boat sank down two feet, and was followed by the swell of two feet about opposite stern of boat. It is plain that the displacement would cause the swell, but what caused the water to sink two feet below the nsual level $\%$ Was
it the action of the propeller drawing the water back it the action of the propeller drawing the water back ?
If not, what ? The boat was a small tug, 60 or 80 feet long. Canal 80 feet wide, speed 6 to 8 miles per hour. . The preceding wave, side depression and following canals, by the inability of the water to move around the boat from bow to stern in the proper time corresponding with the speed of the boat; hence a wave is produced ahead of the boat and a corresponding depression at the past the boat with considerable velocity, meeting the wave following the boat and raising the crest that washes the banks. The propeller favors this action somehat, but all boats when towing in a cansi at consideracurrent to meet the displacement of the moving bost Unless there is a depression from the bow toward the stern, the water could not flow toward the stern, as it flows by gravity. . The depression is the hydranlic gradient that produces the flow, and its velocity bears a relation to the speed of the bost and the relative sectional areas of the canal and boat. The same effect may be noticed with all vessels under speed in open witers, but the
limited sectional area of a canal greatis tocrease the

height.

(5188) F. C. Writes: Please tell me through your paper whether you wonid advise me
to use saw dust for a filling between heavy slding and
plaster) in place of paper and sheathing in oucr to
cheapen the cost in building a house. A. We cannot nder any circumstances advise the use of saw dust as alling in a dwelling. It cannot be put nest the plaster ontil the plaster is set, which will be inconvenient in practice, and to put in a board lining behind the plaster would be expensive. There is also danger from a mass of sawdust in the wallf of a building. Accidental wet
ing of the sawdust makes it liable to heat, and spontang of the sawdust makes it liable to heat, and sponta
neous combustion has often taken place in moist saw ust. Our advice is to use what has been the result ding, diagonal sheathing with good stiff paper inside and outside the sheathing, and covered with clapboards, shin les or matched siding to suit the required style or taste. will pay in the end in your climate.

INDEX OF INVENTIONS

Por which Letters Patent of the

 United States were GrantedJaly 4, 1893,
AND EACH BEARING THAT DATE. [See noteat end of list about copies of these patents.]

Ani
Anti
Apa
App
Apm
 Raid

Ber
Bic
Bit.
鳃

 Bridl

ar brake, J. Ti. Dunf.......
Car brake. .
Car brake. F . Roedigeer...

and
cin
aid
景

rail chair
Chrokey or smoktack, R. Savage................
Chopper. See Cotton chopper. Vegetabie chop-

 $\&$ Neison....
v. Matte.
Rotary engior

 Wibuctubuc

edadie
draw－ving
ma
ma
50 Wringer，Sise CGothes ，Trinear．\＆Duros

TRADE MARKS．

畀

명ㅇㅇㅇ

DESIGNS

2HDertisements． ORDINARY RATES． Inside Page．each insertion－－ 75 cents a line Back Page．ench insertion－－－\＄1．00 a line Higher rar rome are clasges of Advertisements，Special and The above are charges per agate line－about eight words per line．This notice shows the width of the line． words per line．This notice shows the width of the line． and is set in agate type．Engravings may head adver－ tisenents at the same rate per agate line，by measure－ received at Publication office as eary，as morning to appear in the following week＇s issue．

Patent Foot Power Machinery，

Bizi
Maze ve

IOE－HOUSE AND COLD ROOM－BY

WM．GRAYER TANK WORKS，

Mandacturere of Iron and Steel STORAGE TANKS．
3d Floor，Rookery Bldg． CHICAGO，ILL．

PRESS，\＄3
small newspaper press，\＄44．

LLFE SAVING DEVICES．－A COL－

The McCONNELL

Gexll Pmon Fillars

 REMOVE MICROBESAll Kinds of Disease Germs． Is a Futer and Cooter Combined．
The ice an it melts is flitede
No other gravity
Alter does this
The McConnell Filter Co．
buffald，n． \mathbf{y} ．

エモモ

The Most Popular Scientific Paper in the World Only 83.00 a Yoar，Including Postage．
This widely circulated and an paper is published weekly．Every number contains six－ teen pages．of useful information and a large number of original engravings of new inventions and discoveries，
representing Engineering Works，Steam Machinery， New Inventions，Novelties in Mechanics，Manufactures Chemistry，Electricity Telegraphy，Photography，Archi－ lecture，Agriculture，Horticulture，Natural History， te．Complete list of patents each week． Tific American will be sent for one year－ 52 the Scien－ postage prepaid，to any subscriber in the United States， Canada，or Mexico，on receipt of three dollaris by the pubishers；six months， 81.50 ；three months， 81.00 ．Post
Clubs．－Spectal rates for several names，and to Post Masters．Write for particulars．
The safest way to remit is by Postal Order，Draft，or Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed， all letters and make all orderse drafts，etc．，payable to
MUNN \＆CO．，361 Broadivay，Now York．

Scientitic Anmexicati Supplempert SCIENTIFIC AMERICAN，but is uniform therewith in siz ． every number containing sixteen large pages full of en－ ravings，many of which are taken from forelgn papers SCIENTIFIC AMERICAN SUPPLEMENT is published Teek Iy，and includes a very wide range of contents．It pre－ sents the most recent papers by eminent writers in all the principal departments of Science and the Useful
Arts，embracing Biology，Geology，Mineralogy，Natural History，Geography，Archæology，Astronomy Chemis－ Steam and Railway Engineering，Mining，Ship Building， Marine Engineering，Photography，Technology，Manu－ facturing Industries，Sanitary Engineering，Agriculture． tc．A vast amount of fresh and valuable information The most important puboineering Works，Mechanisms， and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT．
Price for the SUPPLEMENT for the United States，
Canada，and Mexico，$\$ 5.00$ a year；or one copy of the SCIENTIFIC AMERICAN and one copy of the SUPPLE－ MENT，both mailed or one year to one address for 87.00 ． express money order，or check，
MUNN \＆CO．， 361 Broad way，New York，

Guilding Edition．

The Scirntific American Architects＇and
BUIDDERS＇EDition is issued monthly． 82.50 a year． Single coples， 25 cents．Thirty－two large quarto pages， orming a large and splendla Marazine of Architecture． ther fine enfravings：wustrating the most intertin examples of modern architectural construction and allied subjects．
A special feature is the presentation in each number
of a variety of the latest and best plans for private resi－ of a variety of the latest and best plans for private resi－
dences，city and country including those of very mod－ erate cost as well as the more expensive．Drawings in perspective and in color are given，together with Plans， Descriptions，Loeations，Estimated Cost，etc． The elegance and cheay ness of this magnificent work
have won for it the Largest Circulation of any Architectural publication in the world．Sold by all news－ dealers． 82.50 a year．Remit to

SMOKELESS POWDER AND MAGA－
zine Rifles．By L． G DOfr Grant An interesting paper
on the various smoke

OAMEMA THE PREMO
 bitted with all improvements for hand or tripod work，including

 EXCEEDINGLY COMPACT．It is the ideal Camera for Tourists，Bicyclists，Canoeists，and all
ROCEESTER OPTICAL CO．

Experimental Science

PD Pate 110 Superb Cuta added．

The unprecedented sale of this work shows conclu－ dents，experimenters，and all othersigho desire a genera

 MUNN $C O$ Publis
Office of the sCIENTIFIE AMERICAN

米 THE＂MUNSON＂TYPEWRITER．米
 Easily operated，with Universni Key Board．
INTERCHANGEABLE STEEL TYPE WHEEL durable and easily kept in order． 30 keys，, 0 characters．Welght，with，carry－
chase， 16 pounds．Special wheels for different languages．Send for circular

PHONOGRAPHS FOR SALE．

North American Phonograph Edison building
Masonic Temple Bldg．．
Inventions and Novelties Developed．

After being on the Market Seven Years THE AGME AUTOMATIC ENGINE AND BOILER ©TITIT InPADE：
Io No For either Natural Gan or Petro

INVENTORS and Rxpermentorf can ontaian val

Model \＆Experimental Work
 Astronomical Telescopes
 Manufactured by
W．\＆D．MOGEX， W．\＆D．MOGEX，
Bayonne，New Jerse
Send for new catalogue． fRUIT EVAPORATOR

Dust！Dust！

EXPERT MODEL MAKINQ，

DRILL CHUCKS，

（ELLULOID ZAPON CO CELAULORTO LACOUERS

Iew＊B00ks

此交

Thp American Read Reokoner，Anow and

 Foren Plantingo A trantise on the aro of timber

 ${ }^{23} . . .$.

 Son D．Mn nurnetur reo．A practial tratiso on tho

 Star Mapand Luminnous starg：A methon tor

 The reat Rinrier Reef offan utral lad Its

 Teflegraphic Connectionsib．Embracimg recont

戸たココ．

Our entirely new Catalogue of scienticic and Techni－ cal Books，containing over 3，000 titles，and embracing wore than 300 difrerent subjects，with Authors＇nde， the worla．Address

MUINN \＆CO．，
Publishers of the＂Scientific American，＂ 861 Breadway，Mew York．

PADDIE YOUR OWN CANOE． Canoes，Family Row and Sall Boats．Fishing and Hunt－ THOMAS KANE \＆CO．，Chicago，III．

Contentment

```
                                    is folly wben you migbt do better.
```

What is the mat er with your time？A trifle fast？A little slow？ Always a few ninutes wrong？－ Does your watch cost more to carry than it did to buy it？Repairs， regulating，cleaning；a dollar or two every time you bump it？You might save it over and over in a year；show just as much style and always be on time，too，with the new，quick－winding Waterbury．

Every jeweler keeps it．A jew－ eled watch．All styles fo
 everybody．$\$ 4$ to stry buys fit Ladies＇；gentlemen＇s
 watch；＇，genstlemen＇s or boy＇s willyer cased in nickel，coin－
 willer or filled gold（ yo to xi－karat）．

KODAKS．

Take one with You． to the World＇s Fair．

They＇re the only practical camera for the purpose No bulky glass plates－no tronblesome holderp－no need of hunting up a dark room．With our special
Columbian spools of film，containing 2000 exposures you can have your Kodak loaded before leaving you can have your Kodak loaded before leaving
home and can then＂press the tuitton＂as often as you like，while at the Fair without the necessity

Eastman Kodak Co．， $\left\{\begin{array}{c}\text { Send or } \text { or } \\ \text { Catalogue．}\end{array}\right\}$

Rochester， \mathbf{N} ． \mathbf{Y}

SCIENTIFIC AMERICAN SUPPLE－
 he comintry．
OIL MIELL SUPPLY GO．
 Mantratarers of everrthnn neode

ARENTS WNNTED G EMETOOIS
Coll

ZINC ETCHING
HALFTONE PROCESS ngravinigs BOOKS． A specialty

N SOUVENIRS．

The Smith Premier Typewriter

Perfect and Permanent Alignment．
Easiest Running，and Nearly silent． all type cleaned in Ten Seconds without souing the Hanas．S．A． The Smith Premier Typewriter Co．，Syracuse，N．Y．，U．S．A．

ASTRONOMY

Poole Bros．Cesestial Planisphere and
Celestial Handbook just published． For descriptive ciroular address
POOLE

Parsons Horological Institute．

 earn the Watch Trade－Engraving and Jewelry Work． PARSONS，IDE \＆CO．

Circular free． 302 Bradley Ave．，PEORIA，ILL．

COMPLETE ELECTRICAL EQUIPMENTS

 ARC OR INCANDESACENT LICHTING．Art Lamps．Incamdescent Lamps．House Wiring Appliances
MINIATURE \because LAMPS \because FOR \because DECORATIVE \because PURPOSES GENERAT ETEGIRIC COMPANT，

DI8TRICT OFFICES：

ENGINES，BOMLERS \＆MaCHiNE TROM，

Scientific Book Catalogue

RECENTLY PUBLISHED．
Our new catalogue containing over 100 pages，Includ－
Ing works on more than tify difrerent subjects．Will be MUNN \＆CO．，Publishers Scientici
ubishers Scientifc American，
$\mathbf{3 6 1}$ Broadway，New York．

maman winlum lumy 125 MILK ST．，BOSTON，MA88．
This Company owns the Letters Patent No．186，787，granted to Alexander Graham has been defined by the Supreme Court of he United States in the following terms：
＂The patent itself is for the mechan ＂The patent itself is for the mechan－ ical structure of an electric telephone to on used to produce the electrical action onaim is for the use in sueh ingtruments of a diaphragm made of a plate of iron or steel，or other material capable of in－ ductive action；the fifth of a permanent magnet constructed as described，with a coil upon the end or ends nearest the plate；the sixth，of a sounding box as de－ scribed；the seventh，of a speaking or hearing tube as described for conveying the sounds；and the eighth，of a perma－ nent magnet and plate combined．The claim is not for these several things in and of themselves，but for an electric tel－ ephone in the construction of which these things or any of them are used．＂
This Company also owns Letters Pa － tent No．463，569，granted to Emile Ber－ liner，November 17．1891，for a Combined Telegraph and Telephone；and controls Letters Patent No．474，231，granted to Thomas A．Edison，May 3，1892，for a Speakling Telegraph，which cover funda－ mental inventions and embrace all forms of microphone transmitters and of car－ bon telephones．

