power. A. With a horse power equal to 33,000 foot \{ pounds? Oil can be obtained for 5 cents per gallon or pounds per minute, the power of an average strong : less, delivered in the tank. Would not two barrels of oil is 4,200 foot pounds per minute. On short spurts can tion and advantagein controlling the use in consideration? accomplish from two to three times as much, or half a accomplish fre
horse power.
(5507) G. W. T. says: In this valley the coal is let down from the opeuings on the hills by wire
cables and large drums and the spced is controlled by iron bands or brakes applied to the outside of the drums. Why is it that the bands or brakes wear faster than the iron plating on the drums? They are all the same kind of iron, and the band reaches nearly around the drum,
but the plating on the drums will outwear three bands but the plating on the drums will outwear three bands
of the same thickness. A. Brake bands are generally of the same thickness. A. Brake bands are generally
much thinner and have less wearing surface than the much thinner and have less wearing surface than the
drum band; besides the motion of the drum band tend to keep it cool, while the friction on the thin brake band
(5508) G. E. P. writes: Can the simple ectric motor described in Supplement, 641, be run an hour or so a day by three storage battery cells which are
charged the rest of the twenty-four hours by six cells of yravity battery? A. Yes; but you will need eight cells or more of gravity batteries for charging.
(5509) W. A. P. asks: How to hard solder one of those aluminum World's Fair sonveuirs and for aluminum, use an alloy of 6 parts aluminum, 4 parts copper, 90 parts zinc. Use Canada balsam forflux. For soft solder, an alloy of 95 parts of tin, 5 parts bismuth, or 5 parts cadmium, 2 parts zinc, 3 parts tin, using parafine or vaseline for flux
(5510) M. W. S. asks : In what proportion should air and ordinary illuminating gas be used ina gis of engine to produce the best results? A. The constitu different cities and require a variable amount of air for perfect combustion; 8 to 12 volumes of air to 1 volume f a good quality of gas will produce the best result.
(5511) A. C. McG. says: Will you please inform me what chemicals are used to perform the trick of smoking from two clay pipes, by holding the bowl of one over the other? A. Hydrochloric acid and (5512) W. W. Bre purpose
(5512) W. W. Brown, Culbertston, Neb., writes : Under Notes and Queries (No. 5356) B. C. W.
asks if there is any kind of a flux that can be used asks if there is any kind of a flux that can be used
better than borax. I have a patent on a flux that will do better than borax. I have a patent on a flux that will do
the work he desires and will be pleased to be placed in commuuication with him.
(5513) R. E. B. asks : How is the power determined to drive a boat of a given size at a certain
speed ? This is for small boats of from 18 feet to 40 feet speed? This is for small boats of from 18 feet to 40 feet
long. A. So much depends upon the lines and build of oats, together with the varying weight of the power, tha comes somewhat complicated. The approximate formula is $\frac{\mathrm{V}^{3} \mathrm{D}^{\frac{2}{3}}}{\mathrm{C}}=2 \mathrm{H}$. P. In which V^{2} is the cube of the re quired velocity in knots per hour, $D^{\frac{3}{3}}$ is the cube root of thesquare of the displacement in tons, C is a coefficient for the water lines of the boat, which for launches and small
steam yachts may vary from 500 for medium lines to 530 for sharp lines. The displacement should be computed for the total load, boat, machinery, water, fuel and
(5514) E. S. McI. says : It is stated by the highest engineering authorities that the passage o move the impurities and make even sewage water whole some and well tasting. Can you inform me what value as a filterer have the cinders from anthracite coal taken from under a boiler? A. The statement of engineer may be true in regard to the insoluble elements of sew age, but the solublesalts, urates, etc., have been traced a long way through the waterways of the ground, less
through the loams and quicksand, but to an almost un limited extent through the coarser gravels forming the tered through thick beds of material so as to maintai the nitrifying organisms, which are supposed to be supported by a proper supply of sewage, there are possibilities of potable water being a product of such filtration. Gravel bed surface filtration has been found very efficacious in purifying sewage. Drinking the effluent is hardly to be recommended. Clean ashes in a filter after the soluble salts of the coal and wood are re
(5515) J. B. says: I am at present ex worimenting with a toy balloon. For a certain purpos I would like to have this balloon carry a weight from 3
to 4 ounces. The common toy balloon filled with coal cas has no lifting capacity. What I wish to know is whether this same balloon could be filled with some other kind of a gas, to give satisfaction. If this is possi ble, please let me know. A. If hydrogen gas were used it would lift more than the coal gas. But it would reauire a balloon of say 6 cubic fe
hydrogen to lift 4 ounces weight.
(5516) B. S. says : Will cedar or cypres tanks (or leach tubs) for tan liquors last the longest with out rotting and how long will they last if welltaken care of" A. There is very little difference in the lasting
qualities of cedar and cypress for tan bark leach vats.
(5517) C. R. - Clean celluloid collar and cuffs with saleratus and water, using an old nail brush if desired.
(5518) F. De T says : Kindly give rule How heavy should the joist be under a tank holdin 18,000 gallons water, 40 feet from the ground, and are
12×12 heavy enough for uprights and plates, if pro12×12 heavy enough for uprights and plates, if pro
perly braced? A If your tankis circular, 15 feet diamete perly braced? A If your tank is circular, 15 feet diameter
by 15 feet high, the joists should be $4 \times 12,2$ feet apart. by 15 feet high, the joists should be $4 \times 12,2$ feet apart.
Uprights and plates 12×12 inches. (5519) F. M. says : Will you please state the difference of cost (used for cooking and furnace
heating) against anthracite coal at $\$ 4.75$ per ton of 2,000
A. Thecost of petroleum at prices named is more than twice as much as coal for a given number of heat units for a constant fire. The only advantage in favor of petroleum at the price named is for the intermittent use of
heat, such as for cooking in summer and the generation steam for sudaen and special use.
(5520) J. E. L. Co. asks: In a cylinder 20 inches long by 6 inches diameter, with a piston at o end, we find if subjected to 300 degrees, the volume of air will increase about $1 / 3$. I would like to know the ex panding force of the air thus heated, or how much will it move the piston and resist one pound pressure to the
square inch? A. By heating the air from 60° to 300° it expands approximately 50 per cent, or 1 volume becomes nearly 116 volumes, and if confined to the original volume it will have a pressure of 6 pounds per square inch, and will push a piston in a continuous cylinder from 20 inches, as above stated, to 2712 inches under 1 pound pressure per square inch.
(5521) W. A. W.-To make heel ball : Hard suet and beeswax, of each 4 ounces, powdered
gum, sugar candy, and Veuice turpentine, of each 1 gum, sugar candy, and Veuice turpentine, of each 1
ounce, ivory black and lamp black, of each 2 ounces The coloring matter and sugar must be in fine powder. the suet and the beeswax and add the sirup and the col(5522) (5522$)$ K. S. asks: Is there any differ ence between an injector and an inspirator? A. Ther
is no difference in principle between an injector andan inspirator. See an interesting illustrated article on in (5523) J. M. says: I have a cistern that
 ber, leaving a space of 3 inches behind the boards; into
this space I packed soft clay and rammed it down tight as I boarded it up. I thought this would hold water and make an inexpensive cistern. I find that it will not hold water. Is there any way in which I can plaster it up
with water lime over the boards to make it hold? Or is there anything you could suggest whereby I can fix it to hold in withoutgoing to much expense? The cistern is 5×5 and 6 feet deep. To settle a dispute, will you please
say how many feet of timber in a stick 12×12 inches at ay how many feet of timber in a stick 12×12 inches at one end and 24×24 inches at other end and 40 feet long,
and give figures showing how to obtain the proper answer? A. You cannot do better than to take out the wood and cldy tamping of your cistern and make the bottom and sides of Portland cement concrete, 1 part of cement, β parts clean sharp sand, then plaster the entire inside surface with pure Portland cement. Your cistern must be circular. For the taper timber. Rule: To the sum the areas of the two ends add four times the area of the center and multiply this sum by one-sixth of the
length. The piece of timber as stated contained 93.28

```
cubic feet.
```

(5524) D. F. V. asks : What would be fetemperature at points 10,20 and 40 feet below surface ummer? Also what force per square inch will air confined at ordinary temperature exert if heated from 300° Fah. to 600° Fah.? If compressed to 15 pounds per
square inch before heating, would pressure be doubled when heated? A. The temperature of the earth at from 10 to 20 feet below the surface is nearly the same as the
mean annualtemperature on the surface mean annual temperature on the surface. In mid-latitudes
from 50° to 60° Fah., according to the condition of the from 50° to 60° Fah., according to the condition of the
surface soil. The increase of temperature downward is and rocks, the rate varying from 50 to 65 feet in depth for each degree of rise in the thermometer.
(5525) P. J. L. says : I wish to experiment with a hot water radiator for heating a room, and off the most heat, cast iron, steel, or copper, with hot water at 212°. Also, what amount of radiator surface is needed for a room $12 \times 12 \times 9$, both for water and steam, and what quantity of water would radiator hold? What degree of heat would be shown on surface of radiator ? Would it be possible to heat a radiator of the required Aze with a center draught lamp or with a gas burner? Arface. Your room will require 12 square feet of heat ing surface for either hot water or low presure steam The capacity depends upon the plan of construction. The outside surface should be from 210° to 211° Fah. A large lamp or gas stove will heat the radiator.
(5526) C. P. asks : 1. How can a magetized watch be demagnetized? Is thescription of it? or doing same, and where can 1 get description of it.
A strong horseshoe magnet is required for demagnetizing watches. See an article on this subject in Sci-
Entific Amertan Supplement, No. 668. 2. What entific American Supplement, No. 668. 2. What
would be the size of the smallest boiler to generate nough steam for working the steam turbine described in o. 17 of this journal, at the rate of 30,000 revolutions?
A 25 horse power boiler might produce the number
(5527) E. E. asks if it would be possible read messages that were being transmitted through an cable cable by inductive means, after grappling the cable and lifting it to the deck of a vessel. A. We think
this would be impossible, on account of the use of a very weak current in the cable for transmitting messages and the ability of the metallic protecting covering of the cable to absorb practically all of the inductive impulses.
(5528) P. G. asks: 1. What would be the power of dynamodescribed in Scientific American Supplement, No. 161, if changed into a motor? A.
About one man power, if supplied with sufficient watts. 2. What different connections are made to changea dynamo into a motor? A. No changes are requisite. The vailable. 3. Would current enough porential that is power lamp run the above motor? A. It might run it if he motor was well constructed, but with very little
(5529) A. B. C. says : I have a motor
ment, No. 759 , with the exception that the field magnet type as shown in that paper. It runs finely with six
typersher cells of plunge battery. I would like to rewind it for use on a 220 volt motor circuit. Should it be wound series should I use on the magnet and armature? If it could not be wound for that high voltage, could I wind it for 110 volts and run in series witha 110 volt 16 candle powe lamp? A. Wind your motor in series, with enough wire ogive a safe current at 220 volts. We cannot do the calculation without knowing the size of your motor. If
to be used with the lamp, it may be wound with enough No. 26 wire in field and No. 29 in armature to give 110 No. 26 wire in field and No. 29 in armature to give 10 wound in parallel, giving one-quarter the resistance of ita winding.
(5530) W. A. M.-Forinformation in re plement, Nos. 811 and 872.

TO INVENTORS.

Anex erience of forty-tour years, and the preparation of more than one hundred thousand applications for pa

 af more than one hundred thousand applications for patentas home home and aroad, enable us to understand tbe
ams and practie on both ontinents, and to possess un
equaled facilities for procuring patents everywhere

INDEX OF INVENTIONS

November 14, 1893 ,
AND EACH BEARING THAT DATEE
[See

º

cs

Neind

\mathfrak{c}

