RECENTLY PATENTED INVENTIONS. Engineering.
Furnace.-Wardell Guthrie, Chicagn Air pipes arranged alongside the furnace, according
to this improvement, have openings into the furnace above the fire surface, and the furnace is fed by a screw conveyor in a trough lengthwise and centrally of the bottom, the fuel being fed back and upward as a projecting crank on the end of the screw is turned. The air is fed by force directly on the surface of the fire, as the fuel is
fed up from the bottom. A dump or grate, for removing fed up from the bottom. A dump or grate, for removing
cinders or ashes, is placed at one or both sides of the feed screw.
Drag for Steering Vessels.-Louis Boucher, west Superior, Wis. This is a device designed
for use ouly when a ship's rudder becomes disabled, and it is so made that it may be conveniently stowed a way it is so made that it may be conveniently stowed away
and set up in a very short time when needed. 'The drag
is an air-tight cylinder with pointed forward end, in which is a ring, there being annular flanges or fins on the cylinder. Attached to the ring is a chain which con-
nects with two chains, one leading to each side of the nects with two chains, one leading to each side of the
vessel near the stern, where the chains are passed around vessel near the stern, where the chains are passed arounce over pulley blocks and a central capstan, whereby the
urag may be easily moved to one side or the other in the Irag may be easily
rear of the vessel.
Propeisher.-Frank J. Leisen, Woodbridge, N. J. This propeller has cylindrical, spirally formed and diagonally opposing exterior surfaces, and hollow interior formed with two pockets, one pocketvisi-
hie from each side, and both pockets uniting to form hie from each side, and both pockets uniting to form a
circular opening at the outer end. There are spiral exte rior blades or ribs, each rib above a pocket. This im provement has been practically' tested in a 16 inch proveller, demonstrating its superiority to an 18 inch fluke
wheel, and a 36 inch pattern has been furnished the ownwheel, and a 36 inch pattern has been furnished the own-
urs of Yankee Doorlle, of Philadelphia, from which a propeller is to be made and given a public trial on that famous yacht.

Hailway Appliances

Car Coupling.-Edward N. and Ja cob.I. Byers, Cameron, Mo. This invention provides lis, ehould the drawbar be drawn from its proper seat, the device acts automatically to uncouple the loosened draw-
head from the opposing car. An uncoupling lever conmected with the drawhar has one end located beneath the coupling pin, and a guide is so connected with a fixed support thatthe lever will be elevated beneath the pin as the drawbar or

Pneumatic Signal.-George V. Steeb, Brooklyn, N. Y. The utilizing of air pressure to operate signals or semaphores is the object of this improve
ment, which provides for bringing the air pressure into ment, which provides for bringing the air pressure in
action by the passing of a train over the track. The air under pressure is supplied by a pipe from any suitably s:atitalle chamber beneath or adjacent to the track, this cylinder being connected with another cylinder in which is a piston, the movement of which operates the sema-
phore rod, the action being controlied by a valve in a third cylinder, actuated as the wheels of the car pass over
inclined planes at the side of the track. The apparatus may also be used to ring alarm bells, move crossing gates, etc.

Electrical.

Carbon Holder.-Clark C. Hill, Newport, R. I. This holder is formed of a cylindrical, long tudinally slotted socket with thickened ends, and having
near one end a circumferential groove to which is fitted a circular spring. With this improvementthe upper and lower carbons of electric lamps may be held in the position of use without the employment of screw clamps or
arljisting screws. The sections of the socket formed by slotting may also be made to clamp the carbons suffinithor emplowing the circular spring.
Electric Regulator and Switch. Walter N. Jones, Ji., Petersbirg, Va. This is an imjusting devices serve to regulate the current to both the motor and the brake magnets, without allowing the current to be on the motor and the brake magnet at the
same time from any inattention or forgetfulness of the motor man. Combined with two concentric rheostats,
and tiro concentric series of segmental plates leading thereto, is,a central shaft with insulated metal tubes bearing separate.contact arms playing respectively upon the series of plates, the central shaft and metal tube forming two independent paths for the current centrally through the rheostats. The power increases in the motor by creases in the brak
ment of the crank

Mechanical.

Hoop Sawing and Shaping Machine. - Ephraim O. Hall, Marshfield, Oregon. This machine is designed to tug two hoops from a the machme, the hoops being perfectly
the log formed, their upper sides planed, the edges scarfed, and the under side, in the direction of the heart of the log, left rough, the machine requiring but a single attendant. A diagonal saw at the rear of a vertical saw produces a
kerf meeting that formed by the vertical saw, a planer kerf meeting that formed by the vertical saw, a planer
being operated in conjunction with the latter saw, while being operated in conjunction with the latter saw, while
an adjustable planer and an adjustable saw are also diagonally located, the latter saw being held

Hoop Cutting Machine.--Alban H. Adams, Fort Meade, Fla. According to this invention a roller cutter is applied to an ordinary rotary veneer
cutting machine, to score the log or make longitucuting machine, to score the log or make longitu-the incisions, so that when the veneer is turned from the log it will fall apart at the places of the incisions, forming a series of hoops, the grain of which runs lengthwise,
and which are already perforated to receive the nails. and which are already perforated to receive the nails.
The hoops thus made are especially :ulaptel for use on orange boxes and similar packages.

Printer's Furniture.-Jacob C. Wolfe, New York City. The design in this furniture i to present weight, while it may be quickly and conveniently cast weight, while it may be quickly and conveniently consists of a hollow block with top and bottom recesse to form a marginal rib, the bottoms of the recesses inclining from the side ribs to the center of the block,
while it has also a longitudinal central wall and trans while it has also a longitudinal central wall
Wire Bending Machine.-Cyrus M. Suter, Ashton, IIl. This is a machine for making stays especially adapted for placing the strands of wire fences and holding them the desired distance apart. The construction of the machme is such that the operation of
forming a stay is entirely automatic, the stays being made successively from a length or coil of wire.

Agricultural.

Cultivator.-August Leineweber, De Witt, Neb. This invention provides an improvement in cultivators of the disk type, and the cultivator shank
is carried by and has vertical adjustment in a slide having carried by and has vertical adjustment in a slide having movement upon the beam, there being a gear connection between the slide and the shank whereby the latter is revolved. Any desired number of cultivators may be
placed a beam, and the cultivator disks are of pecu placed upon a beam, and the cultivator disks are of pecu rendered concave upon its inner face and convexed upon its outer face.

Miscellaneous.

Apparatus for Lighting Buildings. John W. Davis, New York City. The lighting of inte
ior rooms, basements and lofte, not readily lighted by windows, is the design of this improvement, the appara tus first condensing the beams of light, then carrying them to the desired locality and diffusing them, by a peculiar arrangement of mirrors operated! by clockwork. A concave paraboloidal mirror is supported and adapted to travel above a light conduit, a convex paraboloidal
mirror being held at the focus of the concave mirror and mirror being held at the focus of the concave mirror and the latter, a plane deflecting mirror being held to re eive the beams of light and throw them into the con Vehicle Brake.-Eugene W. Cleve land, Rounthwaite, Canada. This is a strong and simple device, more especially designed for use on portable en
gines and other heavy vehicles. It comprises a frame on which is a windlass, chains attached to and wound upon
the windlass being extended in opposite directions and ooked as berge Glass Structure.--Edgar W. Cunningham, Jersey City, N. J. This improvement pertains
to an improved construction of skylights and the roofs and sides of greenhouses or conservatories, combining with aligned panels a joining piece of two metal binding
trips having straight abutting sides which are soldered ogether, and parallel flat upper and lower flanges which closely embrace the adjacent opposite ends of the panele the lower flanges being extended and curved to form Spirit Level and Inclinometer.James P. Famous, Norristown, Pa. This device comprises an adjustable level tube in an elongated level stock, there being a grade indicating slide block at each end
and a fixed transverse level tube on the top of the stock, and a fixed transverse level tube on the top of the stock,
in combination with a swiveling sight tube on the stock The implement is adapted to determine whether objects The implement is adapted to determine
are level, plumb, or inclined, and exactly determine the degree of inclination from a horizontal plane, the device being adapted for use in building and engineering work of all kinds.
Rock Drill. - Williain O. Higgins, Kingwood, Ind. This is an implement which may be conveniently worked by hand and easily handled by one man to place it in the desired position. In a suitable
upright frame are mounted a vertically movable drill upright frame are mounted a vertically movable drill
shaft and a driving shaft, an eccentric on the latter ope shaft and a driving shaft, an eccentric on the latter ope
rated by a pivoted lever, there being a sliding ratchet rated by a pivoted lever, there being a sliding ratchet
wheel on the drill shaft and a pawl pivoted to a centrally pivoted lever, and a link connecting the two levers,
The drill is steadily fed downward, to be able at every The drill is steadily fed downwar
stroke to deliver an effective blow.
Writing Tablet and Manuscript Holder.- Barton W. Scott, San Jose, Cal. This imstenographers, public speakers, ty e setters, and others, to permit of readily writing matter on a continuous sheet, and conveniently displaying the written matter. The invention comprises a casing having two winding
drums for the paper, a main shaft being journaled in the casing and actuating two gear wheels, which are adapted be geared with he winding drum
Coal Screen.-Frank L. Sackett, Fre donia, N. Y. To facilitate the screening of broken coal for retail purposes is the object of this invention, and the
device provided therefor is simple and inexpensive. It device provided therefor is simple and inexpensive. I
consists of an oblong frame, across which the screen proper is stretched, and having an end wall and discharge opening, and whose bottom slides on side bars of the
screen, the hopper belng adjustable and removable screen, the hopper being adjustable and removable
The device may be attached to the side of a cart or in
Bicycle Whistle.-John F. Hylan Robert L. Sinley, Brooklyn, N. Y. This is a simple nd practical device, which may be readily attached to a safety bicycle, and comprises an air pump, to be actuated by the rotary motion of the front wheel, to afford a copious supply of air, and, on the novement of a lever
blow a loud blast on a whistle connected to the pump The lever is projected below the handle bar, and the blast may be prolonged for as long a time as the lever is Tripped with the handle bar.
Thill Support.-Adolph Meyerhoff, New York City. A pair of keepers on the thill or pole the forward keeper has a head engaging the keeper, while a chain secured to the rear end of the boltruns hrough the rear keeper, and a hook on the running gear engages the chain. The device ts very simple and inex-
pensive, and may be attached to the thills or pole of any
vehicle to hold them at the necessary height for convefrom the horse's back
Folding Bed.-Hugh Stevenson, New York City. This is an iimprovement upon a formerly patented invention, according to which, when the beds mattress, to permit a free circulation iof air between the covers, that [they may be thoroughly ventilated. The present patent provides an improved construction,
whereby, when the bed is folded, the covers may be sepawhereby, when the bed is folded, the covers may be sepa-
rated and held perfectly straight. the covers and mattress rated and held perfectly straight. the covers and mattress
being also so held that the bed may be very easily made up when necessary
Shoe. - William T. Loyd, Hiawatha Kan. The sole of this shoe is formed of a single sheet the metal, with a metallic coll, a flexible and and flange around to the front flange and a flexible lining at the heel. Beneath the ball and heel are also attached plates having serrated flanges, adapting the shoe especially for use as
an ice creeper. The shoe is held on the foot by a strap an ice creeper.
over the instep.

Box Fastener. - Thomas Cole, St Mary's, Mo. A safe and simple fastener, which wil per mit crates on which it is used to be packed on top o each other and slid about without disturbing the fasten ing, has been provided by this inventor. The fastening hasps are secured to staples made with spring coils, and the free ends of the hasps engage pins in recesses of
the upper face of the lid, the spring tension holding the the upper face of the lid, the spring tension holding the
fastening firm, while the pressing up of the staple loosens the hold of the hasp on the pin.,

Design.

Sweaters.-William T. Pitchers, God ming, England. Five design patents have been awarde this inventor on this article of apparel. In the first the
sleeves and body are ornamented with panels having adjacent angular figures alternately embossed and in intar lio, and in the second are decorative panels of diamond shape, with sunken body and-embossed margin. In the third are intersecting figures of serpentine character, with interposed series of ribs; in the fourth, rectangular figures inclose grouped circular figures, and in the fifth the body and sleeves have a surface finish of embossed ribs arranged spirally or diagonally.
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please of this paper.

SLIENTIFIC AMERICAN

bUILDING EDITION

NOVENBER, 1893.-(No. 9\%.)

TABLE OF CONTENTS.
Elegant plate in colors showing a residence at Bridgeport, Conn, recently erected for Mr. Thos. C.
Woodin, at a cost of $\$ 4,600$ complete. Floor plans and two perspective elevations. An excel lent design. Mr.
Bridgeport, Conn.
Plate in colors showing the residence of Clarence M. Burch, Esq., at Philadelphia, Pa. Two perspective views and floor plans. A very attractive
design. Mesers. Moses \& King, architects, Philadelphia.
A dwelling erected at Joliet, IIl. Perspective view and floor plans. An excellent design. Cost $\$ 6,000$
complete. Mr. J. C. Weece, architect, Joliet, Ill. complete. Mr. J. C. Weece, architect, Joliet, M . a cost of $\$ 3,500$ complete. Floor plans, perspec tive view, etc. Mr. E. H. Waterbury, Stamford, Engravings and floor plans of a suburban residence erected for Mr. George H. Barton, at Hartford,
Conn. Messrs. Hapgood \& Hapgood, architects, Conn. Messrs. Hapgood \& Hapgood, architect
Hartford, Conn. A very attractive design. Hartford, Conn. A very attractive design.
Very excellent design for a two-family Very excellent design for a two-family house,
erected at Bridgeport, Conn., at a cost of $\$ 1,500$. Floor plans and perspective elevation. Mr. A. H. Beers, architect, Bridgeport, Conn. and ground plan. Cost $\$ 7,100$ complete. Mr. W P. Wentworth, architect, Boston, Mass.

Engraving showing some city dwellings of modern design at Washington Heights, New York City. Plans and perspectiv
architect, New York.
9. Residence of Mr. C. T. Hemsteadat Glenbrook, Con Plans and perspective. An excellent design. Moving of the Normandy apartment building at Chicago. Supposed to be the largest building ever
moved and turned around on rollers. Numerous illustrations.
12. Sketches at the World's Columbian Exposition
13. Miscellaneous Contents : Causes of fire in dwe

Miscellaneous Contents: Causes of fire in dwellings.
-An improved brace, illustrated.-Steel ceilings, -An improved brace, illustrated.- - iteel ceilings, of constructing foundations.-Sheathing quilt, il-lustrated.-A cap for the obelisk.-Interior woodwork for buildings, illustrated.-Electrical injuries to gas and water pipes.-An improved scraper,
illustrated.-Linseed oil for paint and polish.-illustrated.-Linseed oil for paint and polish.
Improved circular sawing machine, illustrated.
Improved circular sawing machine, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about two hunared ordinary book pages; forming, practi-
cally, a large and splendid Magazine of Architecctily, a large and splendid MagAzine of Architecwith fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience
of this work have won for it the Largest Circulation ony Architectural Publication in the world. Sold by all newsdealers. MUNN \& CO., Publishers,
$\mathfrak{B u s i n e s s}$ and Persornal. 2
The charge for Insertion under this head is One Dollar a line
for each insertion ; about cight words to a line. Adverfor each insertion; about eioht words to a line. Adver-
tisements must be received at pubication office as early as
Thursday morning to appear in the followino week's issue

For mining engines. J. S. Mundy, Newark, N. J.
" C. S." metal polish. Indianapolis Samples free. Improved iron planers. W.A. Wilson, Rochester, N.Y. The new material, "linenoid." Westfild, Mass. Catague free.

Microbe Kiter Buffalo, N. \mathbf{Y}.

Patent for Sale-Biz savings. Ca
Vo. 2123 Eastern Ave., Baltimore, Md.
Steam Hammers, 1mproved Hydraulic Jacks, and T ub New York. Will purchase patent of mocritorious small article.
Give particulars. Manufacturer, box 2233 , New York. Estimates furnished for moring. raising, or shoring Screw machines, milling machines, and drill presses Centrifugal Pumps. Capacity, 100 to 40,00 gals. per Wanted to manufacture ncw machinery of rea John M. Kramer \& Bro. Machine Works, Maria Stein, Wanted-Novelty manufacturing companies to send
their address to Fred. Beaumont, 130% Franklin Street, Lheir address to
Kansas City, Mo.
Model dynamo motor. Ingenious machine for stud entbridge, New York.
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum apparatus, air pumps.
acid blowers, fiter press puraps, etc.

For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc., address
J.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. ₹. The best book for electricians and beginners in elev-
tricity is "Experimental Science," by Geo. M. Hopkins. ricity is "Experimental Science," by Geo. M. Hopkins By mail. 4 ; Munn d Co., publishers, 3 broadway, N . Y.
Readers of the Scientific American can obtain, free Readers of the Scientific American can obtain, free
of charge, a copy of the American Shipbuilder by York. Competent persons who desire agencies for a new
popular book, of ready sale, with bandsome profit, rasy
apply to Munn \& Co., Scientifle American office. ${ }^{3} \mathbf{\beta} 1$ apply to Munn $\underset{\text { Broadway, New York. }}{ }$ Co.

* Send for new and complete catalogue of Scientific and other Books for sale by Mun.
New York. Free on application.
䲩ductumpris

HINTS TO CORRESPONDENTS.

(5502) H. E. W. asks how to run a 70 volt motor of 18 horse power on a 110 volt circuit. A larger, and place in series with it a resistance of 8 ohm For the latter use No. 15 wire, or if you have them, 3 lamps in
motor.
motor.
(5503) J. R. N. says: Suppose a tank at an elevation of 250 feet in height, 10 feet in width, and 3 inches in diameter, 250 feet in length, perpendicular: Suppose said tank to be filled with water. How many gallons of water will flow through said pipe per minutt and what horse power would be required to keep this tank full of water, there being a constant discharge ?
inches in diameter? A. The pipe will discharge 1,275 gallons per minute and will require 80 horse power to
(8504) E. A. S. says : Kindly inform me through the columns of your paper of a process forcuring small skins, such as squirrel, etc. A. Mix bran and sof
water sufficient to cover the skins. Immerse the latte and keep them covered for twenty-four hours, then re move, wash clean, and carefully scrape off all flesh. To move, wash clean, and carefully scrape off all flesh. To
1 gallon of water (hot) add 1 pound of alum and 14 pound of salt. When dissolved and cool enough to admit en trance of the hand, immerse the skins for twenty-fou hours, dry in the shade and rub. Stir the liquor again immerse the skins for twenty-four hours, dry and rub as before; immerse for twenty-four hours in oat meal and warm water, partially dry in the shade, and
finally rub until entirely dry. This leaves the skin like inally rub until entirely dry. This leas
white leather, and fit for immediate use.
(5505) L. M. asks : What is the best method to preserve pneumatic tires for bicycles from
one season to another, that is, to keep themfrom cracking and keep them soft? A. Wash the rubber tires perfectly clean and dry. Warm them by a stove and rub melted paraffine over the surface with a warm cloth. A very thin coat answers the purpose. If rubber cement can be obtained, such as sold by the rubber trade, a thin wipe
of it with a woolen rag over the surface of the tires will
(5506) S. B. W. asks: What the
power. A. With a horse power equal to 33,000 foot pounds? Oil can be obtained for 5 cents per gallon or pounds per minute, the power of an average strong : less, delivered in the tank. Would not two barrels of oil is 4,200 foot pounds per minute. On short spurts can tion and advantagein controlling the use in consideration? accomplish from two to three times as much, or half a accomplish fre
horse power.
(5507) G. W. T. says: In this valley the coal is let down from the opeuings on the hills by wire
cables and large drums and the spced is controlled by iron bands or brakes applied to the outside of the drums. Why is it that the bands or brakes wear faster than the iron plating on the drums? They are all the same kind of iron, and the band reaches nearly around the drum,
but the plating on the drums will outwear three bands but the plating on the drums will outwear three bands
of the same thickness. A. Brake bands are generally of the same thickness. A. Brake bands are generally
much thinner and have less wearing surface than the much thinner and have less wearing surface than the
drum band; besides the motion of the drum band tend to keep it cool, while the friction on the thin brake band
(5508) G. E. P. writes: Can the simple iectric motor described in Supplement, 641, be run an hour or so a day by three storage battery cells which are ravity battery? A. Yes; but you will need eight cells or more of gravity batteries for charging.
(5509) W. A. P. asks: How to hard solder one of those aluminum World's Fair sonveuirs and for aluminum, use an alloy of 6 parts aluminum, 4 parts copper, 90 parts zinc. Use Canada balsam forflux. For soft solder, an alloy of 95 parts of tin, 5 parts bismuth, or 5 parts cadmium, 2 parts zinc, 3 parts tin, using parafine or vaseline for flux
(5510) M. W. S. asks : In what proportion should air and ordinary illuminating gas be used ina gis of engine to produce the best results? A. The constitu different cities and require a variable amount of air for perfect combustion; 8 to 12 volumes of air to 1 volume (5511) A. C. McG. says: Will you please inform me what chemicals are used to perform the trick of smoking from two clay pipes, by holding the
bowl of one over the other ? A. Hydrochloric acid and bowl of one over the other? A. H
ammouia are used for this purpose.
(5512) W. W. Brown, Culbertston, Neb., writes : Under Notes and Queries (No. 5356) B. C. W.
asks if there is any kind of a flux that can be used asks if there is any kind of a flux that can be used
better than borax. I have a patent on a flux that will do better than borax. I have a patent on a flux that will do
the work he desires and will be pleased to be placed in the work he desires and w
cummuuication with him.
(5513) R. E. B. asks : How is the power determined to drive a boat of a given size at a certain
speed ? This is for small boats of from 18 feet to 40 feet speed? This is for small boats of from 18 feet to 40 feet
long. A. So much depends upon the lines and build of boats, together with the varying weight of the power, tha comes somewhat complicated. The approximate formula is $\frac{\mathrm{V}^{3} \mathrm{D}^{\frac{2}{3}}}{\mathrm{C}}=2 \mathrm{H}$. P. In which V^{2} is the cube of the re quired velocity in knots per hour, $D^{\frac{2}{3}}$ is the cube root of thesquare of the displacement in tons, C is a coefficient f or the water lines of the boat, which for launches and small
steam yachts may vary from 500 for medium lines to 530 for sharp lines. The displacement should be computed for the total load, boat, machinery, water, fuel and
(5514) E. S. McI. says: It is stated by the highest engineering authorities that the passage of move the impurities and make even sewage water whole some and well tasting. Can you inform me what value as a filterer have the cinders from anthracite coal taken from under a boiler? A. The statement of engineer may be true in regard to the insoluble elements of sew age, but the solublesalts, urates, etc., have been traced a long way through the waterways of the ground, less limited extent through the coarser gravels forming the tered through thick beds of material so as to maintai the nitrifying organisms, which are supposed to be supported by a proper supply of sewage, there are possibilities of potable water being a product of such filtration. Gravel bed surface filtration has been found very efficacious in purifying sewage. Drinking the effluent is hardly to be recommended. Clean ashes in a filter after the soluble salts of the coal and wood are re
(5515) J. B. says: I am at present ex I would like to have this balloon carry certain purpose I would like to have this balloon carry a weight from
to 4 ounces. The common toy balloon filled with coal cas has no lifting capacity. What I wish to know is whether this same balloon could be filled with some other kind of a gas, to give satisfaction. If this is possible, please let me know. A. If hydrogen gas were used it would lift more than the coal gas. But it would reauire a balloon of say 6 cubic fe
hydrogen to lift 4 ounces weight.
(5516) B. S. says : Will cedar or cypres tanks (or leach tubs) for tan liquors last the longest with out rotting and how long will they last if welltaken care of" A. There is very little difference in the lasting
qualities of cedar and cypress for tan bark leach vats.
(5517) C. R. - Clean celluloid collar and cuffs with saleratus and water, using an old nail brush if desired.
(5518) F. De T says : Kindly give rule How heavy should the joist be under a tank holdin 18,000 gallons water, 40 feet from the ground, and are
12×12 heavy enough for uprights and plates, if pro12×12 heavy enough for uprights and plates, if pro
perly braced? A If your tankis circular, 15 feet diamete perly braced? A If your tank is circular, 15 feet diameter
by 15 feet high, the joists should be $4 \times 12,2$ feet apart. hy 15 feet high, the joists should be $4 \times 12,2$ feet apart.
Uprights and plates 12×12 inches. (5519) F. M. says: Will you please state the difference of cost (used for cooking and furnace
neating) against anthracite coal at $\$ 4.75$ per ton of 2,000
A. Thecost of petroleum at prices named is more than twice as much as coal for a given number of heat units for a constant fire. The only advantage in favor of petroleum at the price named is for the intermittent use of
heat, such as for cooking in summer and the generation steam for surden special use.
(5520) J. E. L. Co. asks: In a cylinder 00 inches long by 6 inches diameter, with a piston end, we find if subjected to 300 degrees, the volume of air will increase about $1 / 3$. I would like to know the ex panding force of the air thus heated, or how much will it move the piston and resist one pound pressure to the
square inch? A. By heating the air from 60° to 300° it expands approximately 50 per cent, or 1 volume becomes nearly 116 volumes, and if confined to the original volume it will have a pressure of 6 pounds per aquare inch, and will push a piston in a continuous cylinder from 20 inches, as above stated, to $2713 / 2$ inches under 1 pound pressure per square inch.
(5521) W. A. W.-To make heel ball : Hard suet and beeswax, of each 4 ounces, powdered
gum, sugar candy, and Veuice turpentine, of each 1 gum, sugar candy, and Veuice turpentine, of each 1
ounce, ivory black and lamp black, of each 2 ounces The coloring matter and sugar must be in fine powder. the suet and the beeswax and add the sirup and the col(5522) (5522$)$ K. S. asks: Is there any differ ence between an injector and an inspirator? A. Ther
is no difference in principle between an injector andan inspirator. See an interesting illustrated article on in (5523) J. M. says: I have a cistern that as sunk in heavy clay, then boarded up with inch lum ber, leaving a space of 3 inches behind the boards; into
this space I packed soft clay and rammed it down tight as I boarded it up. I thought this would hold water and make an inexpensive cistern. I find that it will not hold water. Is there any way in which I can plaster it up
with water lime over the boards to make it hold? Or is there anything you could suggest whereby I can fix it hold in withoutgoing to much expense? The cistern is 5×5 and 6 feet deep. To settle a dispute, will you please
say how many feet of timber in a stick 12×12 inches at say how many feet of timber in a stick 12×12 inches at
one end and 24×24 inches at other end and 40 feet long, one end and 24×24 inches at other end and 40 feet long,
and give figures showing how to obtain the proper answer? A. You cannot do better than to take out the wood and clay tamping of your cistern and make the bottom and sides of Portland cement concrete, 1 part of cement, β parts clean sharp sand, then plaster the entire inside surface with pure Portland cement. Your cistern must be circular. For the taper timber. Rule: To the sum of the areas of the two ends add four times the area of the center and multiply this sum by one-sixth of the
length. The piece of timber as stated contained 93.28

```
cubic feet.
```

(5524) D. F. V. asks : What would be fetemperature at points 10,20 and 40 feet below surface summer? Also what force per square inch will air confined at ordinary temperature exert if heated from 300° Fah. to 600° Fah.? If compressed to 15 pounds per
square inch before heating, would pressure be doubled when heated? A. The temperature of the earth at from 10 to 20 feet below the surface is nearly the same as the mean annual temperature on the surface. In mid-latitudes from 50° to 60° Fah., according to the condition of the
surface soil. The increase of temperature downward is and rocks, the rate varying from 50 to 65 feet in depth for each degree of rise in the thermometer.
(5525) P. J. L. says : I wish to experiment with a hot water radiator for heating a room, and off the most heat, cast iron, steel, or copper, with hot water at 212°. Also, what amount of radiator surface is needed for a room $12 \times 12 \times 9$, both for water and steam, and what quantity of water would radiator hold? What degree of heat would be shown on surface of radiator? Would it be possible to heat a radiator of the required ize with a center draught lamp or with a gas burner? arface. Your room will require 12 square feet of heat ing surface for either hot water or low resure steam The capacity depends upon the plan of construction. The outside surface should be from 210° to 211° Fah. A large lamp or gas stove will heat the radiator.
(5526) C. P. asks: 1. How can a magetized watch be demagnetized? Is thercription of it? or doing same, and where can 1 get description of it.
A. A strong horseshoe magnet is required for demagnetizing watches. See an article on this subject in Sci-
Entific American Supplement, No. 668. 2. What entific American Supplement, No. 668. 2. What
would be the size of the smallest boiler to generate nough steam for working the steam turbine described in o. 17 of this journal, at the rate of 30,000 revolutions?
(5527) E. E. asks if it would be possible read messages that were being transmitted through an ocean cable by inductive means, after grappling the
cable and lifting it to the deck of a vessel. A. We think able and lifting it to the deck of a vessel. A. We think
this would be impossible, on account of the use of a very weak current in the cable for transmitting messages and the ability of the metallic protecting covering of the
cable to absorb practically all of the inductive impulses. cable to absorb practically all of the inductive impulses.
(5528) P. G. asks: 1. What would be he power of dynamo described in Scientific american SUPPLEment, No. 161, if changed into a motor? A.
About one man power, if supplied with sufficient watts. 2. What different connections are made to changea dynamo into a motor? A. No changes are requisite. The
ze of wire for winding depends on the potential vailable. 3. Would current enough to potential that is power lamp run the above motor? A. It might run it if he motor was well constructed, but with very little
(5529) A. B. C. says: I have a motor

MENT, No. 759 , with the exception that the field magnet the of therseshoe style instead of the consequent pole
type. as shown in that paper. It runs finely with six cells of plunge battery. I would like to rewind it for use on a 220 volt motor circuit. Should it be wound series or shunt? What size of wire and how many layers
should \mathbf{I} use on the magnet and armature? If it could not be wound for that high voltage, could I wind it fo 110 volts and run in series witha 110 volt 16 candle power lamp? A. Wind your motor in series, with enough wire ogive a safe current at 220 volts. We cannot do the calculation without knowing the size of your motor. If
to be used with the lamp, it may be wound with enough No. 26 wire in field and No. 29 in armature to give 110 hms resistance. In the calculation take the armature as wound in parallel, giving one-quarter the resistance of its winding.
(5530) W. A. M.-Forinformation in re alement, Nos. 811 and 872.

TO INVENTORS.
Anex erience of forty-tour years, and the preparation
af more than one hundred thousand application for pa
 squaled facilities for procuring patents everywhere.
syopsis of the patent lamsoot the United States and all
foreign countriesmay bebad on application, and persons
ontemplating the securing of patents, either at home or

INDEX OF INVENTIONS

 which Letcers Patent of the

November 14, 1893,
AND EACH BEARING THAT DATEE
[See note at end of list about copies of these patents.]

Coloring matter from dye-wood extracts, obtain- ing friabie, P. T. Austen. Contact apparatus. E. Thomson Cooking hatensi1. G. H. Nicholls. Cotton grader and nail arrester, T. D. Rüfin Coupling See Car coupling. Car and air brake coupling. Fire hose coupling. Hose coupling.

Crayon or pencil, A. K. Cross Cultivator, A. Hodgson Cultivator, L. Luppen Cultivator, J. Macphail Current motor. alternating, Currents means for regulat

cutter. Twine cutter.
cutting gauge and marker, combined, A. A. Wal-
die

