PARSONS HOROLOGICAL INSTITUTE.
It is comparatively a short time since the manufacture of watches began to be carried on extensively in the United States, although the "Yankec" clock has been well known the world over for many years. While timepieces of foreign make were mainly sold and used, the watch repairer needed peculiar fitness for his work, which could be acquired only by 10 ng apprenticeship and familiarity with the various types of
timepieces. When American watches became popular, watch making as a trade began to decline. Materials of every description became plentiful, easily obtained and readily used, and any difficult job was naturally turned over to the manufacturer. Still these conditions, as regards American watches, afforded no reason why watchmakers should degenerate. On the contrary, every improvement and modification of timepieces and every additional form of movement calls for higher skill in handling these delicate machines.
Recognizing these facts, Mr. J. R. Parsons, of La Porte, Ind., started the La Porte school for watchmakers, the development of which was so rapid as to render it difficult for the founder to keep pace with the requirements. After the success of the school had been assured, several offers of considerable sums of money were made to remove the school to other places. At this time Mrs. Lydia Bradley, of Peoria, Ill., offered to provide a fine building, with all the tools and appliances necessary, for the use of any number of deserving young men and women who wished to learn a trade; and through her agents, Mr. W. W. Hammond and Mr. F. F. Ide, arrangements were made for the purchase of a large watch factory building in Peoria, Ill., with all its tools and machinery. The school was removed to these new quarters and started afresh, with the building and apparatus paid for and plenty of money to insure the success of the enterprise. The school was not only fortunate in being placed in such ample quarters, with sound financial backing, but also in securing the services of Mr. F. F. Ide, whose mechanical knowledge and skill have proved a valuable acquisition.

The object of the institute is not to make money, but to turn out competent watchmakers and jewelers. The tuition is only sufficient to make the institute self-supporting. We understand the attendance is very large, nearly equal to that of all the other schools of the kind combined. The institute gives the student a thorough education in horology, including instructions in making watches, chronometers, clocks and horological machinery in general and repairing the same. It gives a course in optics, and in this department graduates receive a separ rate diploma. Ladies are admitted to the institute on the same terms as gentlemen, and the list of students includes the names of a number of ladies who are taking the course, as well as some who have already graduated.

To acquire a thorough knowledge of watch making requires a certain amount of time, which cannot be shortened without detriment to the student. Long experience has shown that the length of the course in Parsons' Horological Institute is sufficient for impart ing a thorough practical knowledge of the subject, and it has also shown that a shorter term is not advisable.
One of our engravings gives a clear idea of the buildings of the institute, while another shows a room devoted to practical watch making.

Making wrought iron pipe direst from bars is the process recently started in a rolling-mill at Stubenville, O. If it works it means a complete change in pipe manufacture.

PRACTICAL WATCH MAKING.
Mr. C. H. Gill, giving the natural history of a parasite on diatoms. Diatoms are prettily shaped, prettily marked, single-celled plants, with a silicious or glassy skin. In this instance the host plant is only the threehundredth part of an inch in length, but, minute though it be, it has a parasite all to itself, of course infinitely smaller, and Mr. Gill has carefully worked out its life history in his paper, which is illustrated by nine photographs, showing the different stages of the parasite's development.
At the last meeting of the Royal Society. Professor

Dewar stated he had susceeded in freezing the atmo sphere into a clear, transparent solid, although at present it has not been sufficiently proved whether the sent it has not been sufficiently proved whether the
mass was a jelly of solid nitrogen containing liquid oxygen or a true ice of liquid air into which both these well known gases have been equally solidified.
Professor Crookshank recently gave a lecture on "Bacteria" (the microscopical funguses we have hitherto regarded as only baleful, but which are actually among mankind's best friends). One great group produces fermentation, so that without them we should have neither wine nor beej. Another'division is the cause of organic decomposition, anong which must be reckoned the nitrifying bacteria of the soils. If it were not for the latter group every animal that died would be as indestructible as an Egyptian mummy, inasmuch as the art of "mummifying" consisted in keeping a way the decomposing bacteria. If it were not for the latter the surface of the earth would bs piled with dead bodies, stacked in heaps or choking the rivers; not only that, but in time all the elements capable of building up living bodies would be used up-locked up in these corpses-and life would cease for lack of material to support it. The greatest enemies to this class of bacteria are the undertakers!
Jupiter is thirteen hundred times larger than the earih, so we take a grear deal of interest in it, and its turned coal and water, and where water power can be turned to account being very much less for running expenses.
The third dynamo, giving fifteen to nineteen kilowatts, is used for generating current for supplying the grubbing apparatus at the top of the Polhill, some two miles distant. It requires about twenty-five horse power to drive it at its maximum, although not more than one-third of this is usually required. The current is taken by overhead wires on telegraph poles to the motor on the grubber carriage. Ait the top of the hill several acres have been already grubbed. The ground is being cleared for the purpose of constructing one of a series of large forts for the protection of
London. The motor drives, by London. The motor drives, by gearing, a capstan upon which is coiled a few turns of a very strong steel wire rope. A |careful study of recent years has thrown a great deal of heavy chain is attached to the tree roots, and as the light upon the history and manufacture of worlds. motor is set to work and the rope exerts its force, the One of the keenest astronomers, who was taking special roots come up quietly one after the other. The instal- charge of this huge globe, is Professor Pickering, the lation is an interesting example of the application of distinguished American scientist. In order to study electric power to country work.-Elec. Eng., LondJn.

Items fróm "Sclence Gosulp."
In the last number of the Journal of the Royal Microscopical Society there is elaborate paper by form whace of Jupiter seems to consist on anigauzy and thin veil of brown material. The well-known belts of Jupiter, he says, are simply dense masses of this thin brown material, and the white spots merely holes seen through it. The most remarkable thing about Professor Pickering's observations concerns the moons or satellites of the planet. He has arrived at the conclusion that Jupiter's four moons are not solid, like ours, but merely condensed masses of meteorites, like those which compose the belts of Saturn.

New York and Boston now only Five Hours Apart.

For several years past the railway companies have regularly set apart a large share of their earnings in the straightening of their lines, strengthening of bridges, improvement of roadbeds, engines, signals, and other equipments. The good fruits of these efforts are seen in the better accommodations for the public, greater regularity of trains, and increased speed. A re cent example is that of the New York, New Haven \&. Hartford Railway, which has reduced the time between New York and Boston to the extent of an hour or more. The fast express, over the Shore line, now makes the journey in five hours. One may now-take breakfast at home in New York, dine and do business in Boston, and return to the metropolis by early bed time.

The Rale or Contrariety in Inventions. There is apt to be a fine irreverence about the in ventor which leads him to suspect that any old way of doing a thing is for that very reason not the best way. Often he observes some timehonored plan of working, audaciously makes up his mind to do the exact opposite, and hits upon success. Guns were loaded at the muzzle for ages, until one day a man of originality thought of loading them at the other end, the preferable end on many accounts besides that of manifest convenience. The same path was trodden by the Frenchman who first put the eye of a needle near its point instead of away from its point. He little knew that he was doing a great deal to make the sewing machine a possibility. One of the notions of the pioneer railway engineers in England was that their rails must be flanged so that the wheels of locomotives and carriages should not get off the track. But some one of skeptical mind inquired : Why not leave the top of the rail flat, or nearly flat, and put the flange on the wheel, an easier thing to do ? Accordingly the flange was taken from the rail to the wheel and remains there to this day, to remind the raveler that an Eastern philosopher said long ago "To him that is well shod it is as if the whole earth were covered with leather."
It is a good many years now since steam was first used for heating buildings, and as air when warmed ascends, what more natural than that steam coils should hug the floors just as the stoves before them had done? But in some of the largest factories in this country the coils are fastened, not to the floor, but to the ceiling, which proves to be a better place for them. As everybody knows who ever sat before an open fire, radiation is a pleasanter means of warmth than convection, than heat carried along by currents of air; floor space is incident ally saved, and the risk of gathering combustible rub bish about the coils is avoid ed. In the ages of simplicity which came down to Watt's time and the invention of the steam engine, when a kettle was to be heated the prope place for the fire was thought to be outside. But when big boilers came in, with pressing need that their contents be heated in the shortest time possible, it was found gainfu to put the fire inside. Stephenson's locomotive, the Rocket, derived no smal part of its efficiency from his knowledge to which side of the boiler to apply flame
On somewhat the same principle Lord Dundonald, one of the early improvers of the steam engine, forced the hot-air currents under his boiler from above downward against their natural tenden cy to move from below upwail. In this way he made available much heat tha otherwise would have been wasted. The steam engine, whether mounted on wheels or not, always keeps its fuel outside; furnace and cylinder are distinct. To-day the steam engine's primacy is challenged by a motor which uses its fuel inside, the furnace being no other than the cylinder, precisely as in the barrel of a gun. So much more work does a gas engine yield than a steam engine, in comparison with the heat applied, that only the dearness of heat as supplied by gas prevents the speedy sup rsedure of steam for motive power. As gas engines grow steadily larger, their margin of economy becomes so decided that it begins to pay to make gas on pur pose to burn in them.
In the reduction of bauxite, the refractory ore o aluminum, it is necessary to maintain an extreme temperature. The melting point of the mineral i high, and only so much of the heat as ranges above that temperature does work. In the Mining Depart ment of the World's Fair is an exhibit showing how the modern metallurgist reduces aluminum with new economy. Instead of employing the old crucible method, and applying the fire from without, he in closes the ore in a non-conducting bed, and by mean of a powerful electric current applies the heat from within. Electric furnaces of this type now produce bronze and other alloys at prices which steadily fall a their market enlargea

Not far from the mining exhibit at Chicago stands Machinery Hall. When its visitors see one of the argest steam engines driving machinery with a slack belt, they are wont to express surprise. Ordinary folks to-day think just what machinists thought a few years ago: that tightness is the effective and, indeed, the only feasible condition for belts. But in this case, as in a good many;others, the rule of contraries has come, and with profit.
Architects, as well as engineers and metallurgists, have found it profitable to go into opposition where some ancient practices have been concerned. In latitudes of much fall of rain or snow, the form of roo which most obviously suggests itself is the common pitched roof, resembling an A, more or less broad oned Vexed by bursting rain conductors, by im promptu object lessons as to the force of avalanches, Northern architects take not A, but V, duly widened, for their roof type. In winter, ice and snow, caught as in a basin, cainnot fall to the street. Icicles ar banished, and in conductors carried through the hear of the building, and kept warm by the building, ice i gradually melted without a chance to do damage.-N Y. Sun.

Algantic Irrigation Project.
Hardly has the South Gila Canal Company com-
to irrigate the $3,500,000$ acres of land lying to the east and south of Yuma, which extends into the Mexican State of Sonora, and will also furnish water for 100,000 acres of the Sonora Land Company, lying between the dam and Colorado River, in the valley of the Gila. It is estimated that the dam alone will cost $\$ 5,000,000$, and that it will take two years to complete it.
oil engines at the great expobition.
The engravings herewith represent an English threecylinder 20 -horse power " Trusty" oil engine, exhibited, the Engineer says, in the Chicago Exhibition. The hree cylinders are connected to a three-throw crank shaft, with cranks set at 120 deg., so that the work of the three cylinders is well distributed throughout the period of each revolution. The valve gear is worked from one cam shaft, driven by silent worm gearing. The engine is fitted and controlled with one governor of the rotative type, but either of the cylinders may be cut out at will, the valve gear for each being worker by separate cams. With the exception of the changes in form necessary to the vertical construction, the engine is composed of working parts which operate in the same way as those of the horizontal engine which was described in our impression of the 4th December, 1891.

Fig. 1 shows the front of the engine, and Fig. 2 shows the arrangement of the valve gear arms centered upon a fixed shaft and operated by cams, one of each set of which is controlled as to position by the governor, as in the horizontal engine. Fig. 3 shows the end of the engine and thereby the valve lever and the double pump for sup plying air to the ignition tube lamps, and for circulating water round the jackets. The engine is supported on a strong bed-plate of good form, carrying the cylinders on eight turned columns fixed by tight fit in holes on the sides of each bearing, and fastened by nuts which are accessible. The crank is car ried in four large bearing and fitted with two fly wheels. The engine is good design, and works with ordinary petroleum lamp oils or with the heavier Brox bourne oil. It is made by Messrs. Weyman \& Hitch cock, Limited, Guildford, and is exhibited in the Chicago Exhibition by Messrs. Baker \& Co.

Enormous Enterprises.
The advancing years seen
The advancing years seem than an inction th number of gigantic schemes. We have all heard of the scheme for expending $\$ 40,000$, 000 in the construction of a monster dam in the vicinity of Newfoundland that would turn the Gulf Stream back on itself and give New England a tropical climate, so that the Granite State boys could
menced the great work of damming the Gila River and building a canal 125 miles in length, through one of the best portions of Arizona, and before the Sonora Canal Company has completed the survey forits canal in California, when another project of the utmost importance to Yuma and the great area of arable land lying to the south and east of Yuma, in Arizona and the Mexican State of Sonora, is inaugurated. The plan is to dam the Gila River at the gorge, twelve miles east of Yuma, and create a reservoir thirty miles in length and eight miles in width. The dam, which will be of solid masonry, is to be 4,500 feet in length and 110 feet high. It will extend from the mountains on one side of the Gila to the opposite bank on a reet of bed rock, where three small islands rise out of the bed of the stream. These islands will form abutments to the dam, which will be built with such a slope as will carry the water away from the dam without cutting or wearing away the rock at its base. The flume, or canal, which will conduct the water away from this reservoir to the lands to be irrigated, will not be over mile in length
Fronn the end of the flume to the south and west, canals will be constructed over the mesa and valley lands in different directions when the lands, which all belong to the United States government, are settled. The reservoir, it is estimated, will hold water enough
climb palm trees to shake of the succulent cocoanut on their own bleak hillsides, while the Rhode Islanders would offer scant encouragement to the peripatetic Italian banana vender, as each and all of them would have a banana tree in close proximity to his own back porch.
A more recent scheme is the bridging of the English Channel between Dover and Calais. It is said that this scheme has gone so far that a company has been formed to secure the necessary concessions from the British and French governments. The cost of this bridge is something like $\$ 240,000,000$
The latest scheme is one for roofing London and other large cities, and thus doing away with the umbrella trust. The projector has not yet considered any such vulgar and insignificant detail as the matter of cost, and hence has not enlightened the public on this point.
Such schemes are, adds the American Artisan, of course, largely visionary; but they indicate a tendency to grapple with the most stupendous undertakings that is in a manner characteristic of the nervous and progressive age in which we live.
a Frenchman declares that vegetation can be aided by electricity. Potatoes planted in the path, of the electric current grewenormously, and electrifled tomaelectric current grewenormously, and electrifle
toas became ripe eight days before the others.

