

Every day brings more people to the World's Co lumbian Exposition, but, even with the greatest attendance, the grounds do not seem to be overcrowded. Even on such a day as June 15, which was German Even on such a day as June 15, which was German
day, and brought an attendance of 200,000 within the day, and brought an attendance of 200,000 within the
grounds, there was no uncomfortable crowding, except in the vicinity of the German building, where the formal exercises of the day were held. The most discomfort from crowding is experienced by visitors who wait until the last minute before leaving the grounds. This is always a time when the majority of people are seeking transportation home, and no facilities could be so ample as to handle in a few minutes crowds varying from 50,000 to 150,000 or more.
In the Manufactures and Liberal Arta building there are always people watching the interesting exhibits in the department of horology, which faces Columbia A venue just north of the clock tower. One of the most drawing exbibits in this department is that of the American Waltham Watch Company. The attractive feature of this exhibit is the automatic machinery in operation for making different parts of the works of a watch. There are ten of these automatic machines, each of which is of most remarkable mechanism, and which seems to have as delicate a touch and to possess the intelligence of a skilled workman. These machines are in operation adjoining the aisle, so that many people can be accommodated to observe them. Inside the pavilion is a large collection of histhem. Inside the pavilion is a large collection of his-
toric and antique watches. Among the more famous toric and antique watches. Among the more famous
of these watehes are those that belonged to King James I., Oliver Cromwell, John Milton, Sir Isaac Newton, Queen Elizabeth, John Calvin, John Bunyan, Lady Jane Grey, and Robert Burns. This collection contains over six bundred watches. They represent all sizes and shapes, and are of great interest because of the variety of their mechanism.
Another exhibit in this department, which attracts a great deal of attention, is that of the Waterbury Watch Company. In this pavilion several bundred Waterbury watches are shown, both in cases and the movements. But what draws the crowd to this exhibit is the Century Clock, which has required years of work in construction and which has cost the company 880 ,000 to complete. This clock records the hour, minute, and second, gives the day of the week, the day of the month, the month of the year; records the movements of the tides in New York harbor, gives the changesof the moon, etc. Immediately under the dial is a large picture of the factory of this company, and under this picture is a reproduction of the train room in the factory. Here are represented twenty-six girls at work at lathes, pinion cutters, and other machines, reproducing in close detail every movement that would be seen in actual life. The figures are ten inches tall, finely in actual life. The figures are ten inches tall, finely
carved from wood. On the right are four more rooms with figures in miniature, which are reproductions of bistorical or other scenes. These represent miners at work in a mine, digging rock; the development of the sewing machine, with a man and woman sewing by hand in the back of the room, while a mechanic--supposed to be Elias Howe-stands at a bench making a model of a sewing machine, and two women are opemodel of a sewing machine, and two women are ope-
rating modern sewing machines in the foreground. rating modern sewing machines in the foreground.
Underneath this is a telegraph and telephone room, with a man in the foreground in the act of telephoning; several operators at work at telegraph instruments, people coming and going with dispatches, messenger boys running in and out, etc. The other scene is an electrical one, with a Corliss engine operating a dynamo, and an electrician-representing Leo Daftexperimenting and watching the results of his experiments. On the left side of the clock is a saw mill scene; a scene representing a cotton plantation, with
Eli Wbitney testing his first model of the cotton gin, and bales of cotton lying about and colored men at work. Another scene represents the flax industry, with men and women whipping the flax and otherwise preparing it. The fourth scene represents an old style German watch factory in a peasant house, with two men at work at a bench, π maid serving beer and
lnnch at a table, etc. The figures in these scenes were all carved in this country, and reproduce movements of the human arm and bands with much accuracy. In addition to these scenes there are many carvings on the clock which represent important events in the history of the country during the past century, beginning with the signing of the Declaration of Independence. The machinery in this clock is operated by an electric mo-
tor one hall harse power, and the nine scenea, repre
senting the several industries, are illuminated with miniature incandescent lamps. Another interesting exhibit in this department is that of the Ansonia Clock Company, which exhibits an infinite variety of clocks of all sizes, from the cheap nickel clocks to most expensive clocks, reaching hundreds of dollars in value. Near this exhibit is the pavilion occupied by the Wm. Rogers Manufacturing Company. Here are shown knives, forks, and spoons in great variety, but the feature of most particular interest is that of the several operations required in making these. For in-
stance, there is shown the steel bar from which the stance, there is shown the steel bar from which the
knife is made, and the results of the several operations through which this bar passes to become the knife ready to be plated. The making of spoons and forks is illustrated in the same way.
The Norway exhibit, in the Manufactures and Liberal Arts building, is remarkably instructive, and a study of it is like traveling in the. country itself. The main structure is constructed of Norway pine, the design being representative of Norwegian architectural
effects. An interesting feature of this exhibit is the large display of spoons feature of this exhione silve trinkets manufactured of these metals and enamel. In much of this ware the enamel is transparent, and the filigree work is so fine and so beautifully done and the coloring in the enamel so rich in variety and effect that the exhibit is well worth closeinspection. Many typical Norwegian things are, of course, shown. These in-
clude furs, mounted birds, traveling vehicles, native costumes, etc. On a raised platform in the pavilion isa tuffed reindeer harnessed to a sledge which is covered with skin from the bair seal, giving a truly Arctic effect. The ski, or snowshoe, so much used in winter in Norway, is shown in all stages of elaborateness. Not the least attractive part of this exhibit is a collection
of photographs of mountains, fjords, villages, etc., which are beautiful specimens of photography, as well as of landscape scenery. Many richly colored photograph portraits are also exhibited.
In the gallery of the Electricity building are three exhibits which always have an interested audience about them. One of these is the exhibit of the American Electric Heating Company. Here are shown electric heaters in great variety for all purposes. Cooking is carried on the greater part of the time, showing the convenience and utility of this method of cooking. There are electrical water beaters, flatirons, ovens, etc. The exhibit of the Commercial Cable Company reproduces the writing and the method of cabling on ocean cables. The delicate devices used for this purpose and the difference in this method of transcribing messages from ordinary telegraphy cause much comment by people who had never suspected but what the two methods were the same. The exhibit of the Gray Telautograph Company adjoins that of the Commer cial Cable Company. This remarkable invention was fully described and illustrated in the Scientific
american of April 1. It can be seen in full operation American of April 1. It can be seen in full opera
reproducing the writing sent by the transmitter.
In studying the exhibits made by Mongolian countries in the Manufactures and Liberal Arts building it is well to begin with Siam, and after studying this exbibit, take the Chinese next, and then the Japanese. The exhibit made by Siam is small and in its way is interesting. The pagoda it occupies is decidedly Oriental and is more fantastic and gaudy than other pavilions in the building. The exterior finish is composed of small diamond-shaped pieces of glass studded in gilt woodwork. The most attractive features of this exhibit are carved ivory and ornamental brasswork. In front of the pagoda are four buge tusks of ivory. So far as the art work of this exhibit is concerned, it is quite crude as compared with that shown in the Chinese exhibit. China, however, makes a comparatively small display, as the space it occupies is only about four times that occupied by Siam. This exhibit is rich in carved ebony furniture, much of it inlaid with pearl. There are several rich tapestries in silk, and beautiful specimens of carved ebony screens, carved ivory, etc. This exhibit is not made by the Chinese government itself, but by private individuals, which may perbaps in a measure count for its not being more complete. In itself it would be regarded as an instructive and choice exhibit. but when compared to the displays made by Japan, it appears almost rudimentary.
Too much praise cannot be given Japan for its exhibit in this building, and adjectives would be quite useless in attempting to deseribe it, because of the exquisite workmanship and touches of art that are seen in such abundance throughout the whole exbibit. The pace occupied is very large, containing more area than tbe exhibits of other countries, with the exception of three or foar of the larger nations of Europe. The collection and variety of bronzes of all kinds is superb and should not be neglected by visitors at the Expoition whose time is very limited for looking about. The display of silk goods, carved wood and ivory, porcelain, lacquered work, in shortall Japanese wares, is very complete. The pavilion was constructed by Japanese artisans who were brought over for the pur-
pose. It is a fine specimen of Japanese architecture
and is one of the mostattractive and ornamental structures in the building. It is of true Oriental type and is not built of staff. This exhibit faces Columbia A venue and is in the north end of the building.
Last week reference was made in these columns to en exhibits made by the Canadian Pacific and the ondon and Nortbweatern Railway in the Transportation building. In some respects the exbibit made by Germany in the railroad department is more complete, because of its variety, than that made by Great Britain, although historically it is not of so much value. Two locomotives are shown; one is a compound freight locomotive, the other is an engine for local service. Both engines are excellent specimens of workmanship, and attract much attention from their difference in design from the large display of American locomotives adjoining. \& very elaborate american locomotives adjoining. A very elaborate
passenger day coach is shown on the same track as passenger day coach is shown on the same track as
the engines. This coach is constructed on the American plan, but is not over three-fifths the length of our usual type of coach. This coach is painted a rich blue on the exterior. It is constructed mostly of pressed steel and iron. Much of the interior finish is wood and bronze, while the draperies are silk. Two open cars are shown, such as are used for freight service. Very little wood is used in the construction of these cars, the truck and framework being almost wholly of pressed steel. These cars have a single pair of wheels to a truck. The regular type of German compartment coach is also shown on this track.
The statue of Columbus, designed by Bartholdi and made of silver, requiring thirty thousand ounces for the purpose, bas been placed in position in the exhibit of the Gorbam Manufacturing Company in the Manufactures and Liberal Arts building. The figure is fully life size, and stands immediately in front of the exhibit in this pavilion in the entrance way. In many
respects this is the strongeststatue of Columbus that respects this is the strongeststatue of Columbus that
has been shown in Cbicago. It represents the discoverer first seeing land.
The inauguration of the great Ferris Wheel took place on the 21st June, and was a very bappy affair. A large number of guests were invited. speeches were made by several distinguished persons, and many compliments were showered upon the engineer and projector of the wonderful machine, Mr. G. W. G. Ferris, of Pittsburg, Pa. Several illustrations of this remarkable piece of mechanism will be found elsewhere. The charge for a ride in the novel machine is 50 cents, for which the passengers enjoy two revolutions, occupying half an hour. If all the seats ane full, the company take in $\$ 1,440$ an hour. It is truly Theel of fortune for its owners.
The loss of the British battle ship Victoria made a great sensation among the exhibitors and visitors at a'sad int When the news came, on the 23d instant plendid model of the vessel, which occupies a conspicuous position in the Transportation palace. Thousands ous position in the Transportation palace. Thousands
of people flocked to see the model, which model is a large one and very perfect. There is a double stairway with brass railings around the model and plat orms.
A new feature was introduced at the Exposition on Massachusetts day, June 17, which was a decided novelty. This consisted of a parade, in which all the ncessions on the Midway Plaisance were represented. The Laplanders led the procession, followed by the Amazons, whose color was superb. The Libby glass works sent a couple of hundred of their employes, each with his glass cane and badge of spun glass. The swarthy glass blowers from Murano followed. The Mongolian orchestra gave their usual rendering of discords, while stately mandarins rode on horses. A buge dragon nearly one hundred feet long was supported by twenty-flve Chinamen, who caused tbe dragon to undulate in a becoming manner. Breton peasants in blouses and wooden shoes came from the French wine press. The Swiss guards attracted much attention. Amid a wailing of pan pipes and tomtoms came the Algerians, including the dancers. Then came the inbabitants of the most interesting part of the whole "conglomera," the Cairo street. Priests, with all the pride of their heritage of thirty centuries, carried aloft the sacred vessels and utensils of their heathen rites; the donkeys and camels followed with the veiled women, the wrestlers and the dancers. The Persians followed with their wrestlers, whose bodies were rubbed with oil, which brought the great knotted muscles into relief. A clatter of hoofs announced the approach of the Bedouins of the desert, who were mounted on little horses of the purest Arabian stock. They brandished long apears, and the noble carriage of these wild people and their mag. nificent horsemanship charmed all beholders. The procession became wilder as the South Sea Islanders approached, dancing their weird, awful war dance. seen by thousands who occupied the line of march. The frequent repetition of this parade will give life and color to the Exposition and will doubtless induce many to visit the Plaisance who for lack of time might (Continued on page 7.)

Worlds Falr Notes.

think it advisable to skip this thoroughly delightful part of the Exposition. There is more real harinless amusement and instruction for the average person to be had in the Plaisance for $\$ 5$ than can be obtained for three times the money elsewhere. It is something to hear the orchestras of all nations, which run in a direct line from the German band down to the Chinese artists, who will certainly be lynched when the cowboys come.
The Russian pavilion was opened with all the pomp and ceremony incident to the practice of the rites of the Greek Church. His Eminence the Most Reverend Nicholas, Bishop of the Russian Greek Church of America, was the celebrant of high mass, and after an address the bishop dipped the gold crucifix in holy water and sprinkled the temporary sanctuary, and then, amid the eager gaze of thousands of spectators and the chiming of bells, he sprinkled each of the exhibits with hols water. The party then returned to the temporary church, and all present were sprinkled with the water and allowed to kiss the crucifix.
One of the engineering successes of the Fair is the transmission of power by compressed air. From the huge compressors in Machinery Hall the air is carried to the Transportation building, in a nine-inch pipe, at a pressure of eighty pounds to the inch. The stately Baldwin locomotives and other exhibits are run by the air thus delivered. In the Mines building live steam is provided, which runs a compressor, which in turn furnishos the power for nearly all the machinery in the building. One peculiarity which was noticed particularly when the locomotives were started was that all the stuffing boxes leaked, until repacked. The gain in comfort is remarkable, as the Transportation building would be insufferably hot, if the machinery were to be run by steam. As it is, the exhaust air assists ventilation. Compressed air is also used in the sewage system of the grounds.
The legislature of Illinois has passed a bill enabling the Park Commissioners to purchase the Art Gallery building at the close of the Exposition. It is noted as being one of the purest and most beautiful archias being one of the purest and
tectural designs in the world.

Sorrespondence.

Square Sharting Made of Sheet Steel.

To the Editor of the Scientifle American:
Your illustration of the broken shaft of steamship Hecla in your issue of June 3 shows clearly the inconsistency of one solid shaft forging. Had the same consistency of iron been secured together in sheets of steel say one-half to one inch thick, the shaft made square, bolted or clamped together to prevent either twisting or buckling, with the bearings collared on the square, I will venture to assert the practical engineer will agree with me in saying the steel plates composing a shaft as suggested will be naturally stronger than a single forged body of iron. I claim also a square shaft when broken is more readily mended by clamps and bolts than the round shaft now in common use. My reasoning for this is the same in building a timber of several boards from different lumber when secured properly together is much stronger than one solid tim ber.
New York, June 8, 1893.
G. W. K.

A Simple Method for Determining the Velocity
To the Editor of the Scientific American:
It may be of interest to amateur rifemen to know the following simple method for ascertaining the effect of gravity on a bullet shot borizontally from a rifle to any distance :
Sight the rifle upon the target, keeping the sights plumb above the center line of the bore of the rifie. Mark where the ball strikes. Then reverse the rifle, so as to have the sights exactly beneath the line of bore. In this reversed position sight it on the target as before, and nark where the bullet strikes. One-half the difference in the elevation of the two bullet marks will represent the effect of gravity in drawing the bullet away from a straight line.
Divide the difference in elevation of the two bullet marks by 32 and extract the square root. This will give the time in seconds that it took the ball to travel the distance.

The distance divided by this time will give the speed of the bullet per second.
J. A. G.

Grand Rapids, Mich.

The Litchfield Mill.

To the Editor of the Scientiflc American:
In your issue of June 10, I notice a communication from Mr. E. L. Otis, of Minneapolis, who good naturedly brings you to task for referring to the great mill which exploded in this city, March 21, as probably the largest fiour mill in the world. Mr. Otis exhibits true loyalty to bis own city, and grows indignant at the thought that outside of his famed flour-milling city of

Minneapolis could exist the largest mill in the world. freezing, the practical application would not, in many If the Scientific American had qualified its assertion cases, work to a successful end. If the men who use by adding "winter wheat" no objection to the state ment could possibly be sustained, for the Litchfield mill was, so far as we know, the largest winter wheat flour mill in the world, having a capacity of 2,000 barrels of flour a day. The product of this mill was all
sold in Europe, not a pound being put upon the marsold in Europe, not a pound being put upon the marA scie
this most disastrous, and解 only interest Litchfleld people, but your readers in general throughout the country

Harry E. Kelly,
Editor Herald, Litchfleld, $12 l$.

The White Pine Aphis.

To the Editor of the Scientiflc American:
I send you by to-day's mail some specimens of a bug or beetle that is destroying the pine trees in this coun ty, and any information that you may give, either by mail or through your valuable paper, will be appreciated by this community. You will perceive two small horns or teats on their backs that the common ed ants nurse from. This I watched for an hour this morning. Would like a remedy for destroying them without injury to trees. By requeet of several citizens
Ainsworth, Neb., June 6, 1893.
Reply by Professor C. V. Riley.-The specimens re erred to by Mr. Miles were in extremely bad condition when received, but from the partially decayed rem nants it is evident that they were a large species of plant louse belonging to the genus Lachnus and closely related to, if not identical with, L. strobi, Fitch, the condition of the specimens not permitting positive specific determination. This insect is known as the white pine aphis, and is the commonest species of its family upon that tree in the Atlantic States. The lice congregate in colonies on the ends of the pine twigs the bark of which they puncture. They are almost always accompanied by ants, which are attracted by the honey dew which the plant lice secrete from the little boney tuhes referred to by Mr. Miles. The species has been observed in the past to be extremely abundant in certain years and comparatively rare in others. Thisalternation in the relative numbers of the Lachnus has been found to be due to the rapid increase of its natural enemies when?ver the conditions favor and to the succeeding necessary decrease of the Lachnus itself. Later in the season a great many, if not the large majority, of the plant lice will be found dead, the dried remains clinging to the leaves and branches, and upon close inspection these dead bodies will be found to have a minute hole, from which a hymenopterous parasite has issued. Ladybirds, lace-wing lies, and syrphus flies are all active in preying upon them.
It is difficult to deal with any insect trouble of this kind upon large trees over extensive forests, but indi vidual trees may be sprayed with ordinary kerosene soap emulsion diluted with from five to ten parts of water, and such spraying will undoubtedly bave a good effect in destroying the bulk of the plant lice. Otherwise it is pretty safe to trust to the natural enemies which I have mentioned, and which will. in the course of the summer, effectually do their work. An interesting note has been published in one of the earlier numbers of Insect Iife (Vol. II, No. 10, p. 314) upon the subject of the honey secreted by one of these pine-inhabiting species of Lachnus. I bave sent Mr mion.
It is quite possible that some other agent is at work in the destruction of the pine timber referred to by Mr. Miles and that the Lachnus is only an incident. It would be well for him to have the trunks thoroughly examined for bark borers. Their presence may be known by the exuding pitch and by their exit holes, like shot holes, in the bark. Just now, also, another plant louse, Chermes pinicorticis, is proving very destructive to pines, especially white pines,in parts of Nebraska, and this is really more disastrous than the Lachnus. It is a smaller insect and attaches itself in more sheltered portions of the twigs and branches, covering itself with a flocculent material. There has methods of ridding trees of either of these insects, so that the recommendation to use kerosene emulsion is from analogy as to its action on allied forms.

Nitro-glycerine Precantions.
 To the Editor of the Scientiflc American:

In your issue of February 4, 1893, I note a communicativn from Mr. J. T. Pettee, of Meriden, Conn., on the subject of keeping nitro-glycerine and dynamite from freezing, thereby avoiding some of the terrible calamities frequently reported, where workmen are killed by an explosion which ensues consequent upon their thawing these substances out.

While, theoretically, Mr. Pettee is right in saying that nitro-glycerine and dynamite should be kept from
these explosives cannot thaw them out properly, it cannot be expected that they will exercise anymore intelligence in keeping them unfrozen. But it is already an incontrovertible fact that it is extremely dangerous to transport nitro-glycerine in an unfrozen state.
Therefore, the proper point to aim at is to insist that, if frozen, it must be thawed out properly. Upon this point, the laws should be most stringent, and the responsibility for non-compliance should be placed, not upon the ignorant workman, who is only a machine, but upon those who have the work in charge.
Apropos of the subject under discussion, I will quote below from an able series of lectures by Prof. Charles E. Munroe, of the Columbian University, Washington, D. C., formerly chemist to the Torpedo Corps, United States Navy, whose practical experience and experimentation with and analysis of every known form of explosive for a period of over twenty years make him the best authority in matters of this kind :
'W hen frozen, nitro-glycerine may be conveniently and safely thawed by placing the vessel containing it inside another containing water not hotter than 100° Fah., but these precautionsshould bestrictly observed, as most of the accidents which have occurred with nitro-glycerine and explosives of which it forms a part have resulted from foolish and criminally careless at have resulted from foolish and criminally careless at-
tempts to thaw the frozen material by other means. tempts to thaw the frozen material by other means.
Frozen explosives should never be put into the vessel containing the water, or brought into contact with any heated surface, except as directed above. Nitro-glycerine and its dynamites are extremely tricky when pure and when fresh, and if kept at normal temperatures they are not liable to undergo decomposition; but when subjected to the extreme heat of summer, followed by the excessive cold of winter, for a number of years, they are very apt to become unstable, bence danger ous, unless handled and used with extreme care.
"Many foolish persons suppose that simce it is reasonably safe to ignite a cartridge of unfrozen dynamite, it is equally safe to warm it upon a shovel, or in an oven, or in a tim vessel over a fire, or in various other ways, which usually lead to a verdict of accidental death, but would be more properly designated as sut cide or manslaughter. It cannot be too strongly im pressed upon the minds of those handling them that if dynamite or other nitro-glycerine preparations are gradually warmed up to a temperature approaching their exploding points, they become extremely sensitive to the least shock or blow, and once that point is reached they do not simply ignite, but they explode with great violence; and further, that owing to the poor conductivity of the mass, a portion of it which is in contact with the source of heat may become raised to this temperature, while the rest of the mass is much below it."
The proper way to prevent the loss of life occasioned by this careless way of thawing out nitro glycerineand dynamite would be, it seems to me, to embody the subject matter above in a set of formulated rules receiving the sanction and pressure of the law in each and every State, whereby the verdicts of accidental death would be changed to their proper signification, suicide or manslaughter-suicide where an individual is concerned, manslaughter where a corporation is re sponsible.

Samuel Rodman, Jr.,
Late 1st Lieut., U. A. Army.
Cbicago, Ill, June 1, 1893.
The American Ansoclation for the Advancement
The forty-second annual meeting of the American Association for the Advancement of Science is to be held in Madison, Wis., from August 16 to August 23, inclusive. By the courtesy of the Regents the sessions will be held in the buildings of the University of Wis consin and in the assembly chamber of the capitol Lanterns for projecting views and slides are provided in several rooms, and one room is kept for general lantern use. To it any section may adjonrn when lantern facilities are required. The outline of the programme has been published and indicates a full employment of the time of the meeting. F. W. Putnam, Cambridge (office Balem), Mass., is the permanent secretary.

Paint for Iron and Steel

The invention refers to a new material, called "siderosthen," for the coating of iron and steel surfaces, with a view to prevent the formation of rust upon them. The compounds used for the manufacture of this paint are the tar obtained from works producing fat gas, "gou 1 ron," which is a mixture of about 85 part of refined Trinidad asphalt and 15 parts of refined asphalt oil, or, instead of the "goudron," sulpburmay be used. If "goudron" be employed, this is dissolved in the gas tar, in suitable quantities, and this mixture can then fortbwith be employed for the purpose in view. If sulphur be used, 8 per cent of itis mized with $100^{\circ} \mathrm{C}$.

