

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. pubhished weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN.
A. E. BEACH.
terms for the scientific american.

NEW YORK, SATURDAY, MAY 27. 1893

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT
No. 908.
For the week Ending May 27, 1893.
Price 10 cents. For sale by all newsdealers.

1. BIOGRAPHY.-Galileo Galiei.-The life of Galileo, with num ous views of seenes connected with his life. -11 illustrations.
The Galileo celebration at $\begin{aligned} & \text { Padua. }\end{aligned}$ Notes on the celebratio The Galileo celevration at Padua.
the 3 anth anniversary of Galileo's profesorship at Peadua I. Chemistry.-Separation of Wool and Cotton.-An excellent nethod for separating the two staples in analyzing fabries $\ldots \ldots$...
The Combination of 0 xygen with Hydrozen. - By H. N. WAR-REN.-The explosive combination of these two gases brought about by increase
mechavical engiver..................................... Steam.-By GEorfe II. BABCOCK.--A very valuable and practic paper on steam and its functions.-A Sibley College lecture.
The Manufacture of Bicycles.--The details of this bran The Manufacture of Biescles. - The details of this branch of
manufacturing, now beoome so great an industry.- 15 illustra-
medical. he dicula Yermiformis of the Human Colon-A Furiou vie Appeniicula Vermiformis of the Human Colon.-A curious view
orimin of the visiseral features of the human organization.
 -Apea for Rentien
Water Cures from Clinical and Experimental Po... By Prof. WILHELM WINTERNITz-What can be done hy hatro-解 Metallurgy.-The Utilization of Blast Furnace Slap.-By
Herr R. Zsignownr.-Different methods of utilizing this waste product of the metallurgist.-Bricks, plaster, and cement made with slaf... Satellit.-A twenty-two and a half knot cruise,
trial by the Austrian government. 2 illustrations. The Best All-Around Modern Ship.-Notes of the ships in .it reeent naval pageant.-Testimony to the merit of the United
Statas ship pew York. tates ship New York.
The Draushtometer.-An apparatus measuring the depths of
ships' draushts.-2 illustrations ? Hysiog ont
r. PHYSIOLOGY.--The Sensitiveness of the Eye to Light and
Color.- - By Capt. W. DE W. W ABEP.-The subjective aspects of color. -How they afect the ese in nature, with experimental it lustrations of the same.- 5 illustrations.
II TECHN®L®GY.-Camphor Manufacturing in Japan.--A very graphic and interesting article on this little known induastry, with
Hlustration of the arpliances used by the Jupanese.- -1 illutratration

tests and awards at the world's fair Considerable feeling has been caused among exhib itors, both domestic and foreign, over the uncertainty as to the manner in which tests and awards are to be made at the World's Columbian Exposition. The American Society of Mechanical Engineers made recommendations some time ago as to tests of engines boilers, etc., but the committee on awards has made no announcement as to whether the recommendation will be acted upon in whole or in part. In regard to out, but dees not seem to be well received, especially by the foreign commissioners.
This system pessesses many features which recommend it over the much used comparative merit plan. The principle upon which the proposed plan is based is the merit of the exhibit as compared with a certain standard set by the Exposition, and the question of making awards is to be primarily in the hands of experts who report to a department committee. In making the award consideration is given to whatever originality there may be in the exhibit, importance to the commercial world, and whatever other facts concern the exhibit. By making awards on this basis, exhibitors are not pitted against each other, and one exhibit will not be placed in second, third or fourth class, while another exhibit, probably no more deserving, is awarded first prize. Again, an award made on this proposed plan carries with it a guaranteed degree of excellence and quality, whether it stood alone in its class at the Exposition or whether there were many other exhibits in the same class, all of a more or less degree of excellence.
Representatives of Germany, Great Britain, France, Belgium, Italy and Russia, in entering their protest against this proposed method of making awards, expressed the belief that there was not sufficient time to examine all the exhibits on the lines of the proposed plan; they considered the system of graduated awards as preferable to the system proposed, asking that at least there be a distinction as to the degree of merit of the exhibit, and unless these and other concessions asked for in the matter of awards were made, the commissioners reserved the right of placing their respective exhibits hors concours and of withdrawing them from the consideration of the judges.
It is unfortunate that such a crisis as this should arise, yet it will probably result in good to both sides of the question and lead to the adoption of some satisfactory policy. The propesed plan carries with it some excellent ideas, especially the one that an exhibit must possess a stated degree of excellence to receive any award. Furthermore, on general principles would seem wiser to make an award on the report of an individual expert, with the sanc the of ment committee, than to imitate the old custom of making an award by comparing one exhibit against another, on the recommendation of several men who are chosen for the purpose
In the matter of tests, it is of great importance to the mechanical and industrial world that there be a series of tests more comprehensive and exhaustive than any ever yet contemplated. There have been such refinements of late years in the matter of generating and applying energy that it is of much importance that whatever tests are made be se complete as to become a universal standard. The Exposition engineers appreciate the importance of this and have been engaged for months in preparing the preliminaries necessary to carry on the tests.

electrical engineering as a profession.

One of the mosteminent and practical working electri cians of the country, in a recent article, urges young men to keep out of electrical engineering unless they are for this line of work. If they think they fulfill these conditions, they should by all means secure a practical education in some good scientific school, and then bend all their energies in one particulardirection. Electrical engineering has become specialized, like all \bullet ther lines of engineering, and there is opportunity for so much work and investigation in any one special line that few men can master more than one. It is particularly noticeable in this connection that the World's Celumbian Exposition has had its regular force of electricians and electrical engineers, yet in laying out the lighting and other large engineering schemes has employed specialists as censulting engineers, and by doing se has prevented several glaring failures, particularly in light ing effects. The demand for such specialists is limited, but the supply is never to great, and is not keeping up in quality with the increased demand.
But in urging upon young men to make themselves competent specialists, the writer in question did not refer alone to such lofty positions as are only within the intellectual scepe of a chosen few, but more par ticularly to lesser yet in their way equally important lines of work. There are not many engineers in the country that thoroughly understand all the fine and necessary points required in planning and equipping an electric station of medium or large capacity. Nor is thereanywhere near supply enough of men who are com-
petent to take charge of a plant, put it into good running condition, keep it in such order that consumers of light or current can feel as sure of their supply as they are of the coming of each day, and at the same time have in mind the fact that while he is maintaining the highest efficiency in the plant, he is remembering that the stockholders are looking to him to operate the plant with a high degree of economy. In this particular line of work there are probably better openings for intel igent, well-trained young men than in any other line Whatever the work may be-and it is equally true of all lines of engineering-the successful men are, as a rule, those

Fiber from the Dwarf Palm in Algeria.
The French Monde Economique says that the dwarf palm, which furnishes considerable quantities of fiber grows in great profusion in Algeria, and is one of the princival obstacles to the clearing of the land, so thickly dees it grow and so difficult to pull up; its roots, in shape resembling carrots, penetrate into the ground to the depth of a yard or more, and when its stem is only cut, it sprouts out again almost immediately. As its name indicates, this palm is very small, and can only attain a certain height when protected, as in the Arab emeteries, for example.
Varieus uses are made of this plant. Its roots serve s combustibles, a light kind of coal being made out of them, and the natives have employed the fibers that they extracted from the leaves and the stems, mixed with camel hair or wool, in the manufacture of stuff or tents; with the leaf itself they make baskets, mats, hats, fans, bags, and other articles. Considerable at ention is now being paid by the authorities to the en ouragement of this industry in Algeria, as, in the first place, it affords to the Arabs an easy means of making a living, and, in the second, the land is thus rapidly cleared of this parasite. The idea of embarking in the ndustry of fiber production from the dwarf palm riginated, a few years ago, with a landed proprietor living in Cheragas, about eight miles from Algiers. At he present time there are in Algeria numerous estab lishments which are devoted to this branch of industrial enterprise. The principal factories are those of Aversing, Elaffroun, Chiffa, Duperre and Douera, and he exports of late years have exhibited a decided increase. In 1880, the quantity of fiber exported from Algeria amounted to $9,000,000$ kilogrammes in 1885 to $15,000,000$ kilogrammes, and in 1891 to $19,000,000$ kilo-

In preparing the fiber, the following is the system dopted. The leaves are plucked by the Arabs, and carried into the courtyard of the factory in a green state, at a price of twenty francs per ton. As they are at once used, and as they fear neither the rain nor the sun, it is only necessary to pile them on the floor in a heap. The first operation consists of sorting, which is effected by women and children. The weeds are re moved from the stems which frequently adhere to them and the broken or dried-up leaves are cut away. Another operation consists in combing the leaves, or rather in carding them. This is effected as follows: A workman holds tightly in his right hand a handful of green leaves which he applies to a small carding machine. This machine consists of adrum on which some nails have been roughly fixed, and is constantly turning with great rapidity. To protect the hands of the workman it is incased in wood, with enly an opening sufficiently large te admit the leaves. As it is neces sary that these leaves should be damped during the work, a tap is placed above the drum, from which a constant stream of water falls upon the leaves. With this most primitive system, a workman is able to card from five to six hundred kilogrammes- 1,000 to 1,300 pounds-of leaves a day.
When the leaves have been combed at both ends, they present the appearance of a handful of rough and short fiber. They are then dried, and, after certain preparations, are ready for use in stuffing chairs, cuches, etc. To curl the fiber, a workman takes up a quantity of carded leaves and applies it to a benthook, fixed upon the axle of a wheel, which is turned by a child. The first fibers accumulate round the hook, and wind themselves round it ; the latter, which is constantly turning, drawsin the others, and the workman recedes from the wheel while grinding the fibers with his hand. The latter soon constitute a sort of cord, one end of which is fixed to the hook, the other held firmly and horizentally by the workman. At this stage of the proceedings, the child who turns the wheel stops and detaches one extremity of the cord. which he returns to the werkman, after having passed it round the hook. In this operation the cord is subject to the natural impulse of twisting and rolls up on itself, so that it is only necessary to fix the ends so that it cannot come unrolled. The fiber is kept in this condition for several weeks, and is then untwisted, and is then considered to be sufficiently curled. A frican fiber is employed in its natural state or dyed. In the latter ase. the fibers are passed through varieus selutions of suipnate of iron and logwood, then curled, and again plunged into the solution.

