
a WeEkly Journal of practical information, art, science, mechanics, Chemistry, and manufactures.

	NEW YOPK, MAY 27, 1893.	
WINBY'S EXPRESS LOCOMOTIVE AT THE COLUMBIAN EXPOSITION	Fire box shell (steel)- Chimney-	
	Breadth outaide at bottom 8 f. $11 / 2 \mathrm{in}$.	Diameter inside. 1 ft. 9 in.
Among the striking exhibits at the great Exposition	Depth below center of boiler, front............ $6 \mathrm{ft} .81 / 4 \mathrm{in}$.	Heating surface-
are the locomotives from foreign lands, of which several	Depth below center of boiler, back $5 \mathrm{ft} .101 / 4 \mathrm{in}$.	Tubes. 181744 sq. ft.
from England and France take high rank. One of the	Thickness of wrapper plates................ $5 / 8 \mathrm{in}$.	Fire box............................. 182.6
most imposing of these is the English locomotive de-	Thickness of throat plates $5 / 8$ in.	Total..... $2000 \cdot 0$
signed by Mr. Winby, of the firm of Westwood \&	Thickness of back plates...... $5 / 8 \mathrm{in}$.	Grate.... 28.0
Winby, of London. We give an engraving of this fine	Fire box (copper)- Length at bottom inside \qquad $8 \mathrm{ft} .{ }^{33} 4 \mathrm{in}$	Working pressure... 175.1 lb . per sq. in. Weight in working order-
piece of mechanism, for which and the following par-	Breadth at bottom inside....................... $3 \mathrm{ft} .41 / 2 \mathrm{in}$.	
ticulars we are indebted to The Engineer, London.	Center of boiler to top of box front........... $1 \mathrm{ft}$.4 in .	Leading driving 18 . 0
Dimensions of Winby's Locomotive.	Center of boiler to top of box back............ 1 ft . $11 / 2 \mathrm{in}$.	Trailing................. 17 0 0
Boiler (steel)-	Thickness of other plates................... 1/2 in.	Total........... 60 0
Height of center from rail...................... 8 ft . 21/2 in. Length of barrel. 9 ft . $21 / 4 \mathrm{in}$.	Tubes (brass) - Number.	Tractive force per lb. of pressure................ 143.2
Length of barrel......................... 9 9t. $21 / 4$	Length between tube plates.................... ${ }^{24} \mathrm{ft} 93 /$.	Brake-The Westinghouse quick-acting brake is fitted.
Thickness of smoke-box tube plate.......... . $3 / 4 \mathrm{in}$.	Diameter outside. 2 in .	(Continued on page 3.7\%.)

THE WORLD'S COLUMBIAN EXPOSITION-WINBY'S FOUR-GYLINDER ENGLISH EXPRESS LOCOMOTIVE.

WINBY's EXPRESS LOCOMOTIVE AT THE COLUMBIAN EXPOSITION.
(Continued from first page.)
Sanding gear-Gresham and Craven's steam sanding gear is fitted to the four driving wheels.
Cylinder cock gear-Hawthorn's steam-worked drain valves working simultaneously.
versing gear-Steam and hand coupled together, and working all valve gear simultaneously.
Injectors-Two No. 10 Holden and Brooke's "1892" patent in-
jectors. jectors.
ge-All the bearing springs and the bogie controlling spring of Timmis' latest section.

Center to center of cylinders $. \quad 2 \mathrm{ft} .1 / 8$ in.
Center of cylinder to center of valve spindle... 1 ft .2 in.
Ports on top of cylinder.
Diameter of piston rod...................... $31 / 4 \mathrm{in}$.
alve motion (inside)-
alve motion (insic)
Ordinary link
Ordinary link.
Slide bars, width... Crosshead (forged solid with piston rod).
Length of shoe............................. 1 ft .1 in .
Cylinders (inside)-
Diameter... 161/2 in.
Stroke...
$161 / 2 \mathrm{in}$.
24 in.
Center to center of cylinder.................. $6 \mathrm{ft}$.5 in
Center of cylinder to center of valve spindle 1 ft .3 in
Ports on top of cylinder.
Ports on top of cylinder.
Diameter of piston rod................... ... $31 / 4 \mathrm{in}$.
Length of piston rod.................... $9 \mathrm{ft}$.8 i in
alve motion (outside)-
Joy's patent.
Joy's patent.
Slide bars, number per cylinder (in one steel
casting)..
Slide bars, width 6 in
Crosshead (forged solid with piston rod).
Length of shoe............................ 1 ft .3 in. All piston rods and valve spindles have metallic packing.
Bogie, diameter on tread
Driving, diameter on tread......................... 4 ft .
Driving, diameter on tread...................... $7 \mathrm{ft} 6 in.$.
Axles (steel)-
Bogie.

Bogie.
Diameter of journals. 6 in
Length of journals................................. 12 in.
Centers of bearings................................. $3 \mathrm{ft} 41 / 8$ in
iving inside crank-
Diameter of journale
Length of journals
Dength of crank bearing
Length of crank bearing...................... 84, in. $43 /$ in. $_{\text {Cranks hooped and pinned. }}$
Driving outside straight-
Diameter of journals.. 101/4 in.
Length of journals.................
ank pin-
Diameter
$\xrightarrow{\text { Length...... }}$
From front end to center of bogie....... 5 ft. 3 in.
From center of driving wheel to center of trail- 9 ft .8 in.
From center of driving wheel to center of trail-
ing wheel.
From center of trailing wheel to end of frame..
Total length of frame...
Thickness of frames
Between frames.
Between frames at front end.................... 4 ft . 11/8 in.
eel base-
Bogie wheel base $5 \mathrm{ft}$.3 in .
Fixed wheel base.......................

Mr. Winby has here aimed to design an engine which, while not intended to attain a higher maximum of speed than ordinary engines, should be capable of traveling at a much higher mean speed. To do this it was obviously necessary to increase largely the tractive power of the engine. It may here be stated that an ordinary modern express-say, for instance, Mr. S. Johnson's latest-has four wheels coupled, 7 feet diam eter, and inside cylinders $181 / 2$ inches by 26 inches, giving a tractive effort of 106 per pound of steam, while Mr. Winby's engine is capable of exerting a tractive force of 143 per pound of steam, with wheels 6 inches larger in diameter.

This design has two pairs of cylinders, an inside pair, 17 inches by 22 inches, being coupled to the leading drivers in the usual manner, and an outside pair, $161 / 2$ inches by 24 inches, being coupled to the trailing drivers; there being no coupling rods, each pair of wheels may go as it pleases, and there is no necessity to pinch the fire box in any way.

Terms of Water Measurement for Mining, Irrigation

 and Mill Power.
by a. d. miscox, m.e.

The designation of the terms of water measurement seems to be somewhat misunderstood, or has become misleading in many parts of the United States, from the manner in which a primitive custom of water measurement has been adopted in different localities and afterward in some of its forms been made legal by the courts.
Differences in elevation above the sea and the latitude make a slight difference in the flow of water by gravity for a length of time, too small for practical consideration, but just enough for a legal quibble when water measure is referred to the courts.
Variation in the form of the orifice varies the actual delivery per square inch o? orifice, and with all the conditions of variation in head, form of or1fice, eleva-
tion of locality, latitude and dissimilarity in the lengths of orifice, there is found a variation in the accepted unit flow through a square inch of orifice of
over half a cubic foot per second.
In this view the miner's inch of water used in the early days of California mining has become a standard of varying proportions in different localities, most perplexing as a definite and legal measure; so that the nominal miner's inch may 'deliver any quantity from 1.20 to 1.78 cubic feet of water per minute

The largest volume for a miner's inch is the measure used at Smartville, Yuba County, Cal., called the Smartville inch, is deriyed from a horizontal rectangular orifice 4 inches in depth, through a 2 inch plank, under a head of 9 inches from the center of the orifice, and of the required width for the total flow, this being equal to $1 \cdot 78$ cubic feet per minute per square inch of orifice.
The miner's inch of the Park Canal and Mining Co., El Dorado County, Cal., is equal to 1.45 cubic feet per minute, with an orifice 2 inches deep through a $11 / 2$ inch plank-head 6 inches above center of orifice-this being the rating of several ditch companies in California.
By a series of experiments at Columbia Hill, Cal., lat. $39^{\circ}, 2,900$ feet above the sea, $1 \cdot 5744$ cubic feet per square inch per minute was assigned as a miner's inch, this being the flow per square inch through a rectangular slit 50 inches long, 2 inches deep, equal to 100 square inches, under a head of 7 inches from the center of the slit; this being also the rate with the North Bloomfield, Milton and La Grange Ditch Companies. In other parts of California 50 miner's inches are rated at 60 cubic feet of water, or $1 \cdot 20$ cubic feet per miner's inch. The statutory or legal miner's inch of California is equal to a flow of $1 \cdot 394$ cubic feet per minute, and is defined as the flow through a square orifice 1 inch in depth by 1 inch in width through a 1 inch plank, under a head of $41 / 2$ inches above the center of the orifice.
In Colorado, previous to statutory regulations and still in use by agreement, 40 miner's inches are reckoned at 60 cubic feet, or 1.50 cubic feet per square inch of orifice under a head of 6 inches above the orifice in the bottom of the delivery box, the stream falling vertically, the actual flow being $1: 556$ cubic feet per minute.
The statutes of Colorado now provide that "water sold by the inch by any individual or corporation shall be measured as follows, to wit: Every inch shall be considered equal to an inch square orifice, under a 5 inch pressure, and a 5 inch pressure shall be from the top of the orifice of the box, put into the banks of the ditch to the surface of the water."
The practice much in use in Montana is to deliver the water through a horizontal slit 1 inch in depth, of sufficient length for the required supply, under a head of 4 inches above the center of the slit, and is equal to a flow of $1 \cdot 25$ cubic feet per minute per square inch of orifice.
Six and a half inches head above the center of a 1 inch square orifice, or a long horizontal gate 1 inch in depth, is becoming the more usual practice in California, where the miner's inch originated, and will no doubt come into general use as the most satisfactory working condition of water supply for mining and irrigation purposes.
From experiments of the Pelton Water Wheel Co., the relation of flow under various heads and increasing widths of slot, with a uniform thickness of plank and distance of orifice from the bottom of flume, becomes interesting, in view of the varying practices in different States and localities. With a square orifice 2 inches in depth, 4 inches wide, a 5 inch head above the center of the orifice gave a flow of 1348 cubic feet per minute; 6 inch head, 1473 cubic feet; 7 inch head, $1 \cdot 589$ cubic feet per minute per square inch of orifice. By lengthening the orifice horizontally the flow increased in quantity per square inch of orifice, owing to the increase of area relative to the increase of perimeter ; so that at 16 inches in width, 5 inch head, flow $1 \cdot 365$; 6 inch head, $1 \cdot 489$; 7 inch head, $1 \cdot 60$ cubic feet per square inch of orifice.
For the purposes of irrigation, the irrigating duty of water takes its base of computation from the flow per second or minute; but as this is not a constant quantity for different localities, owing to variation in the value of the miner's inch, the acre duty will be an uncertainty until some general law fixing a uniform standard of measure or detail, as to head and area to constitute a unit of measure, is made to extend over the different States and Territories requiring a system of irrigation.
As an irrigation term the "duty of water" means the area of land upon which a definite volume of water, applied during a given period, will successfully raise crops.

In Utah, where irrigation laws have largely covered the details of water rights, the "unit" of water measurement is designated as one cubic foot of water per second, called the "second foot," is the standard of expression for water service for irrigation, and is
equal to 86,400 cubic feet per day. The "acre foot" is
he equivalent of one acre covered one foot deep, or 43,560 cubic feet, to which is added the time require-

In Utah the "second foot" is equal to two "acr feet" per day-" 60 acre feet" per month ; 100 California inches equal 4 acre feet per day; and 100 Colorado inches equal $5 \frac{1}{6}$ acre feet per day.
The "second foot" is becoming popular throughout the Western States and Territories, from its definite ness of meaning and understanding, and with which there is little chance for technical quibble.
The measurement of water for power in the eastern portion of the United States is the "inch," under a stated head. The "inch" or "inches," meaning the number of square inches opening in a gate, or orifice eading to a water wheel under some specified head.
The practice varies largely in different States. In New England, the water power companies have spe cific measures of gate opening, from one foot head upward, and also rate by the theoretical horse power for ny form of flow.
Where no specified head is named, a 4 feet head from the center of the gate orifice to the surface of the water in the flume has become legalized in some of the States by statute or court decision; the height or head above or below the statutory 4 feet being reck oned by its relation to the unit, in power-producing effect.
This is made the basis in water power leases in Wisconsin from the time of the earliest leases in that State.
In some cases the actual heads are named. The valuation of variation in the head below and above 4 feet, when named as a unit, has been a cause of legal contention in several States, and in Wisconsin it has been fairly defined that the power derived from a unit orifice varies proportionately with the variation of the head, and that the area for a given power varies inversely as the square roots of the heads, less the proportion of increased head and the reverse for decreased head. The following table shows the relation of area in percentage of the unit area for various heads :

Foul Water Main.
Mr. James Duane has described in a paper read beore the American Society of Civil Engineers the effect of tuberculation on the delivery of a 48-inch water main. The author remarks that authentic data relating to the effect of tuberculation on the discharging capacity of water mains are rare, and when obtain able are correspondingly valuable. He has had an unusually favorable opportunity for observing the loss of head due to this cause in a large water main, and comparing it with that in a perfectly clean coated new main discharging under the same conditions; both being parallel mains of the Croton water supply system of New York. One line of mains was laid as clean castings, just as they came from the sand. The result was that in seven years the inside was discovered to be tuberculated to a surprising extent. All the lumps were of the same general shape, which was that of a rough frustum of a cone, with a height of one-half or one-third the width of the base, and a roughly flattened top. The largest were at the bottom of the pipe and the smallest at the top. The greatest projection of the lumps was about one inch; and they were so thick as to completely cover the interior surface of the pipe. As compared with the clean tar-coated pipe, the discharging capacity of these corroded mains showed a reduction of about 30 per cent. It was also observed by Mr. Duane that, having reached a certain stage in corrosion, a water pipe does not get worse with age. He regards a properly applied coating of tar composition as giving absolute protection against tuberculation, and cites in support of this belief the fact of a 48 -inch main so treated showing as high a coefflcient of duty after eleven years' service as when first brought into use.

Tin from Tin Scrap

By T. Twynam.-The scrap is coated with a film of chloride of calcium or similar fusible salt and heated to redness. It is then cooled by plunging in water, when a scale falls which contains all the tin and leaves the iron practically clean and suitable for many metallurgical processes. The insoluble scale may be smelted direct for tin after mixing with carbon and siliceous matter, or it may be heated with sufficient acid, preferably hydrochloric, to dissolve out the iron, leaving the oxide of tin in a nearly pure state, or the in may be recovered as a soluble stannate after fusion of the scale with alkali.

