

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, JANUARY 14, 1893.
$\mathbf{\$ 3 . 0 0} \underset{\text { WEEKLY. }}{\text { A Y PA }}$

a model steam laundry with capacity of handing 100,000 piecers a day.-[fee page 23.]

Šuntifir Ammicam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors
published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico..
One copy, six months, for the U. S., Canada or Mexico
Remit by postal or express money order, or by bank draft or check.

MUNN C., mintic americ

er, express ay, New York

NEW YORK, SATURDAY, JANUARY 14, 1893.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 889.

THE BROOKLYN INSTITUTE OF ARTS AND SCIENCES An extensive movement is now in progress in Brooklyn, looking toward the enlargement of the facilities of the Brooklyn Institute of Arts and Sciences, by the erection of a grand edifice to serve as a permanent abode of the institute and the establishment of an extensive museum, comprising all branches of the arts and sciences, laboratories for carrying on investigations in all branches, rooms for lectures, exhibitions, and public experimentation, and an enormous auditorium for large assemblies. Nothing similar to the Brooklyn Institute exists in this country, and we doubt if its like is to be found in the world, and the present movement toward placing it on a broad and perman
one of which any city might well be proud.
The city of Brooklyn has ceded a tract of land near the beautiful Prospect Park, upon which the buildings are to be erected, and proposals from architects and builders are now asked for, and the matter is thrown open to competition.
The following gentlemen constitute the committee on competition: Gen. John B, Woodward, Mr. Eugene G. Blackford, Prof. Franklin W. Hooper. The preliminary sketches are to be handed in to the committee on or before the 28th day of February next, and a jury of experts are to pass upon the plans.
The buildings are to be on a grand scale, and in a style that will harmonize with the purpose for which they are to be erected. The department accommodations are to be divided up into two general divisions, those relating to art and those relating to science. Architecture, sculpture, and allied sciences will require about 90,000 square feet of floor space; the department of painting, etching, and engraving will require about 75,000 square feet; the architects and fine arts schooks will require over 5,000 square feet; the department of archæology requires 12,000 square feet; anthropology, 15,000 square feet; zoology, including entomology, 30,000 square feet; botany, 11,000 ; to the department of geog-
raphy is to be allotted 11,000 and to geology 20,000 square raphy is to be allotted 11,000 and to geology 20,000 square feet; mineralogy, 15,000; physics, 10,000; astronomy, 10,000 , square feet ; electricity, 15,000 square feet; the department of engineering calls for 20,000 square feet mathematics, 4,000 ; the department of microscopy, 4,000 , and photography, 9,000 square feet; chemistry, 11,000 square feet; to the department of pedagogy, 10,000 , psychology, 5,000 , and philology, 1,500 square feet; to the department of political science is to be allotted 15,000 square feet; law, 2,200 ; and to the department of music is allotted 13,000 square feet. Each department is to have space for collections, laboratory rooms for instruction, meeting room with library on walls, curator's room. The rooms of most of the departments are subdivided so as to provide accommodations for separate branches.
The department of astronomy is to have an observatory fitted with a large telescope, and ample provision is to be made in each department for practical work and original research. In addition to all this, a grand art gallery is to be provided in the upper portion of the building devoted to the arts.
Although this institution is local in name, its bene fits and influence are not confined to the city of Brooklyn; it numbers its members by thousands and its growth is beyond precedent. Without doubt the day will soon come when scientific men and women al over the country will find it to their interest and ad vantage to belong to the Brooklyn Institute of Arts and Sciences.

Co-operative Building Associations in New

In a recent report of the Bureau of Statistics o Labor of the State of New Jersey the development and present condition of these societies in that common wealth is well set forth. At the close of the year 1891 there were 272 incorporated building and loan associations in the State, having net assets of $\$ 25,600,000$ owned by 78,700 shareholders. Of the latter, 19,255 were borrowers, 25.3 per cent of the outstanding shares being pledged, and the averages showing that as a rule persons in moderate circumstances, and for pur poses not speculative, constitute the membership of on the 518.717 shares outstanding in 1891 amounted to $\$ 20,484,127$, and it has been shown that in these associa tions, as managed in the State of New Jersey, it has been seldom that the average annual rate of interes on a share investment has been less than six per cent, while as a rule the interest is much higher. Notwithstanding this fact, it is a striking characteristic of the building and loan association movement that the large amounts of money it has attracted do not appear to have had any effect on the normal increase of deposits in the savings banks. The business of these banks has steadily increased, although within a few year the net assets of the building and loan associations have at the same time grown to very nearly the total sum due to depositors by the savings banks. This is attributed partly to the fact that the association hand, and also attract a somewhat different constituency, investments in the shares being more in the
nature of live capital than a reserve paying an abnormally low but sure rate of interest
The true co-operatize building and loan association, as recognized by the " legislative countenance and encouragement" of the New Jersey statute, is designed to confine itself to a comparatively small home district, enabling members whose position as borrowers in a general market would be otherwise most unfavorable to secure all the benefits which their position and personal character among their neighbors seem to entitle them to, in their efforts to build homes for themselves and their families. The corporation being local, and its membership recruited from the immediate neighborhood, its shareholders are able to manage its affairs themselves, are expected to be true co-operators, or at least personally acquainted with the managers and their standing in the community, having only themselves to blame if the latter turn out to be derelict. While the ordinary shareholder is far too little inquisitive about his association and its-meetings, he is generally acquainted with the reputation of its controlling spirits, and is likely soon to hear of any suspicious circumstances which may relate to them, which would not be the case were the membership or the operations of the association spread over a large district. The association deals only with its own shareholders, and can only pay to one member what it receives from another; therefore, its design is to deal as moderately with its borrowers, the "home builders," as may be consistent with entire safety, guarantee ing also equality of benefits to all, in a business conducted with such simplicity that any shareholder may at all times be satisfied of the security of his investment.

Alcohol and Acetic Acid from Paper.
It is quite within the bounds of possibility, as every chemist knows, to convert, by a series of simple chemical operations, an old linen shirt into sugar and alcohol. By merely immersing linen in cold, strong sulphuric acid, the cellulin $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$, of which it is mainly composed, gradually dissolves, and, assimilating one molecule of water $\mathrm{H}_{2} \mathrm{O}$, resolves itself into glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. The glucose so formed may be recovered by neutralizing the excess of acid with chalk, and from the product so obtained alcohol may be prepared by the ordinary process of fermentation. According to recent researches, acetic acid, too, can also be produced from similar materials, as, for example, paper pulp, esparto grass, etc., all of which contain cellulin.

The process, although apparently so simple, is somewhat different in detail. By digesting any of the above substances, or, indeed, starch, sugar, or other carbohydrates with alkali, such as caustic soda, a salt of the alkali, acetate of soda, is formed. This can easily be recovered, and the product on distillation with sulphuric acid could be made to yield pure acetic acid, which it is well known is the acid of ordinary vinegar, in which it occurs to the extent of 3 to 4 per cent. Moreover, acetic acid $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ being an oxidation product of alcohol $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, it is possible by means of a reducing agent (a mixture evolving hydrogen) to convert it once more into alcohol. This conversion is only of theoretical interest, however, and of no practical value. Messrs. Cross and Bevan, who read a paper on this interesting action of alkali upon cellulin bodies at a meeting of the Society of Chemical Industry recently attached some importance to the process, as in all probability by its agency paper makers might be in a position in the future to recover from their waste materials a product (acetate of soda) of value in certain industrial processes. Apart, however, from the possible practical value of these results, they are calculated to throw a new light upon the nature and constitution of that important cluster of bodies known as the carbo-hydrates.-Lancet.

Traffic of the Elevated Railways, New york. On October 12, the Columbian celebration day, the Manhattan system carried $1,075,537$ people. The expression, a million people, does not convey any very definite idea to the mind, but it may assist us, says the Railroad Gazette, to understand what that figure means if we say that if the people who traveled on the elevated railroads on that day were arranged in single file as close as they could conveniently stand together, the line would reach from the Battery, in New York, up along the Hudson River to Albany, and out on the New York Central Railroad as far as Auburn; or they would reach from Troy to 40 miles beyond Buffalo. When we consider that probably there must have been at least 150,000 of these people who wanted to take the cars at the same time when the parade was breaking up, that this crowd would fill 300 trains of cars to their utmost capacity, and that that number of trains distributed over the entire tracks of the elevated railroads, both up and down, would leave only 300 feet intervals be tween trains, it is not surprising that there was consid erable delay in getting on and off the trains and that ravel was very slow ; bat it is remarkable that, so far as known, not a single accident occurred to any of the $3.000,000$ of passengers that were carried in the three days, October 10, 11, and 12.

Breathing Wells.

That the earth breathes by the movement of the at mosphere into and out of its depths may no longer be doubted as a myth derived from occasional observations of this phenomenon. When it is considered that the whole superstratum of the earth that is not saturated with water is a porous mass of loam, sand, and gravel, at any depth from the surface, to hundreds of feet below it, and in many localities lying on or beneath extended beds of clay or stratified rock in closing cavernous spaces; and that it is well known that sand and gravel, that is not saturated with water, has the spaces between its particles filled with air or gases that are elastic and subject to contraction and ex pansion by changes in pressure ; it may rationally be assumed that the interspatial air or gases in the vast sand and gravel beds and cavernous spaces beneath the earth's surface will be affected in its density by the variations in the density of the atmosphere above that under this condition the ground breathes the life-giving atmosphere that purifies the noxious subterranean elements by oxidizing their constituents, or in other words aerating the underground waters by conta
ace.
There can be no doubt, in the face of accumulated observations, that the barometric changes of pressure in the atmosphere do not stop at its surface, but ex tend downward into the depths of the porous sand beds and into the cavernous recesses of the earth, and that wherever such porous beds are covered with a clay or rock stratum, cutting off the direct pressure variation over a large district, any penetration of such strata makes a connecting vent with the outer atmosphere, and the variation of pressure in the outer atmosphere immediately extends its influence to the subterranean air spaces beneath the sealing clay or rock strata.
The relation of blowing caves to changes in atmospheric pressure is a well attested fact, except a few in stances where there are two openings, by which the wind also produces internal circulation and ventilation. In close caves with a small single outlet the barometric changes in the atmosphere are the principal source of their ventilation, by the blowing or breathing of air through their mouth or entrance simultaneously with the movement of atmospheric waves of pressure. This phenomenon has been observed in detail both in open wells and bored or artesian wells in the Western States, where the later geological strata extend in nearly unbroken sheets of clay, limestone and sandstone over large tracts of country. In many parts the water-bearing strata are deeply seated under beds of sand and gravel covered with thin layers of clay or limestone near the surface.
In Illinois and Iowa some of the breathing wells become intermittent gas wells by the action of variable atmospheric pressure, showing a gas-saturated understratum which under varying atmospheric pressure breathes gas in
the barometer.
This class of wells has been tested by closing and inserting a whistle, which would blow according to the barometric change, inward when the barometer was high and outward with a low barometer.
There is a breathing open well near Stanwood, Oregon, 90 feet deep to the water surface; the excavation passing successively through layers of clay, sand and stratified rock, with a thin seam of coal at 80 feet down,
and at the bottom a mass of broken stone or volcanic debris, which forms the water stratum. This well gave much trouble in digging from an intermittent flow of gas, and, in consequence, the work was delayed several months.
Finally, when finished, it was discovered that gas flowed at intervals only, always succeeded by an inhalation of air for about the same length of time, the intervals being from one to five or six days. Shortly after the well was finished, the gas ceased to flow, but the respiration of the well continued with increased force, enough to run a small windmill placed in the mouth of the well, reversing its motion with the change in direction of respiration.
There being several breathing wells in Kansas, one was sealed and tested with a siphon water gauge.
The record shows a similarity between the curves of pressure in the barometer and the curves of well pressure, only that the minimum pressure in the well was equivalent to and at the same time of the maximum pressure of the baroneter, and the reverse.
Thus when the barometer was lowest, the pressure outward from the well was greatest, and the reverse.
Under this condition, with a low barometer, the well would blow or exhale, and, with a high barometer, would draw in or inhale air. Thus the well becomes
a natural barometer. a natural barometer.
The actual extremes of positive and negative pressure in the well, the positive being the blowing pressure and the negative being the inhaling pressure, was but little over one-half the extreme of barometric pressure; the total difference in water pressure being $2 \cdot 30$ inches, while the total range of the barometer was threetenths of an inch, or 4 inches water pressure.

The fact that the porous soil of the neighborhood or possibly neighboring wells, relieved the well under observation of its pressure by slow ventilation was made evident in the course of the observations, for when the barometer suddenly rose and remained high for a day or two, the pressure inward to the well would gradually decrease to zero; and upon a sudden fall in the barometer and continuing for a day or two at low stage, the outward pressure in the well would gain gradually decrease to zero.
Under large barometer variations a whistle, attached in place of the water pressure gauge, could be heard, as stated, all over the town, giving, by its intensity, the magnitude of the barometric range.
G. D. \mathbf{H}.

Fall ot a Meteoric Stone at Hath, South Dakota.
BY A. E. Fооте.

On the 29th day of August, 1892, about four o'clock in the afternoon, while Mr. Lawrence Freeman and his son were stacking upon his farm two miles south of Bath, they were alarmed by a series of heavy explosions. On loaking up they. saw a meteoric stone flying through the air, followed by a cloud of smoke. Its course was easily traced to the point where it fell, within about twenty rods from where they were stand ng. The stone penetrated the hardened prairie to a depth of about sixteen inches and when reached it wa found to be so warm that gloves had to be used in handling it. Three small pieces of an ounce or two each had apparently been blown off by the explosions, but the stone still weighed $463 / 4 \mathrm{lb}$. One of these small pieces was found by some men not far distant and wa broken up and distributed among them. The explosions were plainly heard by a large number of people at Bath, two miles away, and at Aberdeen, nine miles away, it sounded like distant cannonading. The exterior of the stone presents the usual smooth black crust. The interior is quite close-grained, resembling in texture the stones from $\begin{aligned} & \text { Mocs. The iron is abun }\end{aligned}$ dantly disseminated through the mass, and although the grains are small, they are easily distinguished and separated on pulverizing.
Preliminary tests made by Mr. Amos P. Brown, of the mineralogical department of the University of Pennsylvania, prove the presence of nickel and cobalt n considerable quantity. An affidavit signed by Charles Freeman (before H. T. Root, notary public) stating the facts of the fall is in the hands of the writer, to whom the stone was sent.-Amer. Jour.

A Chance for Inventors.

The government of India is offering a number of prizes for the best designs or models of a cart suitable or military requirements, to wit, a mule cart for the transport use of the British army in India. The prizes offered are five in number, and are respectively $\$ 3,750$ $\$ 2,500, \$ 1,875, \$ 1,250, \$ 625$, or $\$ 10,000$ in all. Industries says : The award will be intrusted to a jury consisting of three military and three technical experts. The question of cost being of the highest importance, the designs should give the estimated price in pounds ster ling or rupees of a single cart delivered free on board
in London or at Bombay, Calcutta, or Allahabad. As a guarantee of good faith on the part of the ©ompetitor as regards estimated cost, he will, if recommended for a premium, receive, in the first instance, only one-half of such premium immediately on its award. He will, however, only receive the same proportion of the other half as represents the proportion by which he may have under-estimated the actual cost of the cart. It is eft to the jury to ascertain by tender in the open mar ket, or by such other means as it considers suitable, the cost of the cart to government, and to make its award accordingly. The object desired to be attained by this competition is the production of a design, accompanied in all cases by a working model, for a military transport cart adapted to conditions which make the use of interchangeable metal parts for all important portions of the cart absolutely indispensable. The designs and models should reach the secretary to the government of India, Military Department, Calcutta, not later than June 30, 1893.

Invention-Discovery.
"For by invention," says Fielding in "Tom Jones," "I believe, is generally understood a creative faculty,
whereas by invention is really meant no more, and indeed the word signifies, than discovery, or find ing out; or, to explain it at large, a quick and sagacious penetration into the true essence of all the objects of our contemplation," and of this little criticism can be made. Nevertheless, with as little risk of criticism the United States courts, in interpreting the patent statutes, accept the "generally understood" meaning of Fielding's day, it being settled that the "in vention" of the statutes signifies a creative faculty, and the same high authority also construes "discovery" in the statutes to be synonymous with invention as thus interpreted, and correctly so; though we should despair of convincing the partisans of the great author that the court rulings were devoid of the humorous. Possibly, indeed, the learned judges had even in
mind Fielding's lucid interpretation, and conformed
their rulings on the words to the principle of action and reaction.

American vs. Foreign Files.

A large proportion of the cutting points on a file never do actual service of any kind. On a new file the work is done by the very few highest points, then as these are broken off and worn down others do some service. These last, however, do not have a chance to do much service, being withheld by the worn and dull points from effective contact with the metal. Files again are cut with such blunt tools that their cutting points have no satisfactory backing of material. This backing always is a concave fillet, giving the point great sharpness but no strength. These facts indicate the need of an improved means of making files, or perhaps the finding out of the method by which the S wiss cut their famous Grobet kinds. One of these Swiss files will outcut and outwear four American files. An English Stubbs file will outwear more that two American files; but they are not so evenly cut as the Swiss. It is not solely in the cut that these foreign files are better than ours. They put in honest steel. One maker of files told me what make of steel he used. It is believed that this steel can be bought for less than four cents a pound by the ton. The Swiss files again, and the Stubbs files also, in a degree, are better finished tools than anything of the kind made in America. A Grobet file is generally about mathematically correct. The hardening in both these foreign files is uniform and good. Year after year, decade after decade, these files come to us. They were the best in the world at the time I entered the door of the first shop that knew my efforts, and they are the best to-day. Now, what is the matter with American files? Our steel is good, we have the mechanical ability, and we have the market, for we use more Swiss files than all the rest of the world, and I am of opinion that we consume more Stubbs files than the whole of the British empire. Americans do not need to be ashamed of many kinds of native metal work, but our files are below compari son.-Albert D. Pentz, in the Engineering and Mining Journal.
Reply.-The above article shows that the writer hereof is practically unfamiliar with the present mode of manufacturing files, and therefore his statements should be taken with a large degree of allowance. He claims that the famous Grobet or Swiss file will outcut and outwear four American files, and the English Stubbs file will outwear more than two American files. The writer is a large manufacturer of American files, and answers by saying that market conditions, of which he has a very general knowledge, and positive informa tion derived directly from large consumers of files all over this country, make him certain that the above statements are incorrect.
A well cut American file will do just as much work and even more than a Grobet of the same cut. The English Stubbs files have always had a good reputation, and while Mr. Pentz places their quality below the Grobet file, the real facts are the Stubbs files are considered by nearly all file manufacturers, and also by nine consumers out of ten, to be of better wearing quality than the Grobet make.
Mr. Pentz's assertion in regard to honest steel as used by file makers again shows a lack of knowledge on his part as to the conditions governing the manufacture of files. Quite recently a prominent engineer and large user of files in France expressed his preference for American files manufactured by the writer's company, on the ground that actual tests had proved to his sat isfaction that the quality of steel used in our American files was better than the best English make.
But I will admit that Stubbs uses a better quality of steel in his files than that generally used by English or American manufacturers. The steel at present used here in the manufacture of files is a comparatively low priced steel, and yet fully as expensive as the steel used by any foreign manufacturer, except Stubbs.
As regards finish of the Swiss files, they are handsome in appearance, but I think the Nicholson File Company, of Rhode Island, in the manufacture of their X F's, exceed in style and finish any maker of small Swiss files.
I also take exception to the statement made by Mr. Pentz, as regards the uniform temper in a file of foreign make being better than the files of the best American makers. Now and then, in this country, you will find a few machinists who still think they must have a Grobet file to finish with, a Stubbs taper saw file to improve the cutting qualities of a very hard saw, and an English file for general machine shop work. To such users I can only say that not only is the English market in Canada and other provinces of Great Britain being absorbed by the better make of American file to-day, but it is also a fact that in England, the home of some of the best files made in the world for general machinist's uses, files of certain American manufacture have not only entered that market, but gone there to stay, and have become formidable competitors of the best brands of English files, Stubbs not excepted.

New York, December, 1892.

AN IMPROVED SCHOOL CHAIR AND DESK.
The providing of desks and seats suitable for children of various sizes at school is often quite a troublesome matter, and, with the ordinary styles of school furniture, frequent changes are necessary. An improvement designed to obviate this difficulty is represented in the accompanying illustration. It consists of a desk or seat supporting standard, capable of vertical adjustment, whereby the desk or seat may be readily raised or lowered as desired, to suit the needs of different pupils. The upright portion of the standard

THE CHANDLER ADJUSTABLE CHAIR AND DESK.

is provided with a series of grooves or recesses, and slides vertically within a base portion, on which is arranged a horizontally sliding double or U-shaped spring adapted to engage the grooves or recesses in the vertically-sliding upright. The desired adjustment may be quickly and easily effected, when the spring is secured in place by a clamping bolt, the construction preventing any rattling or loose motion from inaccuracy in the fitting of any of the parts. The desk is firmly supported on each side, and the chair, when adjusted to the height required, is practically as substantial as if it were a solid piece of iron, as the clamping bolt cannot be loosened if tampered with by the pupil, being fixed in adjusted position by means of a wrench. This improved chair and desk have already been tested in practical use in the schools at Somer ville and Brockton, Mass., and in Port Chester, N. Y. where they are said to have given great satisfaction. Further information relative to the improvement may be obtained of the Chandler Adjustable Chair and Desk Co., No. 7 Temple Place (rooms 43 and 44), Boston, Mass.

AN IMPROVED BIT BRACE

The brace shown in the illustration has a readily at tachable and detachable knob, with an easy bearing and excluding dust and dirt, an extensible and ad-

kNUDSEN'S BIT BRACE.

justable crank, a convenient and easy handle, an im proved ratchet connection between the brace crank and the bit shank, with a new and efficient means of fastening bits of various sizes to the brace, and other novel features. The improvement has been patented by Mr. Andrew Knudsen, of Tucson, Arizona Territory. Fig. 1 shows the device in perspective, Fig. 2 being a sectional view of the knob, Fig. 3 a section of the jawholding and adjusting mechanism, Figs. 4 and 5 showing the ratchet mechanism, and Fig. 6 illustrating the bit-holding and adjusting mechanism. The bearing knob is socketed on its inner side and screwed to th reduced end of a screw cup or nipple, which has a socket to receive the bearing cone of the brace stem, extending through a tube. The two crank arms each comprise two members, one adapted to slide within the other, the parts being held together in desired po-
ition by thumb screws, the arrangement being such that by pushing the members well in the brace may be turned in small space, where but little power is re quired, while by pulling out the members greater leverage is obtained. The crank handle has an inne wo-part tube, the parts of the handle being hinged together and having overlapping portions, springpressed pins within the handle projecting through the overlapping parts, the pins being pressed inward when pop parts the pins the handle is to be removed. The lower end of one a cylinder which turns on the ratchet head formed integral with the bit-holding shank the rotation of which in either direction is provided for by a simple pawl and ratchet arrangement. A screw extending longitudinally through the ratchet head has at its upper end a turning knob by means of which the outer ends of the jaws may be forced together or allowed to spread apart, enabling the jaws to be clasped firmly to a bit and be very quickly adjusted. Each end of the jaws fits several sizes of bits, and by reversing the jaws they may be made to fit many sizes, several pair of jaws being preferably provided for each brace.
The invention is designed to improve the entire construction of a bit brace, that it ?may be easily adjusted, efficiently operated and nicely and strongly finished.

Prevention of Lead Poisoning.

Lead poisoning among glass polishers due to the tin putty employed may, according to M. Gueroult, be entirely abolished by a new plan which has for the last eighteen months been adopted at the Baccarat Glass Works. The old tin putty that was used was a stannate of lead which was manufactured in special furnace by oxidizing three parts of lead with one part of tin. In the new material two parts of meta stannic acid are added for each part of putty, the lead being reduced to about a third of the old proportion Under the former system numbers of workmen suf fered from lead paralysis, and many had to leave the works entirely. Since the introduction of the meta stannic acid putty, however, not a single case of lead poisoning has occurred.

AN IMPROVED CONVEYER OR ELEVATOR

The construction shown in the illustration has buck ets arranged forself-loading and self-dumping withou breaking the material, which may be safely carried to any desired distance. The improvement has been patented by Mr. George H. Tench, of Pottsville, Pa. Chains moved by sprocket wheels carry buckets, each made in two parts, a body and an end gate, each part being rigidly secured to different links of the chain, so hat when the latter passes over the wheels the end rate of each bucket opens and closes, as shown. As arranged for an elevator, one end of each bucket is open, and the lower ratchet wheel on which the chain is carried is inclosed in a casing connected with a chute through which the material to be elevated is fed, the buckets fitting snugly in this casing. As the filled bucket reaches the upper ratchet wheel, as shown in one of the views, the body of the bucket is tipped by the link to which it is attached, disengaging the body from the gate and permitting the contents of the bucket to pass into the delivery chute. The body and gate of the bucket remain separated during the pas sage of the chain around the wheel, the bate closing on the body when the part again reach a vertical position on the chain With the device arranged as a conveyer shown in one of the views, the horizontally traveling chains bring the buckets at the receiving end of the casing in contact with material passing down a chute, the end gate losing upon each filled bucket at the time it reaches its lowermost position. The bucket remains thus closed during its horiontal travel, until it reaches the next ratch et wheel, when the body swings into an annular position away from the gate, and the material is dumped into the deliver chute, the body and gate remaining discon nected until they again reach the horizon tal position, the buckets then being upside down.

Gelatine Slides for Lantern Projection
Prof. W. J. Waggener states that he ha been very successful in making diagrams and pictures for projection by the magic and the olar lantern by printing the same, with the ordinary printing press and engraved block on sheets of transparent gelatine. By this means excellent lantern slides from dia grams and engravings of nearly if not quite all kinds can be made and multiplied as rap idly and almost as cheaply as paper prints.

The extreme of cheapness in the production of picres can be reached by assembling many engraved blocks together and printing all at once on large sheets of gelatine or celluloid, which can be afterward ut into pieces of suitable size.-Amer. Jour
[The printing of engravings for lantern slides on heet gelatine has been practiced for more than twenty years.-Ed. ScI. Am.]

A MACHINE TO WASH AND SCREEN COAL
The machine shown in the illustration is designed to horoughly wash and screen coal with the use of a small amount of water, effectively separating the dirt and refuse from the coal. The improvement has been patented by Messrs. James Gallacher and George Lang, of Chickasaw, Ala. The open-ended trough at the top of the inclined framework has slots or grooves in its sides and bottom, in which run chains on rollers, the chains being carried by sprocket wheels and provided with transverse scrapers moving upward on the trough bottom, carrying the dirt and finer particles settling to the bottom of the trough as the coal is car-

TENCH'S CONVEYER OR ELEVATOR.
ried downward over the scrapers by the water. Connected by bevel gears with the shaft operating the upper sprocket wheel is an elevator, at the lower end of which is a hopper to receive the coal as it comes from the mine, and deliver it into a chute leading into the trough near its upper end. A valved water pipe leading from a tank above lets water into the chute with the coal, and a branch pipe discharges water into the extreme upper end of the trough above the chute, thus washing back any coal which may be carried above this point. At the lower end of the rough is an inclined rotary screen, driven from the lower sprocket wheel shaft, by which the coal may be screened, and the pea coal separated from the fine slack. The dirt and refuse carried to the upper end of the trough by the scrapers is delivered into a conveyer arranged at right angles and leading off to a suitable dumping place. The whole construction is comparatively inexpensive, and the machine has a large capacity and may be operated at small cost

GALLACHER AND LANG'S COAL WABHER

AN IMPROVED AUTOMATIC WATER GATE

A waste gate which works automatically to cont the overflow of wasteways or sluiceways of canals is shown in the accompanying illustration. The gate is shown in the accompanying illustration. The gate is
designed to normally stay closed, opening automatically only when the water has risen to a certain predetermined height, when, by permitting the surplus water to escape through a suitable raceway, any damage likely to be caused by the water overflowing the banks is prevented. The improvement has been patented by Mr. George W. Norton, of Mohawk, Arizona Territory. Fig. 1 is a vertical section of the improvement, as applied in practice, the gate leing closed, while Fig. 2 is a view in perspective, showing the gate opened by the rise of the water. In the wasteway is fitted an open gate frame, the top of the frame at the sides having bearings in which is jour naled a cross-shaft to which is rigidly at tached a swinging gate, and a counterpoise whose balance is changed by the rise and fall of the water. The counterpoise is secured at one end to a tank connected by a pipe to an opening in the gate, and on its other end is suspended a weight, whereby the gate will be held closed when the wate is at a normal height, the tank at such times being empty. But with the rise of the water the tank fills, as shown in Fig. 2, and it then overbalances the weight and swings downward, thus opening the gate. The gate will remain open until the water falls below the opening leading to the tank, a small aperture in the bottom of the latter soon discharging it of its weight of water after the inflow has ceased, when the weight on the other end of the counterbalance pulls it down and closes the gate.

DR. WERNER VON SIEMENS.

It is with the deepest regret that the announcement has been received of the death of Dr. Werner von Siemens, which took place on December 6, 1892. A brief sketch of his life was given in the Scientific American of December 17, and we now add the following details :

It was in 1839, at Magdeburg, at the age of 23, that he began his scientific investigations. His first experience was unfortunate, for an explosion, caused by a preparation of phosphorus and chlorate of potash, burst the drum of his right ear. As he had met with a simi lar accident to his other ear some time before, he was for a time stone deaf. His studies were fated to be again interrupted, for in the autumn of 1840 he was sentenced to five years' imprisonment for acting as second in a duel.
"Stone walls do not a prison make" was more than exemplified in his case, for being allowed to continue his experiments, he successfully plated a silver spor with gold. The silver spoon was connected to one pole of a Daniell cell, a louis d'or to the other. It was a great disappointment to him when, after a month's imprisonment, he was pardoned, and begged that he might be allowed to use his cell to complete some experiments.
A patent was granted him in Prussia, in 1841, for electro-gilding and silvering. In 1842 he and his brother, William Siemens, took out a patent for a differential regulator.
In 1844 he was appointed to the artillery workshops in Berlin, where he turned his attention earnestly to telegraphy, and in 1845 patented his dial and printing telegraph instruments, which were based on the self-breaking principle of the Neef's hammer.
In 1848, at Kiel, he laid down the first electric submarine mines. They served to protect the town of Kiel, and saved it from being bombarded by the Danish fleet
The Prussian government, in the autumn of 1848 , deputed him to lay the first great underground telegraph line from Berlin,to Frank-fort-on-the-Main, and in the following year another from Berlin to Cologne, Aix-la-Chapelle, and Verviers. Werner von Siemens now left the army and government service and devoted himself henceforth to scientific pursuits and the management of a telegraph factory, which he and Mr. Halske established in 1847. The firm has since then acquired a world-wide reputation, and is indissolubly connected with the growth and progress of telegraphy. During the laying of the first underground lines Werner von Siemens had observed the then remarkable phenomenon of electrostatic induction, which exercised so retarding an influence in the working of those lines. He described the phenomena in a paper communicated to the Paris Academy of Sciences in the year 1850. The underground system of telegraphs had, however, to give place to the overground, on account of the technical difficulties mentioned. But the experience gained from these failures resulted in overcoming the difficulties,
with the result that the lines were relaid underground about $18^{r} 8$.
From the period of 1845 an almost uninterrupted series of scientific and technical discoveries and inventions emanated from him and from the factory under his direction.
In 1845 he devised a machine for the measurement of
veloped mathematically Faraday's theory of molecular induction, and thereby paved the way in great measure for its general acceptance. The construction of the ozone apparatus, telegraph instruments with alternate currents, and translation and automatic discharge for cable lines, were devised in 185\%. The Sardinia. Malta, and Corfu cable was in the same year worked with such instruments.
In 1859 came the construction of an electrical \log; the discovery of the heating of the dielectric by induction; the introduction of a reproducible standard resistance measurer (Siemens unit); the construction of resistance bobbins and the testing of insulated wires by systematic methods were also effected by him ; also researches on the influence of heat on the electrical resistance of metals, and the establishing of methods and formulæ for testing resistances, and for the determination of faults by means of resistance measurements instead of with current measurements as formerly used.
In 1866 the establishing of the theoretical principle of dynamo-electric machines, which led to the construction of dynamo-electric mine exploders and light apparatus. In 1874, a treatise on the theory of the laying and testing of submarine cables; and in May, 1875, researches on the influence of light on crystalline selenium ; and in 1876 and 1877 on the change of conducting power of selenium by heat and light.
He had continued reading papers and addresses down to the present time, and had contributed of late years much to the theory
of electro-magnetism.
Werner von Siemens' scientific knowledge and inventive genius, combined with the great mechanical ability of his partner, Mr. Halske, soon developed the telegraph works of Siemens \& Halske, in Berlin, into a large establishment, from which Mr. Halske retired in 1867.

In 1865 Werner von Siemens introduced pneumatic dispatch tubes into Berlin; the system adopted there dispatch tubes into Berlin; the system adopted there
served as a model for that laid down in London by Siemens Bros., in 1871. The railway signaling and block system of Siemens \& Halske, which has been adopted by many Continental railways, was the first to ensure a forced dependence between the electric and semaphore signals and the position of the points.
In 1879 Werner von Siemens constructed an electric railway in Berlin. The electric energy was transmitted to the moving carriage, or train of carriages, through the two rails upon which it moved, these being sufficiently insulated from each other by being placed upon well creosoted cross sleepers. This railway, which was much used during the Berlin Exhibition of 1879, was the direct progenitor of the Lichterfelde line, one rail serving as the conductor from the dynamo, the other as the return. This railway has continued with success from 1881 down to to-day.
The alcoholometer ranks as one of the most ingenious of Werner von Siemens' inventions. This apparatus registers with perfect accuracythe actual quantity of absolute alcohol contained in the spirit which is passed through it.

About 1,000 workmen were employed at the Berlin telegraph and cable works as early as 1879. Siemens \& Halske were among the first to construct telegraph lines in Germany and other countries. • In 1854 a branch firm was established at St. Petersburg, under the direction of Carl Siemens, who became a partner. A complete network of government telegraph lines for Russia was constructed and erected by this firm. In the year 1857 a branch of the firm was established in London, the well known Siemens Bros. of to-day. The development of Siemens \& Halske's business since the introduction of electric light and traction is one of the most remarkable facts in industrial enterprise. They have carried out much of the electric light and traction work on the Continent, and the latest development is the opening of a large branch house in America, where it is expected they will compete with advantage with the American manufacturers.

For his scientific labors, Werner von Siemens had in the year 1860 the degree of Doctor (honoris causa) of the Berlin University conferred upon him, and in the year 1873 he was elected member of the Berlin Royal Academy of Sciences. The Patent of Nobility was bestowed upon him in 1888 by Frederick III. He stowed upon him in 1888 by Frederick III. He Parliament and the vice-president of the Society for the Advancement of Industry in Berlin; he was
the same year, during the laying of the Cagliari Bona cable, the construction and first application of dynamometers, also the development of the theory of submerging cables in deep water, took place.
In researches on the subject of electrostatic induction and the retardation of the current in insulated wires representing Leyden jars, Werner von Siemens de-
also member of the Asiatic Society in Calcutta, and honorary secretary for Germany of the London Society of Telegraph Engineers (now the Institution of Electrical Engineers), and was honorary member of the Institution of Civil Engineers, London, etc.
Not the least important of his many labors was the
obtaining for Germany a practical patent law, after obtaining for Germany a practical patent law, after
agitating this subject for a number of years, in connection with the Society for Patent Protection, which he founded, and of which he was appointed permanent president.
For the foregoing particulars we are indebted to the Electrical Review, London, and for our portrait to the Street Railway Review.
The funeral took place at Berlin, December 10 Chancellor Von Caprivi, Dr. Von Boetticher, Secretary of the Home Office ; Herr Von Berlepsch, Prussian Minister of Commerce ; Dr. Hermann von Schelling, Prussian Minister of Justice ; the municipal authorities, and a large number of scientific men and artists were present. The funeral was conducted with much pomp. The route to the cemetery was lined with thousands of people. Four thousand workmen from the Siemens factory followed the hearse. Among the floral offerings was a wreath from Thomas A. Edison, inscribed "To my friend."

AN IMPROVED MOTOR.

The motor shown in the engraving is moreespecially designed for use on artesian wells, etc., to obtain, with a low pressure of water as a driving medium, a large amount of power for actuating other machinery. The improvement has been patented by Mr. B. S. Partridge, of Jacksonville, Fla. The machinery to be actuated may be of any desired construction, the improve ment.being represented as applied to a double-acting pump, the piston in the middle pump being on a piston or power rod carrying pistons in cylinders near it ends, these cylinders being open at their inner ends and connected at their outer ends with the valve chests of inlet chambers through which the motor agent enters. In these chests slide cylindrical valves, whose rims open and close the inlet and the outlet ports alternately, the valves having each a central hub and radial spokes, as shown in the sectional view, to form a discharge opening for the cylinders at the time the valves are seated over the inlet ports of the inlet chambers. The valves are at all times entirely surrounded or filled with the motive agent, and thus are constantly and perfectly balanced. Outwardly extending valve stems are pivotally connected with transverse pivoted arms, whose free ends are pivotally connected with each other by a rod extending at one side from one outer end to the other of the motor. This rod slides in bearings formed on arms secured to the power rod, the bearings engaging collars on the ends of V-shaped springs, which have at their other ends collars abutting against collars secured to the rod, while the latter collars abut against spring arms secured to the valve chests. In operation, as the power rod moves in either direction, one of the springs is first compressed and then released, to force in one direction or the other the rod connected with the valve stems at the ends, thus alternately opening and closing the outlet and inlet ports in each chamber. A prac tical test of this improvement has been made before the Board of Public Works and the fire department of Jacksonville, Fla., in which water was taken at 20 pounds pressure through a 6 inch pipe, and, using a $21 / 2$ inch hose and $3 / 4$ inch nozzle, a stream was thrown 107 measured feet, the pressure varying from 40 to 60 pounds, and when the valve was closed the pressure rose to over 100 pounds. As this was effected with an experimentally made motor, it is claimed that much better results can be obtained with a motor specially manufactured after approved patterns in accordance with this invention.

Dcean Mails Under the American Flag.
The new foreign mail service so far contracted for under the recent act of Congress is as follows :

Beginning of Contract.	Termini of Roates.	Number of Trips.	Period of Contract.
Apr. 26, 1893.	Galveston to La Guayra		
Mar. 1,	New York to La Guay	times a m	
Feb. 1, $1892 .$.	New York to Colon.	3 times a month first 2 years; once a week 8	year
Feb. 1, $1892 .$.	San Francisco to Panama	3 times a month first 3 years; once a week 7 years.	10 years.
Feb. 1, 1892.	San Francisco to Hong-	Once every 28 days;	10 years.
Oct. 12, 1895..	New Yoriz to.....outh-	Once a week	10 years.
, 12, 180.	ampton.............		
Oct. 12.18	New York to Antwerp.		
Dec. 10, 1892.	New York to Baenos	Once a week with calls;	5 years.
Dec. 1, 1892.	New York to Rio.	Once in 24 da	
Nov. 1, 1892	New York to Toxpan..	Once a week...........	5 уear.
Nov. 1, 1892.	New York to Havana...	Once a week...........	5 years.

The new service applies to eleven lines, comprising, when completed, forty-two ships of 165,802 tonnage, and the contractors will be required to spend $\$ 14,000,000$ to provide ships necessary to make the service contracted for frequent enough and quick enough to comply with the terms agreed upon.-Re port of the Postmas-ter-General.

In the process of drilling the barrel revolved at nearly ,000 revolutions a minute against half-round bits held flat down, a capillary tube of brass supplying soap and oil emulsion, at a pressure of 80 lb . to the square inch, to wash out the swarth and cool the cutting edge. The drills advancing from each end continued boring until a small disk about $\frac{1}{100}$ in. diameter brok out, and the two holes met. The tendency of the drills to follow the line of axis of a revolving bar was one of those curious occurrences in practical mechanics which might be accounted for after observation, but which no one would predict. Occasionally, through some defect in the steel, a drill wandered from the axial line; in this case the barrel was taken from the machine and reset sufficiently to bring the hole true again. To test its truth, a ray of light was made to illuminate the flat bottom of the hole while the barrel slowly revolved. It was very rarely that a barrel was rendered waste from bad drilling. Rough boring fol lowed with a three-edged bit, the blade being about 4 in . long. The rough external turning was effected in self-acting lathes, which gave the required curved taper. Three or four cutters acted simultaneously, each producing a long cutting that attested the qual ity of the metal of the barrel. The operation of barre setting followed. Previous to rough turning, the bar rels were fairly straight internally, but the removal of the metal caused slight inequalities which were tested by the eye of the barrel setter, and corrected by trans verse blows. This constituted skilled labor of a peculiar character, and was performed by young men of good sight, who were specially trained for that pur pose. After middle life the eye generally lost some of he quality necessary for this work, and it was rare to find a man excel in it after that period. Many mechanical devices had been contrived to supersede the simple ray of light laid, as if it were a straight edge, along the surface of the bore; but the eye stil remained the arbiter of straightness and could be
relied on for very accurate results. The construction Whitney. by a spring.
of the barrel was completed by the important operaof the of rifling. In British small arm factories the
tion system was followed of planing out each groove separately with a hooked cutter, and had been brought almost to perfection. In Continental and American factories the grooves were plowed out by cutters with several cutting or knife edges set at an angle and following one another in the manner of a single-cut file or float. Similar machines have been tried at Enfield, but did not give as smooth a cut as the slower moving single-tooth machines. A few passes of a lead lap fed with fine emery removed any burr that might remain, and completed the polish; a cylindrical lap, spinning rapidly, was then passed through, and gave the final finish to the barrels. The limits of gauging were from 0.303 in . to 0.305 in . Next in importance to the barrel was the mechanism of the breech, for which the material preferred was crucible cast steel of a mild character, but capable of being hardened in those parts exposed to the pressure of the bolt. The body was forged in two operations under the steam hammer ; it was then drilled and subjected to a long series of operations, in the course of which the end was recessed to receive the screwed end of the barrel, and the corresponding thread in the recess was milled out in a specially contrived machine, which insured that the thread should always start in the same place relative to the gauged part of the body, a point of great importance. The bolt, also of crucible cast steel, was forged under the steam hammer. A special machine, invented at Enfield, was used to finish the bolt after shaping. After machining, the bolts, packed in wood charcoal in iron cases, were heated and hardened by immersion in oil. The temper of the handle was then reduced in a lead bath. The rest of the bolt was tempered straw color. The bolt head was similarly hardened and tempered. mostly shaped by mills built up to the wereposed profile, or by copy milling machines. The process of drifting was used with good results at Enfield. All such slots or perforations as had parallel sides, and were not cylindrical, were so finished. The common practice in drifting was to push the drift, but at Enfield much better work was accomplished by pulling. It was found that used in this way drifts were very valuable for interchangeable work. The sides were cut with successive teeth, each slightly larger than the preceding one, and the whole length of the drift was drawn through. Emery wheels were also largely used at Enfield, as a substitute for finish milling and filing. The wheels ran under hoods connected with a pneumatic exhaust that carried away the heated particles of steel and grit. It was popularly supposed that a machine once adjusted to turn out a component of a certain size and shape was capable of reproducing such in large numbers, all absolutely identical. This was so far from being the case that no die, no drill, and no milling cutter actually made two consecutive articles of the same size. The wear of the cutters or dies proceeded slowly but surely, and it was only possible to produce in large numbers components of dimensions varying between a superior and an inferior limit. In small arm manufacture a variation of about one two-thousandth of an inch was about the amount tolerated, but it varied according to the size of the piece. A difference of diameter of one twothousandth of an inch in the sight axis hole, and in the size of the pin or axis, would cause a serious misfit, whereas a similar difference in the measurement of the magazine, or of the recess in which it lay, would be quite immaterial. The operations of gauging, proving he barrel, and sighting, were successively described, as also the manufacture of the stock, which was of the wood known as Italian walnut, though largely grown n other countries. Among the smaller components, the screws were mentioned as being rapidly produced by the automatic screw-making machines of Pratt \&

The component store received the various finished parts, which numbered 1,591, or, including accessories, 1,863 , and issued them to the foreman of the assembling shop. Theoretically, the assemblers should have nothing to do bat to fit and screw them together, but in practice small adjustments were found necessary. The amount of correction was generally exceedingly small, and was done wherever possible with the aid of mery wheels. The completed arms were submitted to inspection and then issued in cases of twenty each to the Weedon government store or elsewhere
The paper concluded with an account of the manuacture of swords and sword bayonets, which had recently been resuscitated in England.

Illuminated walking sticks are among the latest applications of electricity. A small incandescent lamp is concealed in the head of a cane and can be ignited

THE MODERN STEAM LAUNDRY

The Empire Steam Laundry, of this city, presentsan example of how modern laundry work is done. The requirementsof the great steamboat and steamship companies, and of the hotels and restaurants, far surpass anytbing known of in the past, and to execute their laundry work appliances of the most perfect description are required.
In our illustration we represent several phases of the work as executed in the largest laundry of this city, an establishment which must be among the great laundries of the world.
When the articles are received in the building an account of their number is sent with them, or sometimes they are counted there. The washing machines, which are shown in one of the cuts, are cylindrical boxes containing each of them a drum of nearly their own diameter, and perforated with holes and with an opening through which the goods areintroduced. The articles are put into this interior drum by hand, the door is closed and bolted and water is turned in and the machinery is started. The machineryrotates the drum alternately in one direction and in the other, an automatic belt shifter being provided for reversing the motion. A solution of soap, one or two bucketfuls, is introduced, and the operation of alternaterotation in one direction and in the other is kept up until the goods are washed. The wash water is then drawn off and replaced by clear water, and the drum being still kept in motion a rinsing is effected. Ultimately, the water in which they are rinsed is heated so as to remove the last particles of soap.
The next operation is the drying or wringing of the goods. This is effected in centrifugal driers similar to those used in the sugar industry. These are seen at work in the drawing to the right of the washing machines. The wringer being stationary, the operator packs it as full of the linen as possible, stowing it compactij down in the drum. The shaft which carries rotating drum holding the goods is journaled at the top or at the bottom only; in the machine repre sented in the cut is suspended from the bearing; in other instances it is carried by a lower bearing only The rapid rotation of the drum by its gyroscopic action imparts the requisite steadiness. When full of wet goods, the belt is thrown on the moving pulley and the drum begins to rotate slowly, acquiring speed gradually. The action of the centrifugal force on the goods is quite interesting. When the wringer starts it is packed full to the top. As the drum acquires velocity the goods are forced out against its periphery, so that eventually the linen is all squeezed into a hollow cylinder and the center of the drum is quite empty. The water that is thrown out through the perforations of the side of the drum is caught by the casing and runs away. The articles are now ready for the mang ling or ironing.
As an object of interest, we reproduce in the cuts one
of the old-fashioned mangles, which is still in use and gives good satisfaction for a certain class of articles. A large box weighted with iron and stone and other refuse material is caused to travel back and forth over the table. At the ends of its course, wheels carried by brackets on one or the other end of it, as the case may be, striking on an inclined plane, raise first one end and then the other. The goods to be mangled are wrapped around a wooden roller together with a light blanket or cloth. As the box tips up at the end of its course. one of these rollers is placed under it, then as the box returns, its weight comes upon the roller, and rolling thereon, completes its course, subjecting the material to very heavy pressure at the ordinary temperature. The roller is removed at the release and the article is taken from it and another one put in its place.
Several of these machines are used and are found to give, for a certain class of goods, a better finish than the hot process machines.
Several kinds of hot process mangles of the more modern construction are employed in these works. The one we illustrate is known as the Hagan mangler. In it four rolls geared together rotate over a four-sec tioned steam table. This steam table is grooved where the rollers come upon it, so as to almost fit their peripheries. The rollers are covered with felt, one edge of this being pasted to them by starch paste, the rest wrapped around them in such a direction that the natural rotation of the rollers tends to draw it always tighter. In operation the goods are straightened out, as shown in the cut, at the side of the machine furthest from the reader, and are inserted beneath the first roller. This catches them between its periphery and the smooth and highly heated steam table, and draws them forward, smoothing them out and delivering them to the next roller; this in turn delivers them to the next, and so on to the fourth, they finally coming out at the nearer end of the machine dry and mangled or ironed. The rollers are spaced some distance apart and as the damp goods go through them clouds of steam escape from the three interstices, so that one
passage through this machine virtually dries them passage through this machine virtually dries them In other mangles an apron is us
passage of the goods. One point in the arrangement
of the successive rollers in this type of machine is to wrap them with a little greater thickness of felt or cloth as the delivery end is nearer, to make the rollers successively increase in diameter from the first to the last. This increase is very slight, but it is enough to
produce an increased rate of feed, so as to bring a slight tension to bear upon the goods as they go through. The mangles are heated by steam, turned into the hollow rolls or tables. The hot process mangles effect the drying. Sometimes the articles are passed through them a number of times in order to complete it.
When large articles have to be mangled, ordinary steam room drying is resorted to, and one of our cuts shows the drying chambers. These are simply large rooms with very long steam coils arranged near the floor and provided with racks that roll in and out on elevated tracks and rollers. On these racks the goods are hung, the racks being drawn out into the room; the racks are then pushed back into the drying chamber, the doors are closed and the goods left there until dry.
The capacity of the laundry is put at 100,000 pieces per day. The washing machines will accommodate 300 sheets at a time, or 1,500 towels. To illustrate their capacity for quick work, the following may be cited :
The river steamboats deliver their goods in the morn ing and take them away in the afternoon, it being quite possible to receive a consignment at 12 o'clock and turn it out finished at 5 o'clock in the afternoon. Sometimes a single ship, such as the Etruria or Umbria, will bring in from 20,000 to 25,000 pieces in a single consignment. It will be seen from this on how large a scale the work is done.
One interesting feature of the establishment is that they manufacture their own soap. Five hundred pounds of tallow, of the very best quality, are melted down, and to it are added 10 pounds of caustic potash and 70 pounds of caustic soda. These are heated o between 100° and $125^{\circ} \mathrm{F}$. The saponification takes place without the addition of water, and after a thorough reaction, the soap is allowed to cool and is ready for use. It is not delivered solid to the laundrymen, but 75 pounds of it are dissolved in a tank containing 600 to 700 gallons of water, and from this one or two buckets are taken at a time to be thrown into the washing machines.

Photographing by Binoxide of Nitrogen and Bisulphide of Carbon.

We know that bisulphide of carbon burns in the air with a blue flame, and that mixed with the gas binoxide of nitrogen it also burns, but giving rise to a mag nificent violet light, extremely rich in chemical rays. It suffices to have seen this flame to perceive all the advantages to be obtained from it. The treatises on photography make no mention of this source of light, and nevertheless, in certain cases, it might be preferable to many others. Is it because the bisulphide of carbon has a disagreeable odor, or because it is tedious to prepare the binoxide? Perhaps so. In any case, after experimenting, we advise amateurs to make some trials. We affirm that they will be astonished at the esults obtained. The photographic power of this flame is incontestably superior to that of magnesium. The light produced is neither dazzling nor blinding, and is very far reaching. The background of the apart ments show admirably on the plate, and the subjects no not make the horrible grimaces too often remarked when using magnesium. Here is the mode of proceeding:
After having focused and placed the sensitive plate the objective is uncovered; then a lighted candle is brought near to a bottle containing one or two quarts (according to the size of the rooms), filled with binoxide of nitrogen, and in which have been previously poured a few cubic centimeters of bisulphide of carbon. Care must be taken to thoroughly agitate the liquid so as to completely saturate the gas. I advise operators to make this mixture of gas and bisulphide in the open air, and to bring the bottle well stoppered into the room before approaching the lighted candle. As the combustion evolves sulphurous acid, the bottle should be placed near a window opened at the time of lighting the mixture, or at the entrance of a door.
As to the binoxide of -nitrogen, it is prepared in the ame manner as hydrogen : in a quart vessel with two tubulars, in which are placed 30 grammes of copper (in pieces) and 100 grammes of a mixture of commercia itric acid, and at least one-half of its volume of water if the disengagement is too active, add water; if it be comes slower, add a few cubic centimeters of undiluted acid. The preparation is made in the open air, and in advance, as the gas will keep indefinitely. It should not be inhaled, as it is changed into red acid fumes as soon as it comes in contact with the air. I have con structed a special continoing appliance, allowing no bubble of binoxide to escape, and which may remain permanently in the laboratory. The continuing appa ratus of Deville, which we might feel tempted to use here, is objectionable on account of its allowing the fumes of the nitric acid to escape into the atmosphere
the working of a new non-explosive lamp, by means of which beautiful portraits may be made at night, which is so rarely successful with magnesium.-V. Lirondelle, in Bulletin de la Societe Photographiques du Nord de a France; Photography.

Professor Eben Norton Horsford.

Professor Eben Norton Horsfcrd, formerly Harvard instructor, died recently in Cambridge, Mass. Professor Horsford was born in Moscow, Livingston County, N. Y., July 27, 1818, his fatber being Jerediah Horsford, a colonel in the war of 1812 and member of Congress. Prof. Horsford was graduated from the Rensselaer Polytechnic Institute in 1838, went to Germany and spent two years in the study of analytical chemistry and experimental research in the Liebig Laboratory at Giessen. On his return was elected to the Rumford professorship of science applied to the arts in Harvard, spent the next sixteen years in the first laboratory organized and equipped for instruction in analytical chemistry in this country. He then resigned to go into the business of manufacturing chemicals in Providence, R. I., and afterward became president of the Rumford Chemical Works, in Boston. Professor Horsford discovered acid phosphate. He was an able writer on scientific subjects, and more than thirty years ago he published an account of the result of many successful experiments for stilling waves by spreading oil upon the surface of the sea, and he lately gave to the world a lexicon of five Indian languages. During the closing years of his life Professor Horsford took a great interest in Wellesley College. He provided for the endowment of the library and for continuous supplies to the departments of physics, chemistry, botany and biology.

Chromium.*

Metallic chromium has hitherto been nothing but a laboratory curiosity, and in most instances the name has been given to a more or less pure carburet of chromium. I have succeeded in obtaining the metal by a new electrolytic process, which I will succinctly describe.
An aqueous solution of chrome-alum is prepared, to which is added an alkaline sulphate and a little sulphuric or other acid. This solution is then electrolyzed. At the negative pole a beautifully brilliant deposit is formed on the surface of the electrode, and this deposit consists of pure chromium. The metal is very hard, and is of a beautiful blue-white color. It resists atmospheric action perfectly, and is only attacked by concentrated sulphuric acid, nitric acid, and a concentrated solution of potash. When the electrolytic deposit takes place under certain conditions, it is even possible to obtain arrangements of chromium crystals, which recall the branches of fir trees. This metal, which can now be prepared on a thoroughly commercial scale, furnishes numerous alloys, which are being investigated.
I may add that this new process has led me to investigate "chromage," if such a word be permissible, or the electrolytic deposit of chromium upon the surfaces of different metals and alloys. My experiments have succeeded perfectly. With baths similar to the one described above I have obtained an adherent deposit of chromium of a thickness variable at will and resembling oxidized silver, upon brass, bronze, copper and iron.
I am glad to be able to place before the Academie a specimen of metallic chromium weighing more than a kilogramme; also samples of chromium alloys and brass ornaments electroplated with chromium.

Fast Torpedo Boats.

The famous torpedo boat builder at Elbing, Schihau, has just attained an unprecedented speed even or this class of vessel, torpedo boats built by him for he Russian and Italian governments having reached $271 / 2$ knots on an hour's run at sea. The new British boats are to be 200 tons displacement, while the Russian boats are 130 tons, so that the former may do better by reason of greater power and greater size. The length of Schichau's boat is 152 feet 6 inches, the beam 17 feet 5 inches. She may carry 40 tons of coal in her bunkers. On trial, however, she had only 20 tons on board. The small guns carried weighed $21 / 2$ tons; the torpedo armament, 6 tons; the crew, provisions, stores,
and firearms $41 /$ tons ; drinking water, $21 / 2$ tons; enand firearms, $41 / 2$ tons; drinking water, $21 / 2$ tons; engine and boatswain's stores and reserve parts, $41 / 2$ tons -so that all the movable parts come to 20 tons, making, with coal, 40 tons. The vessel and the machinery are, therefore, very light. The shell plates are barely quarter of an inch thick. There are two locomotive boilers, protected by the coal bunkers, supplying steam at 195 pounds pressure to high speed engines. The guaranteed speed was to be $261 / 2$ knots in the open sea, while on trial the vessel actually made $271 / 2$, or to be precise, $27 \cdot 4$ knots, as a mean of one hour's steaming at sea. Schichau promises even higher results with torpedo boats he is now completing.-The Steamship.

BREAKAGE AND REPAIR AT SEA OF THE MAIN SHAFT OF THE STEAMSHIP UMBRIA．
The Umbria is a splendid first－class mail steamship， single screw，belonging to the Cunard line，plying be－ tween New York and Liverpool．Her dimensions are $5011 / 2$ feet length， 57 feet 2 inches beam，depth 38 feet 2 inches， 8,128 tonnage， 10,500 horse power．She is one

Fig．1．－THRUST COLLARS OF THE SHAFT．

Fig．3．－SHAFT AND THRUST BLOCK．
of the fastest of the large ocean steamers，her average of all passages being $18 \cdot 15$ knots or about 20 miles per hour．
On the 23d of December last，when off the Newfound－ land coast，while flying along under full speed，on her voyage to New York，the chief engineer，Tomlinson， discovered cracks in the main shaft．The engines were immediately stopped and measures taken to repair the break．
The highly successful nature of the repairs and the size of the ship which，by their aid，was brought into port make it a subject of unusual interest．
side of the break for the reception of large bolts．This of the shaft and the collars of the inserted section are was a work of great difficulty，owing to the limited then strongly bolted together，as shown in Fig．6．In space，and only five men could advantageously work at once．Shifts of five men each were employed，who worked night and day in six hour watches，operating with hand drills．The metal remaining outside the edge of the holes was chiseled away to per－ mit the insertion of the coupling bolts， which were then dropped in and the nuts screwed up so as to strain the fractured edges of the shaft tightly to－ gether．In these operations it is esti－ mated 180 inches of iron were drilled through．A clamp or strap was bolted around the shaft between the collar before the bolts were put in place． After the bolts were screwed up an－ other strap was put around them，its flanges being turned inward．（See Fig．5．）

To get at the shaft collars and per mit the rotation of the shaft after re－ pairs were made，several of the thrust block yokes were removed．On the completion of the repairs the engines were slowly started，and the work done proved to be safe and successful，with the exception that，in the course of the first two hours，the head of one of the bolts flew off and a new one had to be inserted，causing several hours＇delay．After this all went very smooth－ ly，the ship making about nine miles an hour，and safely reaching New York on the night of December 30. The work of repairing occupied four days＇time．
A very fortunate circumstance was the early discov－ ery of the break．Chief Engineer Tomlinson noticed that the engine was not running truly and became suspicious；this led to an investigation on his part．
ling號 an be made，whereby the ship may safely proceed to England．These repairs are now in progress，and in

Fig．4．－THE BROKEN SHAFT OF THE UMBRIA AS REPAIRED．
Great credit is due to Chief Engineer Tomlinson，of the Umbria，for the skill and promptness with which the fracture was discovered and repaired
In this connection，we have thought it would be of interest to show how broken shafts are ordinarily repaired at sea．Most of the steamers carry on board what is called the Thompson coupling．（See Figs． 7 and 8．）This consists of three strong，flanged cylin－ drical sections of steel，which bolt together，and when thus combined they grasp and hold the broken ends of the shaft firmly together，as illustrated in Fig． 8. Fig． 9 shows how the Thompson coupling was success－

Fig．2．－THRUST YOKE OR COLLAR BLOCK．

Fig．5．－THE BOLTS STRAPPED IN PLACE．

Fig．6．－THE FINAL REPAIRS OF THE UMBRIA＇S SHAFT．

Upon the shaft of a screw steamer there is a section which is provided with a number of collars，larger in diameter than the shaft，that receive the longitudinal thrust of the propeller shaft．Fig． 1 shows the collared portion of the Umbria＇s shaft．
This portion of the shaft rotates between two longi－ tudinal abutments of iron，called the thrust block． Into grooves in this thrust block Ω－shaped yokes or collars of iron are set from above（see Fig．2），one of these yoke or collar blocks coming behind each of the collars of the sha y． （See Fig．3．）
See Fig．3．）
The fracture of the Umbria＇s shaft occurred in a very inconvenient place，namely，between two collars of the shaft，as indicated in Fig．4．There were two distinct cracks in the shaft，the most serious one running dia

Fig．8．－THE THOMPSON COUPLING．
gonally from flange to flange on one side of the shaft The first thing done on discovering the injury was to support the shaft by passing a chain cable under the shaft，which chain was secured to the steel beams above it．To enable these beams to take the strain they were shored up with timbers．Next，three holes were drilled through the collars of the shaft on each

Going over the line of shaft and lifting the covers of fully applied to the main shaft of the large steamer the first thrust box，the fracture was discovered and Veendam，which suddenly gave way at sea，in May， the engines stopped，The crack had not then pene－1891．In this case it was necessary to re－enforce the trated entirely through the shaft；so that the align ment of the shaft was but slightly disturbed．
On the arrival of the ship in New York telegraphic communication was had with the owners relative to the permanent repair of the machinery．To effect this it would be necessary to remove and reheat the present shaft or put in a new one．This would oc－ casion great delay．It was finally decided to make a hoof． temporary but more secure re pair than that already made＇， and to take the ship to England， where a new shaft could be more quickly put in； quile the vessel while the the same could at the same
time be generally overhauled for the expected great passenger traffic of next summer， due to the open－ due to the open－
ing of the World＇s Columbian Expo－ sition．
The plan of final repair is as follows（see Fig． 6）：The fractured portion of the main shaft is cut main shaft is cut
out even with the out even with the
faces of two of faces of two of
the thrust collars． A short section of steel，correspond－ ing in diameter to the shaft，and flanged or col－ lared at both ends，is then set in to fill the space that was occupied by the fractured parts．The collars

Fig．9．－THE THOMPSON COUPLING AS APPLIED．

HE KANGAROO AS A PRIZE FIGHTER.

Among the recent developments in the world of sports, in Australia, is the training of the kangaroo to stand up and spar or box with a human antagonist. We give an illustration which we find in a recent num ber of Black and White. An exhibition of this curi ous kind of combat now takes place regularly at the Royal Aquarium, London, and it attracts many spec tators.
The way in which the natural kangaroo spars in the bush, his birthplace, is peculiar. He places his front paws gently-almost lovingly-upon the shoulders of his antagonist, and then proceeds to disembowel him with a sudden and energetic movement of one of his hind feet. From this ingenious method of practicing the noble art of self-defense the kangaroo at the Roya Aquarium has been weaned. The clever instructor of this ingenious marsupial has trained it to conduct a contest under the conditions known as the Marquis of Queensberry's rules. It cannot be said that it adheres to these regulations quite so rigidly as the combatants who pummel one another at the National Sporting Club are required to do. On the contrary, it cannot wholly disabuse itself of the dea, favored by the French, though discountenanced by the English, that those who re attacked have as good a right to defend themselves with their feet as with their ists. It affects la savate in preference to le boxe, a predilection which, considering the force with which a kangaoo can kick, might quite conceivably cause an injury to his antagonist. However, no harm has as yet been done, and the encounter between human and marsupial is spirited and novel, and admirably illustrates the power of man to bend the brute reation to his will
A writer in a recent number of the Overland Monthly advocates the importation and domestication of the kangaroo in this country. He gives authorities showing the feasibility of the 'project, and believes the animal could be introduced and raised here with profit. The flesh of the kangaroo is highly esteemed as a ood, and from the hides a valuable leather is made. These are legitimate uses of the animal. But it is shocking to think of degrading so useful a creature down to the evel and equal of a brutal human prize fighter.

How to Make a Gas Engine

 Noiseless.Mr. P. Simon has been making a number of experiments with a view to deadening the objectionable noise made by the puffs of the exhaust pipe of a gas engine, and, after trying a number of different devices, he describes the following in a recent number of L'Electricien, which is uch a simple device that it can be introduced by any one at a small expense. A pipe split for a distance of about two meters is attached to the end of the exhaust, with the split end upward. Beginning at the lower end of the cut, which may best be made by a saw, dividing the pipe into two halves, the slotted opening is wid ened out toward the top until it has a width equal to the diameter of the pipe. The puff of the exhaust spreads out like a fan, and the discharge into the open air takes place gradually. The effect produced is said to be remarkable, but it depends somewhat on the flare of the tube.

an Ink Monopoly.

James Eddy, it is said, of Troy, N. Y., makes all the ink with which the United States government print its paper money. Mr. Eddy's father invented the ink but he never told anybody how he did it until just be fore he died, when he let his son into the secret. Had an untimely accident gathered the inventor to his fathers before he told his son about the ink, the $g \quad v$ ernment printer would have been in a bad way, for Mr Eddy's invention is the only kind of ink that will prin on the peculiar surface of the fiber of which govern ment note paper is made.
The present Mr. Eddy employs only six men in th
manufacture of his ink, and none of them is in the secret. None of them has yet seen Mr. Eddy in the interesting act of mixing the ingredients of which the ink is composed. Mr. Eddy locks himself up in his own room two weeks in each year, and it is there and then that he mixes stuff enough to supply the government with ink for the ensuing twelve months.
The process of locking himself up surrounds Mr. Eddy with an air of romance something like that of the man whom Balzac made to search for the alkahest, the only difference being that the alkahest fellow shut himself up for a lifetime and got nothing, besides alienating the affections of his wife, while Mr. Eddy locks himself up for two weeks and gets $\$ 50,000$ a year.
The widely circulated story to the effect that the man who invented rubber tips for pencils made $\$ 200,000$ is contradicted by a Philadelphia paper. The original nventor, it says, got little or nothing. It was some body else who got the money.-Author unknown.

An Alfalfa Crop.

From Bakersfield, California, comes the report of a

the rangaroo as a prize fighter

End-on Launches.

As nearly all vessels built in lake ship yards are launched beam-on, there is not so much computation necessary, but the incline of ways, thickness of grease, etc., are figured to a nicety when large steel merchant or naval vessels are launched on tidewater. Experience and guesswork are not sufficiently reliable where the safe delivery of a $\$ 1,000,000$ or $\$ 2,000,000$ hull is concerned. With mathematics and applied science the time required for a hull to travel from the blocks to the water can be figured to a second. On tidal waters the launch must take place exactly on time. Preparations are made for it, says the New York Sun, before the keel is laid. The incline of ways has to be figured, and it usually is from $1 / 2$ to 1 inch to the foot, the heavier the vessel the less incline, of course. The City of Paris had $1 / 2$ inch and the Columbia $13-16$ of an inch. It was thought the latter would launch in 30 seconds, but it only required 29 . Over five tons of tallow was used, and as it was very warm, about 15 per cent stearine was mixed with the tallow to keep it from running. The weight of the vessel and buoyancy of factors to be determined. When the vessel is half off the ways, their height from the water and their incline must be sufficient to continue the vessel on the same line of projection. If the vessel is so heavy that her forward part sinks into the water so that the stern is lifted from the ways, a strain is put on the decks amidships; and if, on the other hand, the buoyancy s greater than the displacement, the bottom of the hull is strained amidships.
Mr. Sheldon, now with the Globe Iron Works Company, Cleveland, has had a wide experience in launching vessels from European yards. He says that a simple method to determine if the hul. has been strained in launching is to stretch a fine wire from stem to stern, having it fastened at intermediate points. If the hull is strained the wire will part. This is also done ometimes before machinery is placed in the hull.
When the hour for an endon launch approaches, most of the props are taken down and the vessel rests on the keel blocks and one or two sets of stocks at the sides. The ways and cradle have been fixed in place and wedges have been adjusted above the cradle and under the poppet blocks on which he rests. Four men take care of four wedges. The signal is given and the men drive home the wedges. The vessel is lifted just clear of the keel blocks and rests on the ways. Alternate keel blocks are knocked away, beginning at the stern. Another "wedging up" follows, and then all the props at the sides are removed. After a rest the third wedging comes, and then all the keel blocks are
place near Delano is watered from an eight-inch artesian well 704 feet deep. This gives a flow of $31 / 2$ inches of water, all of which runs into a reservoir, from which t is drawn for irrigation purposes as it is needed Three years ago when the alfalfa was first seeded in a small field which he has, the yield was about one ton to the acre, but it has kept on increasing, until this year the product is really marvelous. After a cutting the alfalfa grows from an inch to one and a half inches a day, and when cutting time comes around it takes four horses to pull the mower with ease.
The recprd thus far this season is this: April, 2 tons per acre; May, $21 / 2$ tons; June, 3 tons; July, $23 / 4$ tons ; August, $21 / 4$ tons ; September, 2 tons, a total thus far of $141 / 2$ tons per acre, with at least two more cuttings and probably more to hear from. It growth has been so rapid that it is now cut every twenty days or there about. There are thousands of acres in that vicinity which, if irrigated, will yield just as well as the land in question. This alfalfa is sold to sheepmen and others, and brings about $\$ 8$ a ton. This high price is of course due to the location of the field, like an oasis n the midst of dry and unirrigated grazing lands, and would not obtain if the thousands of similar acres were also chariged into alfalfa fields.
knocked down, the word is given, and the planks that hold the cradle to the ways proper at the bow are sawed off, and the vessel starts down to the water. It requires about 600 men and it costs $\$ 5,000$ to launch vessels like the New York and Columbia.

At a recent trial in France it was shown that the chemist Turpin, who is undergoing five years' imprisonment for treason, made arrangements with a friend to carry on secret correspondence. A letter from the prisoner, giving the necessary directions to his friend, was read in court. An official inquiry was made, and some interesting information supplied by the convicts, from which it was shown that when private news was to be supplied to a prisoner, a formal letter apparently containing nothing of importance was sent. This being read by the governor would be passed on to the prisoner, who, understanding the missive, and that it was only necessary to read between the lines written in milk, he could make this perfectly decipherable by rubbing it over with a dirty finger or an old slipper. Another ingenious form of secret correspondence consisted of leaving letters out of words, as if the writer were illiterate. The omitted letters put together formed the requisite words and sentences.

The Influence of the Climate of Japan on the
The Archipelago of the Rising Sun, bounded on the
north by the glacial regions of Kamchatka, extends north by the glacial regions of Kamchatka, extends which it is separated only by a distance of 10°. Hence the climate of Japan is necessarily variable, and pre sents, in accordance with the locality, a great disparity sents, in accordance with the locality, a great disparity
of conditions. At the south the mean temperature is 17° (with a maximum of 34.5°); oranges and bananas abound, as also the entire series of tropical maladiesdiarrhœa, infectious fevers, dysentery, the anæmia of the torrid zones, etc. In the north of Japan the mean temperature is 8° (with a minimum of -23°), and here we encounter the flora of Norway and a considerabl traffic in the furs of Siberian fauna, bear, otter, etc.
The central portion-from Nagasaki to Tokio-geo graphically speaking and considering its latitude should rejoice in a temperate climate. Unfortunately this climate is disturbed by oceanic and atmospheric currents, extremely variable in character, rendering absolutely capricious the weather of the seashore-the one part which has been opened to foreigners by treaty. The climate of Central Japan defies definition; its quality can be only approximately described by stating that it is maritime, humid, rainy.
An incredible variability, an atmosphere almost con stantly saturated with moisture (save in winter and dur ing a part of the autumn), an extremely long rainy season, persisting during almost the entirespring and summer; such is, in resume, the tableau of the climate o Central or Middle Japan.
The abrupt changes of temperature, with occasional variations in a single day of from 15° to 16°, render the climate specially disastrous to strangers predisposed to affections of the respiratory passages and of the lungs. The recurrence of the seasons and their climatic charac ter, so devoid of regularity, render it impossible to determime definitely the proper season for the sojourn of foreigners in the region comprised between Nagasaki and Tokio. It may be said that in Japan, and particularly on the eastern coast, prediction of the weather is purely mythical, not only from day to day but even from morning to evening.
In the following are given some official statistics, which present more definitely the actual facts :

METEOROLOGICAL OBSERVATIONS DURING 1890. Average humidity of the atmosphere......................
Mean tension of aqueous vapor contained in atmosphere. Maximum temperature
Minimum temperature.
Number of rainy days during the year
Clear days.
Thus out of 365 days it rained during 181 days, the sky remaining clear during only 43.
The conditions thus resulting will have to be care full guarded against by the European.
The almost constant saturation of the air with aqueous vapor (except in autumn and in winter) transforms the atmosphere into a humid hothouse, utterly unfarorable to the respiratory functions. For this reason the influenza nowhere found more victims than in Japan. Bronchitis, laryngitis, pulmonary tuberculosis are frequently encountered in the natives, as well as the resident Europeans. Among the natives the proportion of deaths caused by affections of the respira tory organs is positively unheard of.
On an average, 16 per cent of the deaths are caused by maladies of the organs of respiration. It is a curious fact that the rheumatismal affections, so extremelyfrequent among the Europeans inhabiting Japan, are relatively rare (0.91 per cent) among the Japanese, the natives owing this immunity to their peculiar hygiene more than to their heredity. The use of very hot baths, almost boiling, is a factor
As to pulmonary tuberculosis, it is very frequent among the Japanese (especially the upper classes) and Europeans. "Among the Europeans the malady progresses much more speedily to a fatal denouement than with the native classes. Among the foreigners residing in Tokio and Yokohama the disease proceeds very rapidly, and this is convincingly shown by the registers of the Yokohama hospitals." This sentence, written seveeral years ago by Dr. Vincent, chief physician of the navy, is only an expression of the simpletruth. Every European predisposed to tuberculosis is destined to succumb quickly in Japan. It is, therefore, absolutely necessary, if one wishes to reside in Japan, or even to remain there several months, to undergo careful examination with respect to a possible eventuality of pulmonary tuberculosis. Without this precaution, one
runs the risk of undergoing the frightfully rapid deruns the risk of undergoing the frightfully rapid de-
velopment of lesions previously latent. The climate of Central Japan presents excellent facilities for cultivating the bacillus of Koch. The cause will be readily understood on observing the abrupt thermometric variations not only of season (or rather, of monsoons), but of consecutive days.
Pneumonias are more frequent than pleurisies. As for the laryngites, they are particularly tedious and difficult to cure. Often a resulting aphonia is present.

The following is a statistical table of maladies of the respiratory organs occurring in the native born : Number of deaths: 1884, 104,260; 1885, 136,985; 1886, 32,565 ; 1887, 126,332 ; 1888, 128,613; 1889, 134,882.
Next to the affections of the nervous system, the maladies of the respiratory organs produce the greatest number of deaths. The former, however, are daily inreasing in frequency.
The European sojourning in Japan is particulary affected through his nervous system and his respiratory organs as a result of the humidity and the abrupt hanges of temperature.

1. Effects on the respiratory apparatus: The number of movements is augmented. The tension of the aqueous vapor being very great, that of the oxygen is diminished with resulting reduction in hæmatosis, thus opening the door to all maladies through depression of nutrition-from rheumatism and diabetes to gout and anæmia, which are everyday diseases in Japan. Contrary to the prevailing notion, Central Japan possesses a climate exceedingly favorable to the development of anæmia.
2. Effects on the nervous system: The climate of Japan, through its humid heat, depresses the nervous system. Hence diminution of physical activity, enfeeblement of the cerebral faculties, followed by apathy, somnolence, and complete prostration of the powers Such are the different phases experienced by a European residing in Japan.
In order to withdraw from the pernicious influence of the climate, the foreigner must endeavor to spend the summer at the north-at Yeso or in the north of Niphon-where the climate is dry and invigorating.
In brief, the climate of Japan, like many countries of the remote Orient, is far from healthful for Euro peans. The acclimatization of Europeans in Japan necessitates certain hygienic precautions, which will be set forth in a later article.
In a general way we may simply add that, while su perior to the climate of Cochin China and India, the climate oí Japan is inferior to that of Tonquin in many respects.-Bulletin Generale de Therapeutique.

Traveling in America Sixty Years Ago.
In 1833, 1834, and 1835 the actor Tyrone Power visited
America, and his observations on the United States were published in two volumes. To-day, after the laps of nearly sixty years, the book is most interesting reading. The time of his visit was the beginning of the ing. The time of his visit was the beginning of the steamboat and railroad age. Fulton's work had begun
to produce worthy effects, and the construction of railroads was just beginning. It is hard to realize the dif ference these sixty years have wrought in the counten ance of the land.
Power appears to have been a great sailor, and his thirty-five day trip across from England was quite to his taste. After the ship sighted Barnegat Light the probabilities of reaching New York the next day were the subject of wagers. The ship then did manage to
get as far as the entrance of the Narrows. Here, to accelerate matters, a party of the passengers engaged the pilot boat to take them to Staten Island. They left the slower sailing ship behind them, and as they got in toward the island hailed the ferryboat, which was jus on board, and at last the city was reached.
board, and at last the city was reached.
The Bowling Green reminded our traveler of Cape Town, Broadway of the Boulevards of Paris. In the Battery Park, the next morning, he found a party of emigrants camped out in the open, where they had spent the night. Three hours later he sees the same
family, with their belongings packed on a clumsy wagon, going up Broadway, their first step on a jour ney of two thousand miles that was before them.
On September 11 he starts off for Philadelphia b the "Camden and Amboy line of steamboat and rail road." Going through what he calls Raritan or Amboy Creek, now Staten Island Sound and the Kills, he reaches Amboy and takes the train. The "loco-motives" not being in condition to do duty, theystart off with horses at the rate of about eight miles an hour. At Borden town the railroad stopped, and our traveler complete his trip by steamboat. Water service was' decidedly ahead of land service. Philadelphia was reached in darkness, and here he was assailed during the watches
of the night by what hecalls "those incarnate demons, the moschetos," which "did hum and bom and bit and buzz."
His return to New York only took seven hours, and at 5 P. M. he started for Boston on the noblest steam vessel he had yet seen. At seven the nextmorningthe steamboat reached Newport, went on to Providence and there he took a stage coach for Boston, reaching it at half-past three, doing the forty miles of road in five hours. The whole trip from Philadelphia took thirty-two and one-half hours. Hopes, however, were held out that when the railroad to Providence should put on the route, eight or nine hours might be deducted from the time between Boston and New York.
He returns to New York, and on October 8 starts off with the lark for Philadelphia. At Amboy, as before
find that the locomotives were now in operation." They start, and make various surmises as to the rate; some calculated it at twenty miles an hour. In the midst of this discussion an alarm is given from the rear and loud cries of "Stop the engine!" come from the windows of every carriage upon the train. One of the rear coaches had broken an axle, and several passengers were killed and injured. The ex-President of the United States, "Mr. Quincy Adams," was on the train. By his direction an inquest was held upon the deceased and the train moved forward to Bordentown. Philadelphia was reached late in the afternoon.
He traveled several times between Philadelphia and Baltimore by steamboat without adventures worthy of record. Again he is in New York for the New Year's Day of 1834, and at 7 A. M. on January 12 starts off again for Philadelphia. This time the steamer went to Amboy by the route outside of Staten Island to avoid the ice. Soon after starting on the train an axle of the tender broke. The engine was "speedily arrested." A sound axle was drawn from a car to replace the broken one. The car that supplied the axle was drawn out of the line, its passengers were put into the other cars, and the train went on. The railroad this time takes them eight or nine miles beyond Bordentown, where a dozen fourhorse coaches are in waiting. The steamboats were not running on account of the ice.
The real terrors of the journey now began. The coaches first traveled through a narrow lane, with ruts over a foot deep. Mr. Power rode on top of the coach, and was kept busy dodging the branches of trees. The driver kept speaking of the great road soon to come, but here our traveler concluded that if his head was safer his neck was in greater peril. The frozen ruts were so bad that he fully expected the driver to give it up, but,he coolly steered around all impediments. In one case he abandoned the road for a hundred yards, crashing through shrubs breast high on the right bank, where the other coaches followed him. Our traveler, who was a fox hunter among his other accomplishments, says one could almost back one of these coachmen to take his coach across country after the fox hounds. At Camden, with much trouble, the frozen river was crossed and Philadelphia was reached at four in the afternoon.
Another striking description tells of his journey from Baltimore to Washington. For this a special coach was chartered by their party, and about $9 \mathrm{~A} . \mathrm{M}$. they started. Although in winter, the air was mild as in May. The turnpike was reached-he can compare it to nothing. He says that a Cumberland fell plowed up at the end of a very wet November would be the Bath road compared to it. He looks along the "river of mud" with despair. Some of the holes they wallowed through he thought would swallow the coach. Sometimes three of the horses were down together, but his driver, Tolly by name, felt " pretty certain the coach must come through, slick as soap." After nine hours' hard driving the Capitol at Washington appeared in sight. A steep hill faced them. A road that "looked like a river of black mud" went up one side; the other side was seamed with tracks, where coaches had deserted the regular road. They, too, tried across country, as our traveler calls it, and at last reached the capital, leaving two coaches, which had left Baltimore three hours before them, "hopelessly pounded in the highway ; regularly swamped within sight of port, for the capital was not over three or four hundred yards from them." The unfortunate passengers were all out assisting to unharness and unload, designing to use both teams before a single vehicle, extricating one at a

The Pennsylvania Railroad for the past few years has been improving its roadbed. The curves have been straightened and better time to Washington is promised. We are told of the time saved by straight ening a single curve, perhaps the fraction of a minute, but it is thought well worth the cost. Similar improve ments are being executed by the Baltimore and Ohio Railroad, the cutting off of fractions of minutes being aimed at. The sum total of time to be saved can be but a few minutes, or perhaps half an hour at the best. How striking is the comparison betweeen Power's nine hours' drive from Baltimore to Washington and the ef forts of modern engineers to cut off five minutes from the modern railroad journey of three-quarters of an hour between the same points

A NEW developer has been recentlyintroduced to the public under the name of glycin. It is obtained by the action of chlor-acetic acid on amido-phenol, and is a pulverulent mass, readily soluble in water, to which a small quantity of alkali has been added. The solution thus formed is almost colorless, and keeps well by the addition of sulphite of soda. The following are two formulæ suggested by Dr. Eder: Glycin, 5 parts ; sodi um sulphite (cryst.), 15 parts ; potassium carbonate 25 parts; water, 90 parts. For use, dilute with three to four volumes of water; or glycin, 3 parts; sodium sulphite (cryst.), 15 parts; sodium carbonate (cryst.), 22 parts; water, 200 parts. Use full strength. Glycin is a slow developer, giving exceptionally clear whites, and a slow developer, giving exceptionally clear white
promises to be of use in photo-mechanical work.

THE "NATIONAL" TYPEWRITER

A standard, high grade typewriter, designed to embody all the good points of the best instruments, while possessing many special points of superiority all its own, is shown in the accompanying illustrations. It writes 81 characters, including capitals, small letters, figures, punctuation marks, commercial signs, etc., with only 29 keys to earn and manipulate. The machine occu pies a space of only 9 by 12 inches, and $71 /$ nches high, weighing about 13 pounds. It has a comparatively small number of parts and is strongly made, the strong point claimed for it being simplicity, durability, portability, accuracy, speed and wide rang of usefulness and utility, while it is almos noiseless.
The keyboard of the instrument is practi cally the same as that of other standard machines, operators upon which can at once use the "National." The carriage is a fixed portion of the machine, having a longitudi nal motion only; it is not hinged, weighs only about 20 ounces, and can be pulled or pushed back toward the beginning of the line at any point without touching a release key. Paper and envelopes can be fed through without raising the carriage. It will run backward and forward while raised as well as when lowered, so that all errors or omissions can be practically corrected in sight. No. 15 indicates the envelope and paper guide; "L. G.," the line gauge; 13, the carriage indicator; 11, the scales; and 37 , the automatic pointer or tabulator. The pointer moves to and from the printing point as the main frame upon which the carriage moves is raised and owered, and for a correction the carriage is moved

finger-key action.
till the pointer stands opposite the spot to be printed upon, when the main frame is dropped and the proper key struck. The machine has two scales, one when the carriage is raised and one when the carriage is down, the graduations on both scales running in the same direction.
For manifolding work this machine offers distinc advantages, doing heavy manifolding or single copy work in the same alignment, without change in the machine, the alignment being unaffected by increased number of sheets. This is due to the direct, steady action of the type bars, which are ar ranged and swing in less than a half circle. The finger key action, shown in one of the views, is very simple, having practically but three simple pieces of strong steel, withou ${ }^{+}$any of the delicate and complicated wooden levers, compound levers, toggle joints, etc., and the keys are so supported that they do not wobble or warp out of position.
The ribbon movement is simple and automatic, 44 indicating the ribbon shift handle, and 62, 65 and 17 the ribbon pools and ribbon supports, 31 being the ribbon spools ratchet wheels, 28 an ad ustable ribbon stud, and 39 a spring impelled drum. The ribbons can be changed instantly without soiling the hands, the spools on which the ribbon is urnished being readily removable. It is entirely practicable with the machine to write a document in two or more colors of ink. An adjustable paper shelf assures egularity of margin, marginal stops being instantly adjustable on the carriage way 51. The lifting main frame is indicated by No. 30, the handles being indicated by No. 35, and No. 22 marking the feed roll In the back view of the frame is show
the bell-operating mechanism, 26 being the bell ringer 29 an intermediate bell pawl, 40 the bell ringer wheel, and 67 an intermediate bell pawl stop. The bell can be set to ring at any point from 5 to 70 on the scale. The "National" is the result of a high degree of

THE NATIONAL" TYPEWRITER

inventive talent and mechanical skill, as developed by years of practical experience. The "National" is one of the machines employed in the office of the Scientific American, and its operation gives much satisfaction. It is manufactured by the National Typewritey $0 ., 715-719$ Aren Street, Philadelphia, Pa.

How Needles Are Made.

edies are manufactured out of superior quality of Cast steel wire cut into lengths to make two at a time. Pieces are straightened upon an iron table by means of an instrument termed a "rubbing knife." The wire is then pointed by automatic machinery provided with a fan or shaft to carry away the steel and grindstone dust, which is very injurious to inhale. In former days the lives of workmen employed in the needle trade were considerably shortened by breathing air charged with particles. Indeed, the following is a narrative told by a doctor in the district of the industry concerning a patient, a hand needle pointer by trade, who complained that he felt a hard ball of something in his trachea, which rose and fell between his chest and throat. The doctor ridiculed the idea and told him it was nonsense, but the man still persisted it was there, and asked him if he died to it was there, and afked the poor fellow's death a post mortem examination was made and resulted in a solid mass of steel and stone dust about the size of a bird's egg being found, as he had said, in his throat, and the lungs were so encrusted with steel that a knife would scarcely pierce them. It was therefore truly a blessing to these busy workmen when this deadly process was done away with, and in its stead a healthy one subtituted.
After the operation of pointing, the wires are stamped and then pierced to form the eyes. As the diameters of the wires used in this industry are usually very small, e. g., 0.03 of an inch, it will be readily apparent that the above process involves considerable accuracy and skill. The "burrs" produced by stamping

HATIOMAL" TYPRWBITRR-MOXCBZRD PABTM
are afterward removed by means of flat grindstones called filing machines. A "spit" of these double needles is next placed between a hand vise, termed "clams," and divided into single ones, requiring only to have their heads "rounded" by filing to furnish the complete articles. A finished needle, however, must have a hard and elastic temper, whereas these, in their present state, are softer than the wire out of which they were made. Therefore, after the needles have been burnished in the eyes, they are hardened by heating in an oven, and subsequently cooled by plunging them into oil. This rapid cooling of the steel makes it as brittle as glass. The needles will now almost break upon touching them; indeed, in this condition they would be as useless as in the soft state. To reduce them to a perfect state of elasticity, temperature has to be again raised about 600 degrees, and then by allowing them to cool gradually the required degree of elasticity is obtained. During the process of hardening, the fire makes many of the needles crooked, and these have to be picked out and straightened by a small hammer, one at a time, on an anvil. The heads are afterward softened by the application of heat for facilitating burnishing. The process of scouring the needles bright takes about a week. They are mixed with oil, soft soap and emery powder, wrapped in loose canvas, and placed in a kind of mangle worked by mechanical power. This scouring process done, the needles are washed in hot water and dried in sawdust. The points, slightly blunted by passing through the various processes described, are now set upon a small revolving grindstone and the eyes reburnished. The next operation is that of polishing the needles, and which is performed by a rapidly rotating wheel covered with prepared leather. The needles are caused to pass̀many times over the leather in order to thoroughly

"national" typewbiter-back view of frame.
polish them. Finally they are counted and stuck by women into cloth, wrapped in paper, and labeled for the market.-Chicago Journal of Commerce.

Automatic Letter Express Delivery.

The London post office has just placed in front of the Royal Exchange, as an experiment, an automatic boy which is intended to be an adjunct to the express delivery of letters and parcels. By dropping a penny in a slot, the purchaser obtains an outer envelope, inclosing a small white envelope and card, on which the desired communication may be written, resting upon a small desk which falls from the front of the box. At the same time an electric bell calls a messenger from the nearest post office, which is Threadneedle Street. If it be desired to forward a parcel by express delivery, the arrival of the messenger must be awaited, but a letter may be deposited in the message receptacle for immediate dispatch. The necessary fee has in each case to be inclosed in the envelope bearing the name of the addressee, and should the payment be insufficient he will be required to pay simply the difference. For this service ordinary postage is not charged, and the fees specified in the scale, which are at the rate of 3 d . per mile, include train and omnibus fares. If the sender requires a cab to be used, the fare must be inclosed in the outer envelope, which has to be marked "By Cab."
The London Lancet thinks it is about time for people "to set about clearing away the miserable sepulchers which abound throughout the country under the name of bath rooms, and to construct rooms for the performance of their daily ablutions in harmony with the importance and necessity of bodily cleanliness."

RECENTLY PATENTED INVENTIONS. Engineering.

Locomotive Signal and Brake.

 Lamuel J. K. Hassall, Penrith, New South Wales. This uvention provides a mechanism by which the brake will be applied and a whistle sounded automatically by comotive, and connected with an air-pressure brake a part of the invention consists of an adjustable o striking plate or bar to be placed on the side of the line, the contact of the apparatus with such platecausing the brakes to be applied and a whistle to be ounded. The striking plate is placed some distanc advance of the ordinary signal, and is so connected train approaching a signal set to indicate danger

Signal Whistle. - William M. Smouse, Gettysburg, South Dakota. This is a simple to automatically sound a signal on the approach of th engine to highway crossings or other places. A valve
connects the steam supply with a cylinder containing a piston, or with a portleading to the whistle proper a downwardly extending rod carries a friction rolle adapted to travel on a plate placed alongside the rail near crossings, whereby the whistle is automatically while the sounds or blasts can be varied for any de ired signal
Spark Arrester.-John E. Zimmer man, Trinidad, Col. Within the smokestack, accordwhich support a central vertical rod, around which is ecured a spiral wire netting sheet, outer marginal edge with the inner walls of the stack All sparks and cinders passing upward are thus so in in the smokestack, that they will be extinguished o broken up.

Railway Appliances.

Car Axle Box.-John Donnelly Brockley, England. The axle box shell consists of form and welded at the abutting edges, while a cas ron liner or distance block is adapted at its under sid to form the journal brass bearing, being hollow to
serve as a grease box if required, and having fianged serve as a grease box if required, and having fianged
ends and sides fitting against the top of the box, with central post also bearing against the top of the box directly beneath the carrying spring. The top of the shell on which the carrying spring bears is thus so sup-
ported as not to be exposed to any bending strain, ported as not to be exposed to any bending strain,
direct crushing strain only being transmitted through the metal.

Car Coupling.-Henry Gallager, Savannah, Ga. The drawhead of this coupler is forme with an inner longitudinally extending face containin a vertically disposed semicircular recess in which connected with the arm reaching to one side of the place. The construction is simple and durable, and the coupling is effected automatically, it not being neces.

Car Coupling. - John H. Crumb, Burlingame, Kansas. Combined with a drawhead hav ing cavities for recelving an ordinary link and holes
for the link pins, and provided with a nib, is a spriug actuated hook to engage the nib on the coupling of an adjacent car, the hook having shoulders to engage the spring to hold the hook either open or closed. The coupling is automatic, and may be uncoupled from
either the top or side of the car, and may also be used either the top or side of the car, and may also be used as an ordinary coupling, using a link, while provision
is made for simultaneously closing the air brake pipe with the ancoupling of the coupling.

Mechanical.

Crushing Role. - Daniel Brennan, Jr., Bayonne, N. J. This invention relates to rolls consieting of a center or core and a removable shell providing for the accurate and secure fixing of the shell to the center without the necessity of boring the shell. The invention embraces a novel manner of a ranging and securing the wedge blocks, a keeper assur ing the proper position of the shell longitudinally of
the center,

Bolting Reel. - Cyrus Bolenbaugh and Ezra B. Wagner, Warsaw, Ind. A series of cylin-
drical agitator plates is fixed to turn on the main shaf, but without longluninal movement, while supported at its ends from the shaft by springs, a re ciprocating aleeve or collar on the shaft reciprocating the bolting cloth frame against the action of its springs. The invention also embraces other novel features de signed to form a bolting reel of simple and durable construction which will efficiently grade the material passing through
Brick Cutting Machine. - Charles T. Fitch and Andrew Schantz, Perth Amboy, N. J. which slides a feed table, there being a connection be tween the levers and the feed table, and a cutter comprising a head is connected with thelevers, while a shaft is journaled in the frame and wires are stretched bet ween the head and the shaft. The cutters are actuated
directly from the levers, and the feed table indirectly. The blocks of clay as soon as cutare automatically. pressed from the cutters and
Stave Jointing Machine.- William to former patented invention of the same
providing improved means for operating the bilgeforming devices. The bilge formers are held to re ormed with a gear which reciprocates a rack frame ormally held out of operative connection, while lifting devices arranged to be operated by the passing stave are operated to throw the rack frame in mesh with the
gear, in connection with means for carrying the stave. gear, in connection with means for carrying the stave. To cut staves for harrels of uniform length but different diameters it is only necessary to place bet
guides formers having the proper bilge gauge.
Saw.-Albert Smith, New York City This invention consists of a spring-pressed guar itted to slide alongside the saw blade, the rear end he guard pressing against a coiled spring in a tube in more especially designed for cutting keyholes in doors, etc., the operator taking hold of the gaard to guide the

Agricultural

Turning Plow.-Philip J. Ebersohl, Centreville Station, III. This invention provides a uickly and easily applied plow fc., under the ground. It consists of a spring-press shaft adjustably attached to a face plate and carrying turning fork whose lateral movement is regulated by stop mechanism, a drag being connected with the ork. The attachment is readily adjusted to any defrom close proximity to the moled from the ground and rom close prozimity to the mould board when neces-
sary.
Seed Planting Machine.-Robert B. Snell and Burton Smith, Monument, Kansas. A com-
bined disk harrow and seed drill is, by this invention. very very tube, the lateral being flexible, longitndinally single piece and coled spirally, with edges folded toward each other in manner to form a lock. Combined with the seed hopper also are parallel movable gauge strips in its bottom, having zigzag edges and a
Harvesting Machine.-William J. Randolph, Millersville, La. In this machine the cnt-
ting mechanism and binding table are arranged in ing mechanism and binding table are arranged in ront of the main drive wheel, so that the grain need
not be elevated to carry it to the binding table, and the rive wheel can be made large in diameter and wing eadily pass over soft ground, the machine being any description. The invention also covers other nove details and combinations of parts.

Miscellaneous.

Carburetor. - William and James Falley, Lafayette, Ind. The enrichment of natural ga by supplying it with sufficient hydrocarbon to rende the gas fit for illuminating purposes is the especial ob-
ject of this invention. Instead of the gas being diject of this invention. Instead of the gas berforated
rected over a carbureting liquid, or through perf absorbent partitions saturated with such liquid, a carbureting vessel is provided in which the gas enters a he.top of the casing, passes downward and then up
hrough a perforated plate, through the body of the liquid hydrocarbon, to the outlet at the top. The hy-
drocarbon liquid is by this process kept constantly agdrocarbon liquid is by this process kept constantly ag
itated, facilitating the taking up of the good qualities itated, facilitating the ta
of the liquid by the gas.
Generator.-William R. Macdonald, allegheny, Pa. This invention provides a heater having a fire box and water tubes and water compartments, and heated from the fire hox, while the pipes of an mmonia gas generator extend into and through the water tube compartments and steam generator to derivo is designed to comfortably heat and cool and supply fresh air to apartments, the pipes and radiators used in winter for heating being employed in summer for re rigerating purposes.
Pile Protector.-John W. Lowman Vicksburg, Miss. According to this invention the head or face of the pile is provided with a woven wire fac-
ing, which is incorporated with the impact face of the pile by the first blow of the hammer, the fibers of the
pile retaining the facing in place, and the latter prepile retaining the facing in place, and the latter
venting the splitting of the head of the section.
Hose Bridge.-John H. Gloninger ittsburg, Pa. This invention provides a device fo supporting a hose at an elevation, to provide a passage beneath for vehicles, street cars, pedestrians, etc., with-
out interfering with the fiow of water through the hose out interfering with the fiow of water through the hose
The device has pivotally connected and vertically ad The device has pivotally connected and vertically ad
justable legs, with tackle, hoist block and cable, guide opes being attached to the legs, and clamps for engagng the hose. The device can be quickly set up, and convenient transportation and storage.
Hose Nozzle Guide.-James N rewster, Coney Island, N. Y. According to this in vention a ball having a through bore to receive th
nozzle is fitted in a snitable support or socket in th wall of a building, or partition of a room, or the deck of a vessel, ctc., to permit the insertion of a hose noz
ale, so that the water may be directed to the interio and the fre sncceesfully attacked without the necessit of the firemen entering the room or apartment, and the The diameter of the ball is according to the thicknes the wall, and the socket and ball embody severa
Mine Car.-Homer Durand, Stark ville, Col. This car has the bottom of its body extend ed beyond the ends, the extension being cat away and open $\begin{aligned} & \text { or } \\ & \text { in } \\ & \text { mine }\end{aligned}$ and open a door in a
the track in the shaft.

GUN Stock Attachment.-Ralp
the recoil of the gun, and consists of a band of yieldin connected with the band at its outer margin and port of elastic material extending forward from the inner face of the stock plate, an air chamber being forme devicen the butt of the stock and the rear end of the the band. The device may be readily applied to an gun, and when used the recoil will have little or no ef ect apon the shoulder
Cable Cutting Device.-John Squires and Charles Petrie, St Johns, Newfoundlan A lever is fulcrumed upon a hanger adapted to travel on
the cable, the hanger carrying a knife having a sliding the lever being connected at ond device is designed to be ant down acable to point near the anchor, when by pulling on the cord the cable ma be cut close to the anchor, in the event of a sudden storm or em
the anchor.

Vending Machine.-Adolph F. Schneider, New York City. The mechanism of this machine is simple, compact and durable, and the machine is designed to deliver merchandise of any descrip
tion. The construction is such that if the delive mechanism cosstruction is such that ir the delivery in the machine no injury will result, and should one o more coins become fartened in the throat of the ma-
chine the operative mechanism will not be in the least ected
Fence.-Alfred P. Le Gros, Louisville Ky . This invention relates to fences to be made fro cast or stamped sheet metal, as distinguished from twisted wire fence. Loop or strap-like connections ar sections, while picket-like legs at one end of each sec eyes or loops in which enter pintle-like pr jections. The fenceis mainly designed as an orname tal border for fiower beds, etc., the 8

Tuning Pin. - William A. Smith, Butte City, Montana. This pin has a tapering shank fitting at an angle in a conical slanting aperture in the metallic backing of the frame, the small end of the
shank being threaded and engaged by a nut abuttin against the rear surface of the backing. The pin i not liable to turn in its bearings, is cheap to manufac ture, is arranged to take up wear, and adapted to keep
the instrument in tune for a long period.
Twine Holder.-John E. Tracy and Arthur N. Graham, Chicago (No. 162 East. Washingto ible holders for receiving a ball of twine, the device freely delivering the twine as required for use, and auwaste or inconvenience from the: trailing end of the all lying around in the way.
Ironing Table.-Richard D., Philip nd Charles Voorhees, Flora, Ind. This table has two of a spring character connecting the lower portions of the legs, whereby the board may be quickly opened in

Reclining Chair.-George Weber New York City. This invention covers various nove details of construction and combination of parts for a chair of commodious form and shapely appearance the adjustment of parts being readily changed to make it into an arm chair, a rocking chair, an estension reclining chair, or a couch, the members being also ge or shipment.
Clothes Line Supporting Link.Andrew Branner, New York City. A wooden link bat
longitudinally slotted is diagonally severed through longitudinally slotted is diagonally severed through
one of its members, aud strengthened at the ends by transverse pintles having washers, the pintles formin link orts for pulleys. The device for line, traveling upon the upper and sustaining the low strand, whereby the hanging of clothes upon or removing them from the line is facilitated
Bust Form.-Ellen Donnelly, New York City. A casing, preferably filled with mixed cotton and sawdust, is shaped to simulate the huma the casing is a slandard with a cross-bar, the arm sec tions having a ball and socket connection with each other and with the cross-bar. The form thus made desirably elastic and yielding, and the
Puzzle.-Henry F. Keil, New York City. In a flanged or dished board or plate, adapte be oscillated or reciprocated by the hand, is held ball, of sufficient size to permit the smaller balls to en ter and be held in it. The game of puzzle consists in keeping all the balls in motion, and causing the smalle ones to enter and be held in the larger one.
Design for a Window Shade.William F. Patterson, Jersey City, N. J. This design
consists of a pictorial representation of the landing of consists of a pictorial representation of the landing of Columbus, surrounded by a border of combined
and leaf like character and shielded like figures.
Notz.-Copies of any of the above patents will be
furnished by Munn \& Co., for 25 cents each. Pleas Purnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date send name of

NEW BOOKS AND PUBLICATIONS Electricity and Magnetism, being a ELRIES OF ADVANCED PRIMERS OF ton, A.M. New York : The W. J.
Johnston Company, Limited. Lon-

306. Price $\$ 1$

Professor Hoaston in this work really produces a
oncise treatise on the titular subject. The book pur-
the eighteen chapters are each to be considered a sepa-
rate primer. The last chapter, a sort of resume is rate primer. The last chas
termed a primer of primers.
The Principles of Pattern Making. By a Foreman Pattern Maker
London : Whittaker \& Co. Pp. viii, 178. Price 90 cents.

This work is one of decided merit from the emiof illustrations used and its extensive gloseary. The day is rapidly passing by when an advanced workman can subsist without literature. In the production of such works as this, the publishers are doing an excel
a Mandal of Bacteriology. By George M. Sternberg, M.D. New
York: William Wood \& Co.
Pp. xii, 886.
It is perfectly obvious that Dr. Sternberg's immense work, one destined to take a fixed position as a classic a ravings, in addition to heliotype and chromolithogra phic plates. It contains a bibliography of 108 pages and reasonably full index. This much tells of the make-up must be relied on to tell the rest. Any one examining it must be irresistibly attracted toward its subject and feel like following in the steps so ably and fully indicated by the author; for the work does not merely de scribe micro-organisms, but gives the different methods of culture and of identification, treats of photography of bacteria, of all the methods and appliances used in heir culcure, and of experiments on animals. In the ustrate the
Time and Tide. A romance of the moon. By Sir Robert S. Ball. Second moting Christian Knowledger Nro York: E.
Pp. 192. J. B. Young \& Co.
Price
$\$ 1$. e before now reviewed some most attractive ittle works coming in "this "Romance of Science" eries. Sir Robert Ball is known among the most in teresting expositors of astronomy in the popular sens hat we have, and these two lectures, for of such the oo our readers. As a matter of interest we note on the rontispiece is a view of the moon from one of Mr Rutherfurd's beautiful photographs, which tribute to be duly appreciated.

SCIENTIFIC AMERICAN

buIldina EDITION.

JANUARY, 1893, NUMBER.-(No. 8\%.

TABLE OF CONTENTS

degan plate in colora, Cowing a vey auractive dwelling at Bridgeport, Conn., erected at a cos elevations. Joseph W. Northrup, architect, sam place.
Plate in colors showing a residence at Armory Hill Springfield, Mass. Two perspective views an
foor plans. Mr. Francis R. Allen, architect, Bos ton, Mass. An excellent design.
3. A cottage at Brookline Hills, Mass., erected at cost of $\$ 4,825$ complete. Perspective views and
fioor plans. Messrs. Sheply, Rutan \& Coolidge architects, Boston. A picturesque design.
dwelling erected at Holyoke, Mass., at a cost of
$\$ 6,500$. Floor plans, perppective, etc. Mr. G. P B. Alderman, architect, same place
5. A very attractive and convenient stable and car riage house erected at Plainfield, N. J., at a cos
of $\$ 1,500$ complete. Messrs. Rossiter \& Wright New York, architects.
6. A residence recently erected at Plainfield, N.J., at cost of $\$ 9,175$ complete. A picturesque design
Two perspective elevations and fioor plans Messrs. Rossiter \& Wright, architects, New n elegant. residence recently erected at Malden tive views and fioor plans, together with perspec the Holland stairway. Cost complete abou $\$ 11,000$. Mr. Frank L. Smith, architect, Boston
8. A substantial residence at Holyoke, Mass. Per spective elevation and floor plans. Mr. H. H
Gridley, architect, Springfield, Mass. An exce lent design.

Mass.

10. Miscellaneous contents: Combustible fireproofing -House drainage.-Roofs and roof coverings.A pla for the use of whitein houe painting.-Defective flues.-Antiquity of glue and
veneering.-The piping of dwellings.-Collodio glase.-A saw for foot, hand, or steam power, il lustrated.-A new court house at Greenville,
Mise.-A baluster spindle lathe, illustrated.-Mies.-A balus
Solid partitions.
The Scientific American Architects and Builder Edition is issued monthly. $\$ 2.50$ a year. Single copiee,
25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages ; forming practically, a large and splendid Magazine of architrc tURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and The Fallness, Richnese, Cheapness, and Convenience of this work have won for ithe La, and Cond of any Architectural publication in the world. Sold b all newsdealers.

ƏBusiness and Personal.

The charge for Insest ion under this head is one Dolar a line
for each insertion a about eioht words to a line Adver-
The charge for Insertion under this head is One Dollar a line
for each insertion; about eight words to a line. Adver-
tisements must be received at mublication ofice as earlu as Thursday morning to appear in the following week's issue
"U. S." meta polish. Indianapolis. Samples free. Wood pulp machinery. Trevor Mfg. Co.. Lockport, N. Portable and Stationary Cylinder Boring machines. Pedrick \& Ayer, Philadelphia, Pa.
The Improved Hydraultc Jacks, Punches, and Tub Screw machines, milling machines, and drill presse Stow flexible shaft. Invented and manufactured by manufactured by
ee adv., page 396 . Centrif ga Pumps for paper and pu p mills. Irrigating
and sand pumping plants. Irvin Van Wie, Syracuse, N. Y. Portable engines and boilers. Yacht engines and
boilers. B. W. Pay e \& Sons, Elmira, N. Y., and 41 Dey Street, New York.
Guild \& Garrison, Brooklyn, N. Y., manufacture stean pumps, vacuum pumps, vacuum apparatus, air pump Split Pulleys at Low prices, and of same strength and Works, Drinker St., Pbiladelphia, Pa. Perforated Metals of an kinds and for all purposes, Harrington \& King Perforating Co., Chicago.
To Let-A suite of desirable offices, adjacent to the Apply to Munn \& Co., 361 Broadway, New York.
Fine Castings in Brass, Bronze, Composition (Gun
Metal), German Silver. Unequaled facilities. Jas. J. McKenna \& Bro., 424 and 423 East 23a St., New York.
The best book for electricians and beginners in elec-
tricity is "Experimental Sclence," by Geo. M. Hopkins By mail, 84 ; Munn \& Co., publishers, 361 Broadway, N. Kennedy Valve Mfg. Co., manuf'rs of brass, iron gate valves, patent indicator valves, fire hydrants, globe, an-
gle, check, radiator, and safety valves, 52 Cliff St., N. Y. Canning machinery outfts complete, oil burners fo soldering, air pumps, can wipers, can testers, labeling
machines. Presses and dies. Burt Mff. Co., Rochester machin
N. \mathbf{Y}.

Competent persons who desire agencies for a new
popular book, of ready sale, with popular book. of ready sale, with handsome proft, may
apply to Munn \& Co., Scientifle American office, apply to Munn \&
Wanted-Traveling man for forge. One who under stands the business and is capable of making estimates
on marine, railroad, and machine forgings. etter, with references, box 1040, Pittsburg, Pa
Pointer on Advertising.- - Man facturers who would
advertise for proft in 1893 should write to the Man advertise for profit in 1893 should write to the Manu-
facturers' Advertising Bureau and Press Agency, 111
Liberty Street, New York, for points.

15 Send for new and complete catalogue of Scienticic and other Books for sale by Munn \& Co., 361 Broadwa

INDEX OF INVENTIONS

Un State were Grant
January 3, 1893

AND EACH BEARING THAT DATE

Ca
Cash registers, tablet and key locking device forr,
M. N. Lovell.

 Cothes drier, J. F. Ha
Cutcheh,
Clutch, F : R. White..

Commutator for dynamos and electric
Groswitr
Conveyer troughs, gate for, J. M. Dïge.

Coupiling. See Car coupling. Hose pi Cranilcoupling. Cobicle coupling.

\mathbf{E}
\mathbf{E}
\mathbf{F}
\mathbf{F}
\mathbf{F}

xhibiting a see Fruit evaporator.

 Alarm. See Fire or burglar alar.......

Baologe boad, reg device, s. R. Heidelberg.......:
Bark tre..

Boiler tube expander, J.West....
Book holder, C. . Ryrkit......
Boots or shoes, making, J. J. Pag

Burner. See Gasor vapor bürier

 ICE-HOUSE AND COLD ROOM.-BY R.

 wriow LATHES noway bnaire LATHES pmsians

 New Full Mounted Lightning Screw Plate,

Wiley \& Russell Mfg. Co., Greenfeld, Mass., U.S.A TRADES UNIONS, THE TENDENCY of.- By Herbert Spencer. An able paper, pointink out
the great duficulties of dealing with complex sucial

 Steel Mype for Wriling Machines, 1 New BARNES'

TRAINING OF HORSES. - AN EX planation, by means of pitctures and short
of tesce chiof leesons in the fions

The I 892
 wad Remington Typewriter
 For Ease and Convenience of Operation, Simplicity of Design and Durability of Construction, is
 (ot send for catalogue.

WYCKOFF, SEAMANS \& BENEDICT, 327 Broadway, N. Y.

CHAPMAN VALVE MANUFACTURING, COMPANY,
For steam, water, Gas, ampa Giates
We make a Specialty of Valves forSuperheated and High Pressure Steam, 100 Pound

 work Guaranteed. Send for Circulars and Prices. Al

After being on the Market Seven Years THE AGME AUTOMATIC ENGINE AND BOILER sTrII TmADE:
Half to Four Horse Power. Marine and Stationary.
To For either Natural Gas or Petroleum as Fuel.

ROCEESTER MACHINE TOLL WORISS, Brown's Race, Rocelester, N. I

$\underset{\text { FOR SALE. }}{\text { PHONOGRAPHS }}$ OR SALE
ADDESS,
North American Phonograph Co EDison building,
New York Masonic Temple Bldg.,

Delaney's Metallic Gaskets
and Flanges make everlastin

ENGINE CASTINGS

HOW OLD IS THE WORLD ?-AN examination of this most intereating question from the
stand point of geology, by the Rev. . N. Hutchinson
sin SUPPLEM ENT, No. 876 . Price 10 cen
this otmee and from all newsdealers.

THE STIRLING BOILER is economical in fuel, repairs, and absolutely safe at high pressure.
Practically self-cleaning. THE STIRLING COMPANY, dllman building, ohicago
\int cientific jook Naialogue
RECENTITY PUBLISHED.
Our new catalorue containini over 100 pakes, includ-
Ink works on more than fifty different subjects. Will be mailed tree to any address on application.
MUNN \& CU., Publishers Scientitic

361 Broadway, New York

FUELS AND THEIR USE-A PRESI

VOLNEY W. MASON \& CU. FRICTION POLLETS, CLDTCHES, and ELEVATORS

WELL DRILLING MACHINERY
WILLIAMS BROTHERS, ITHACA, N. Y., Mounted and on Sills, for deep or shallow wells, with steam or horse
 Send for Catalogue. Williams Brothers BORE Hememem Horse Powers, ELLS Steam Engines
 WELLS LOOMIS \& NYMAN OIL WELL SUPPLY CO.

HAND AND POWER BALING and PACKING PRESSES FOR ALL PURPOSES. RYTHER MFG. CO.,

The Best Mechanical Help For inventors, experimenters, etc., connes
from a real machine shop with first-rate men and tools accustomed to regular men and tools accustomed to regular
work. We have put some notions of ours in a primer-sent free.
The Jones Brothers Electric Co. Cin'ti, o.

OIMARE'S

 CEO. ${ }^{\text {Catalognes }}$ CLARK

Founded by Nathew Carey, 1785.
HENRY CAREY BAIRD \& CO. ndastrial Pablishers, Booksellers, and Importers
$\mathbf{8 1 0}$ Wainur Sc.. Philadelphia, Pa.. U.S. A.

Over 25,000 sopies. ROPER'S ENGIINEERS' HANDY-BOOK.

 Phice py paid, - \$3.50. Descriptive Cataloones mailed free to any address EDWARD MEEKS, Publisher,

STATEMENT of the OONDITION OF THE H-TNA
Insurance Gompany HARTFORD, CONN.

> On the 31st day of December, 1892. Cash Capital
Reserve, Re-Insurance (Fire)
Reserve, Re-Insurance (Inland). Reserve, Unpaid Losses (Fire). Reserve, Unpaid Losses (Inland)
Other Claims Net Surplus.
$53,538.03$
$117,988.60$
$7,548.18$
Total Assets.
810,915,829.63
Losses Paid in Seventy-four Years, Seventy Million Two Hundred and Thirty-three Thousand Dollars.
WM. b. CLARE, President.

JAS. F. DUDLET. Secretary.
WM. H. KING, E. O. Wereks, Ass't Secretarices
Agencies in all the Principal Cities, Towns and Villages of the United States and

Canadian Provinces

MALLEABLE

EXPERIMENTAL OR CHGHT WORK
 have you read
Experimental
Science?
This nem book, by Geo. M. Hopkins, is just what

Over 700 puges; 880 fine cuts; ; substantially and
beautifully bound.
Price by mail , $\$ 4.00$. MUNN \& CO., Publishers, Office of the SCIENTIFIC AMERICAN

James Smith Woolen Machinery Co. THE HUB FRIGTION GLUTGH. 411 Po 421 Race Street, PHILADELPHIA, PA.
 Applied to Pulleys. , Rent transmith from 2 up
olimo
 description ${ }^{\text {price }}$ 0

VANDUZEN STEAM PUMP Pumps BEST M. THE worim.

 THE VANDUZEN \& TIFT CO

HOW TO MAKE AND USE
IIVIDT

HARRISON CONVEYOR!

Handing Grain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds,\&C.

E. TO Inventore-

BUSINESS CAROS \&1, 00 per 1000. Good stok

 TO BUSINESS MEN The value of the SCIENTIFIC AMREICAN as an adver-
tising medium cannot be overestimated. Its circulation is many times greater than that of any similar journal
now published. It ries, and is read in all the principal libraries and reading rooms of the world. A business man wants something more than to see his advertisement in a printed n ws-
paper. He wants circulation. This he has when paper. He wants circulation. This he has when he ad-
vertises in the Scientipic American. And do not let vertises in the scientipic American. And do not het
the advertising aqent influence you to substitute some other paper for the Scientific American, when selecting a list of publications in which you decide it is for
your interest to sivertise. This is frequently done fo your interest to advertise. This is frequently done fo
the reason that the agent gets a larger commission from the papers having a small circulation than is allowed on the SCIENTIPIC AMERICAN. For rates see top of frrst column of
dress MU NN \& CO., Publishers,
\qquad

Model \& Experimental Work

VELOCITY OF ICE BOATS. A COLTLFIC AMERICAN
TH
the question of the speed of ice
 With 10 explanatory diagrams. Contained in SCIENTIFIO
AMERICN SOPPLEEENT, No. 214.4 Price 10 cents.
To be had at this officeand from all newsdealers.

NOW READY!
a NEW AND VALDABLE BOOK.

12,000 Receipts. 650 Pages. Pricee $\$ 5$. This splendid work contains a careful compilain the Notes and Queries of correspondents as pub-
ished in the Scientific American during the past fifty te sears tongether with many valuable and
ind important additions. Thousand selected receipts are here collected; nearly every branch of the use
ful arts being represente. It is by far the most fore the public. The work may be regarded as the product of the ists and workers in all parts of the world; the in-
formation given being of the highest value, aranged and condensed in conct form convenien Almost every inquiry that can be thought of
relating to formulæ used in the various manufacturing industries, will here be found answered.
Instructions for working many different pro cesses in the arts are given.
It is impossible within the limits of a prospectus o give more than an outline of a few features of
so extensive a work.
Under the head of Paper we have nearly 250 receipts, embracing how to make pape nearily 250 re
to make paper water proof and fire proof ; how to make sandpaper, emery paper, tracing paper transfer paper, carbon paper, parchment paper,
colored papers razor strop paper, paper for doing
up cutlery, silverware; how to make luminous Oaper, phot the hrapd of finks we have nearly 450 re-
ceipts, including the finest and best writing inks of all' colors, drawing inks, luminous wrinks, invisi ble inks, gold, silver and bronze inks, white inks
directions for removal of inks; restoration of faded inks, etc.
Under the head of Allovs over 700 receipts are
given, covering a vast amount of valuable infor mation.
Of Cements we have some 600 receipts, which and the modes of use.
How to make Rubber Stamps forms the subject
make complete process is described in such clear and ex
plicit terms that any intelligent person may readily plicit the art.
For Lacquers there are 120 receipts ; Flectro-Me tallurgy, 125 receipts; Bronzung, 127 receipts; Pho-
tography and Microscopy are represented by 600 receipts.
Under the head of Etching there are 55 receipts,
embracing practical directions for the production of engravings and printiog plates of drawings. Paints, Pigments and Varrishes furnish over
00 receipts, and include everything worth knowing on those subjects. Cleansing over 500 receipts the removal of spots and stains from all sorts cleaning furniture, clothing, glass leather, metals, In Cbjects and materials. are given.
Soaps have nearly 300 receipts
Those who are engaged in any branch of industry
probably will find in this book much that is of
practical value in their res practical value in their respective callings. or employment, relating to the home manufacture of sample articles, will find in it hundreds of mos (\%) Send for
MUNN \& CO., Publishers, SOIENTIPIO AMERIOAN OFFIOE 361 Broadway, New York. Perfect Newspaper File

DEAFMEs. MEAD Mass curge

A．G．SPALDING \＆BROS．，Speclal Agents，

＂Surr Pointal＂Wool Berews．

I

Patented May 10，July 19，1887；Oct． 29,1889 ；
Aug：19，Oct．21，1890；April 7，May 12， 1891 ；
July 19，1892．
Its Advantages are ：
1．Stronger than a common screw．
2．Uniform and wide slot．
3．Requires the use of but one bit in hard
wood．
4．Inserted easier．
5．Centralized point．
6．Superior holding power．
7．The screw being Cowld Forged．instead
of Coat，ceaves on its entire surface a
metallic skin．
metalic skin．
american screw co． PROVIDENCE，R．I．
THECOMETC CRUSNER GREAT BALLASTANOORE BREAKER

HEADQUARTERS FOR LOW PRICES！

 10

ACENTS WANED FORFINETOOLS INEVER SHOD： catiodiel C．H．BESIY S．CO：

PROMOTION OF NAVAL ENGIN－

ELECTRO VAPOR ENGINE．
 FOR Patented Dec．13，1892． $\boldsymbol{\sim} \boldsymbol{\nabla} \boldsymbol{s}$

GAS OR GASOLINE FOR FUEL． no boller．no file．no danger． no engineer．

Engine operated by spark
form smand battery
Yon

THOMAS KANE \＆CO．， CHICACO，ILL．

Is the best ready reference cyclopædia in the English language THE

Is the most convenient in arrangement；
Is the latest in facts and statistics；
Is a＂＂time－saver；＂no index needed．

INTERNATIONAL

Batklets describing its special features are val－ uable because contain． CYCLOPADIA ing brief outlines of
contemporaneous History，Politics，Biography，Education，Theology，etc． They are mailed free to any address by the publishers， DODD，MEAD \＆COMPANY，I9th St．，bet．Broadway \＆Fifth Ave．，New York．

RIUE：ITS MANUFACTURE．－BY H．

KODAKS

For Snap－Shots Out－Doors，
For Time Exposures In－Doors， For Flash－Lights at Night． The Junior are the most compact Kodaks．－adapted to hand or tripod
ms or glass plates．Fitited an with used with witholil films or glass ppates．．Fise．Can be esed with roll
and counter for exposures．

$\$ 40$ and $\$ 50$.

$\left\{\begin{array}{l}\text { Send For } \\ \text { Catalogue．}\end{array}\right.$

$\underset{\text { EASTIAN KODAK CO．，}}{\text { Rochester，N．}}$

The Smith Premier Typewriter

The Smith Premier Typewriter Co．，Syracuse，N．Y．，U．S．A．

菅 EDISON INCANDESCENT LAMP

IS THE ONLY INCANDESCENT LAMP LAWFULLY MADE．
THE RICHT OF THE EDISON COMPANY TO AN INJUNCTION AGAINST
NFRINGERS HAS BEEN DETERMINED BY THE U．S．CIRCUIT COURT OF INFRINGERS HAS BEEN DETTERMINED BY THE UN．S．CIRCUION ACAINST
APPEALS．COPIES OF DECISIONS SENT ON APPLICATION． APPEALS．COPIES OF DECISIONS SENT ON APPLICATION．
GPNDRAI صエヨCIRIC COMIPANTI． BRANOTH OFFICHE：

THEAMERGCAN BELL TRETHANECD

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March granted to Alexander Graham Bell，March
7th，1876，No．174，465，and January 30th， 1877，No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use，and all the consequences thereof，and liable to suit therefor．

THE COPYING PAD－HOW TO MAKE and how to use ；with an engraving．Practical directions
how to prepare the egelatine pad，and also the aniline ink
by which the copies are made how to apply the writen

The Most Popular Scientific Paper in the World
Only \＄3．00 a Year，Including Postage． Weekly－52 Numbers a Year．
This widely circuilated and splendidly illustrated
paper is published weekly．Every number contains six－ paper is published weekly．Every number contains six－
teen pages of useful information and a large number of representing Engineering Works，Steam Machinery New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity，Telegraphy，Photography，Archi－
tecture，Agriculture，Horticulture，Natural History， Terms of Subscription．－One copy
fipic american will be sent for one year－ 52 numbers－ postage prepaid，to any subscriber in the United States，
Canada，or Mexico，on receipt of three dollars by the Canada，or Mexico，on receipt of three dollars by the
publishers；six months，$\$ 1.50$ ；three months，$\$ 1.00$ ． Clubs．－Special rates for several names，and to P Masters．Write for particulars．
The safest way to remit is by Postal Order，Draft，or
Express Money Order．Money carefully Express Money Order．Money carefully placed inside seldom envelopes，securely sealed，and corr＇ctly addressed，
selray，but is at the sender＇s risk．Address sill letters and make all orders，drafts，etc．．，payable to
MUN \＆CO．， 361 Broadway，New York． Scientific Gmericat Supplement This is a separate and distinct publication from THE
SCIENTIFIC AMERICAN，but is uniform therewith in size every number containing sixteen large pages full of en gravings，many of which are taken from foreign paper
and accompanied with translated descriptions．THE SCIENTIFIC AMERICAN SUPPLEMENT is published week ly，and includes a very wide range of contents．It pre－ sents the most recent papers by eminent writers in al the principal departments of science and the Usefu History，Geography，Archæology，Astronomy Chemis try，Electricity，Light，Heat，Mechanical Engineering Steam and Railway Engineering，Mining，Ship Building， Marine Engineering，Photography，Technology，Manu－
facturing Industries，Sanitary Engineering，Agriculture Horticulture，Domestic Economy，Biography，Medicine etc．A vast amount of fresh and valuable information obtainable in no other publication．
and Manufactures at and Manufactures at home and abroad are illustrate
and described in the SUPPLEMENT． Price for the SUPPLEMENT for the United States and
Canada， 85.00 a year；or one copy of the SCIENTIFIC AM Canada， 85.00 a year；or one copy of the ScIENTIFIC AM－
ERICAN and one copy of the SUPPLEMENT，both mailed ERIC AN and one copy of the SUPPLEMENT，both mailed
for one year for $\$ 7.00$ ．Single copies， 10 cents．Address and for one year for 87.00 ．Single coples， 10 order，or check，
remit by postal order，express money or

Fuilding ©ulition．
The Scientific American Architectis and Single copies， 25 cents．Forty large quarto pages，equa to about two hundred ordinary book pages：forming a large and splendid Magazine of Architecture，richly engravings，illustrating the most interesting examples of modern architectural construction and allied subjects． A special feature is the presentation in each number dences，city and country，including those of very mod erate cost as well as the more expensive．Drawings in Plans，sive and in color are given，together with full The elegance and cheapness of this masnificent etc． have won for it the Largest Circulation of any Arehitectural publication in the world．Sold by all news dealers． $\left.\begin{array}{c}\text { 22．50 a year．Remit to } \\ \text { MU N N }\end{array}\right)$ CO．，Publishers， w York．
PRINTING INTKE，

