recently patented inventions. Engineering.
To Reduce and Smelt Sulphide OREs.-Augustus L. Engelbach and Sidney E. Brether
ton, Leadville, Col. A specially designed furnace is pro ton, Leadville, Col. A specially designed furnace is pro-
vided by these inventors for carrying out a method of vided by these inventors for carrying out a methou of
retucing and smelting by which air is forced through a series of retorts heated by the matte and slag discharged from the blast furnace, and hydrocarbon gas injected
into the heated air to produce an oxidizing flame which into the heated air to produce an oxidizing flame which is forced into the blast furnace to reduce the ore. A
channel in the wall of the crucible of the blast furnace is connected by tuyeres with the interior of the furnace, and connected with the channel is a combustion chamber connected with an oven containing retorts, the oven heating the air passing through the retorts, while through nozzle estending into the comberion clamber pases misture of steam and oil.

Rallway Appliances.

Car Coupling.-Valentine Erbach, Scranton, Pa. According to this invention a flat gravity
coupling pin baving a transverse concavity in its lowe nd is combined with a gravity locking and tripping dog in the drawhead, the dog beingadapted to be acted upon by an entering link, and having a bearing surface to receive
the lower end of the pin. The pin is held in elevated the lower end of the pin. The pin is held in elevated
position 'to admit a link, the entry of which operates to position'to admit a link, the entry of which operates to
trip the pin and cause it to be guided downward in the link. The pin may also be brought into such engage ment with a link as to give the latter an upwardly in
clined position, and thus hold it until readjustment clined position, and thus hold it
until a coupling has been effected.
Car Brake.-Thaddeus J. Barrow, Duluth, Minn. This is a brake especially designed for use on street railway cars, occupging but little space be-
neath the car, and having a series of independent shoes It comprises three-armed levers pivoted on opposite sides of the car truck, brake shoes pivotally connected with opposite arms of the levers, and operating levers connected with one arm of the three-armed levers. The
shoes are operated independently, and if one or more of them should break, the others would do the work, while
the lever mechanism allows the shoes to be set with the lever mechanism allows the
greatrigidity upon the wheels.

Elevated Railway Brake.-John N. Valley, Jersey City, N. J. This is a brake for use on head track or stringer, and the invention consists of a mechanism in the form of a clamp, formed by the brake
jaws or shoes, to clamp the rail or stringer. The brake is easily applied or released by an operating lever within the car.

Electrical.

Electric Program Clock.-Henry c. Hain, Booneville, Mo. This invention provides a clock attachment for giving calls at different times in
the day and different days in the week, as a reminder of engagements, etc. An auxiliary dial has a series of openinside of the dial, there being also a contact arm adapted to inclose an electric circuit, mechanism between the
clock and arm, and removable pins to be inserted in the openings in the dial.
Electric Railway Trolley.-Wesley W. Pritchett, Ogden, Utah Ter. This invention pro
vides a simple and cheap trolley mechanism to be car ried on the top of a car, designed to hold the trolley wheels always in contact with the wire, and to guide th wheels to the wire when the trolley is to be applied. A
shifting weight holds the trolley wheel in contact with the line wire, means being provided for shifting the weight and trolleys when the car is to be reversed or
switched, which may be quickly done from the platform switched, which may be quickly done from the platform
in such a way that the lights on the car will be but moin such a way that
mentarily put out.

Mechanical.

Anti-Friction Bearing.-Charles W. Wynn, Asheville, N. C. This bearing may be used on a
revolving as well as on a fixed axle, and consists of a revmber of cages each containing longitudinally arranged rollers, and provided at their meeting ends with interlocking projections, whereby the rollers of each cage will
be in line between those of the next cage, the rollers be in line between those of the next cage, the rollers
bearing evenly within a cylindrical bore. By the cages revolving on the spindle and istributing the wear, it is
designed to avoid the wearing of the spindle flat on one designe
side.
Lubricator.-Benjamin F. Howard, Sheep Ranch, Cal. This is a device more especially designed for use on engine cylinders to automatically and positively feed the proper amount of lubricant into the cylinder. It has a large oil reservoir into which passes a
limited amount of condensation water, and a sight feed limited amount of condensation water, and a sight feed
tube so arranged that the oil bubble passing through the tube can be seen and the amount closely regulated, being tulso indicated by a pointer on a graduated dial.
Wrenchand Cutter.-Theodore Fletcher, Macdona, Texas. This is a strong, simple, and
inexpensive tool, adapted for use for ordinary purposes as inexpensive tool, adapted for use for ordinary purposes as a wrench, to turn a nut, or as a pipe wrench, the clamp
or pressure being applied in both cases with a or pressure being appied in oth cases with a power pros portioned to the strength of the pull, while it may also
be used as a powerful pipe cutter. Its construction also allows it to be used very rapidly, somewhat as a ratchet wrench.

Miscellaneous.

Refrigerator. - George A. Bowen, Fond du Lac, Wis. The box or casing of this device consists of two hinged sections, the lower one forming a provision chamber, supporting in ite upper portion an
open-top ice receiver, while the hinged upper section has open-top ice receiver, while the hinged upper section has
an opening in its top closed by a cover, and registering
with the open end of the ice receiver. The construction insures the keeping of the interior of the refrigerator at a
uniform temperature, and permits of uniform temperature, and permite of conveniently rat
moving the several parts for thoroughly cleaning the moving

Teaching Botany.-William H. Gibson, Wasbington, Conn. A mechanical educational ap
pliance, for use by lecturers and in schools, college pliance, for use by lecturers and in schools, colleges, tions of the construction of plants and the means ployed for fertilization or fecundation, and cross fertilization and dissemination or dispersion of seed and fruit. The invention consists principally of a mechanical plant and means for actuating the floral parts and the
seed receptacle and seed, different mechanisms being seed receptacle and seed, different mechanisms being
necessary for the demonstrations called for of different necessary for the demonstrations called for of different
plants, and these mechanisms being provided for the plants, and these mechanisms being pres
different typical plants chosen by the illustrator

Lock Brake.-Volney W. Mason, Providence, R. I. This is a brake for hoisting machines, with which any required amount of pressure may
be applied to the wheel, which may be securely locked so that it will not turn under any load the machine is likely to carry. The brake lever, attached to the brake, is moved and locked by an adjustable toggle joint, an operating cord and counterweight being arranged in
convenient position to facilitate applying and releasing convenient
the brake.

Paint Filling Composition.-Richd J. Parke and Isaac Goodman, New York City. These inventors provide a composition consisting of cotton,
wool, or silk flock, and pulverized stone, with varnish, wool, or silk flock, and pulverized stone, with varnish,
japan, and oil, to be applied to wood preparatory to varjapan, and oill, to be applied to wood preparatory to var-
nishing, the coating being susceptible of polishing and nishing, the coating being susceptible of polishing and
smoothing with pumice stone or other material, after which varnish may be applied in the usual manner, the paint or varnish then not penetrating into the

Water Gate.-Christopher H. Watson, Riverside, Cal. This invention provides a gate of simple nd durable construction, easily opened and closed, and ing the gate ovet the opening. A gasket of rubber or aimilar material is held on the inner face of the gate proper, the gate being monnted to slide, and being car-
ried by a stem which may be turned, the gasket not being injured while the gate is partly or wholly open and being used only when the gate is entirely closed.
The gate, when pulled up, can be locked in any desired The gate, when pulled up, ca
position by turning its stem.

Tobacco and Cigar Box.-Theodore V. Smith, New York City. The storing and preserving of cigars and tobacco, to keep them in good condition, is water and moisture proof material, and being designed to receive absorbent pads for keeping the cigars and to bacco at a certain degree of moisture. The construction y removed to clean when needed.
Canvas Cot.-Camille Poirier, Duluth, Minn. This cot is more especially adapted for use in
steel prison cells, the body of the cot being so connected with the hanging devices that the latter may be eadily removed from the canvas, and all may be easily and thoroughly cleaned. The construction of the co
and hangers is such that nothing pertaining to them can and hangers is such that nothing p
be used by a prisoner as a weapon.
Tailor's Inseam Gauge.-Harry M. Cloud, Cincinnati, Ohio. This is a device tor taking the inseam length, from the crotch to the feet, in measuring
for trousers. It is a form of measure in which a stand or trousers. It is a form of measure in which a stand
ard, supported on a suitable base, is provided with a ard, supported on a suitable base, is provided with
sliding and vertically adjustable section marked with graduations, and having a horizontal arm to be lifted between the legs as far as the crotch. It is designed tha by this means the work may be more accurately and coneniently done, while a man may therewith correctly take his own measure.
Gas Burner.-Daniel Daly, Maysville, Ky. According to this invention two approximately par
llel tubes or sections have in their ad jacent faces oppo site slots, so that the gas issuing therefrom will come together and merge in a single flame. The commotion and suction produced by the currents of gas coming to gether are designed to serve to mix air with the gas to
produce a hot, heating flame the amount of air drawn produce a hot, heating flame, the amount of air drawn
in being varied by varying the distance between the ubes and changing the angle at which the gas flame mpinge on each other.
Match Box.-Edward J. Hill, London, England. This box, which is also adapted to hold cigar-
ettes, cigars, lozenges, and other small articles, is preferably made of a single sheet of stamped or cut shee metal, foldable in such a manner as to form a complete self-closing spring box. It has a movable part forming a
container and a discharge orifice with which the movable part does not normally communicate, but with which, by reason of the spring action, it may be made to commu nicate for the discharge of the articles one at a time.

Designs.

Tea Pot.-Charles Osborne, New York City. The leading features of this design are the heavg eaf-like borders of the upper and lower portions of the
pot, the ornamentation at the base of the spout and a the points where the handle connects with the pot, and

Pocket Book Case, or Wallet.Charles Scheuer, New York City. The article made after this design is intended to present the appearance of a letter, one side showing the lines of joining of the tamp
and the other showing simulations of a canceled stamp, postmark, and address.
Note.-Copies of any of the above patents will be
furnished by Munn \& Co., for 25 cents each. Please send name of the patentee, title of invention, and date of this paper.

NEW BOOKS AND PUBLICATIONS.

 Art Out of Doors; or, Hints on Good Taste IN Gardening. By Mrs. Charles Scribner's Sons. Pp. 398.This is an exquisitely beautiful book typographically. It is not a practical treatise on gardening, but a series of of beautifying grounds, pleading for the other means recognition of this class of work as one of the high arts. It seeks to impress upon the reader the importance of "aim and method" in the art of gardening, now "prac ticed much more often than any other in ignorant, impulsive ways, by people who never stop to think that it is an art at all." The impressions gained by extensive observation are here noted with a refined taste and with an orderly arrangement of widely different branches of

The Statistician and Economist
1893, 1894. San Francisco: L. P.
McCarty. Pp. 672.
This is the seventeenth issue of a volume which ha been successively enlarged year by year, and which gives a great deal of very many kinds of curious and useful information. Its topics include population, election return important laws, historical data, trade statistics, geograph ical information, useful facts in mechanics and en gineering and numerous oner
facilitates reference to the contents.

Out Doors is the title of a neat little aper-covered book, sent by mail for ten cents, and published by the Pope Manufacturing Company, of Boston. Lawn tennis, yachting, foot ball, base ball, horseman ship, rowing, canoeing, and cycling, are each treated in a
most interesting manner, by a writer of reputation. 'The primary object of the book is to give added interest all kin s of outdoor exercise, thereby naturally drawing more attention to bicycling, and for this reason the book is issued. The book is calculated to effectively preach the gospel of outdoors-fresh air.

Received.

Conflict of the Nineteenth Century: the Bible
And Free Thought. By Rev. Thomas Mitchell.
New York: The Universal Book Company.
FPAny of the above books may be purchased through this office. Send for new book catalogue just pub-
lished. MuNN \& Co., 361 Broadway, New York.

SCIENTIFIC AMERICAN

BUILDING EDITION
MAY, 1893.-(No. 91.)
TABLE OF CONTENTS.

1. Elegant plate in colors, showing an elegant residence at Bridgeport, Conn. Floor plans and two perspective elevations. An excellent design. Messrs.
Longstaff \& Hurd, architects, Bridgeport, Conn.
Plate in colors showing a handsome residence at Rutherford, N. J. Two perspective views and
floor plans. Mr. F. W. Beal, architect, New York. An attractive design.
A handsome dwelling at Plainfield, N. J. Perspective views and floor plans. A model design.
Messrs. Hartwell \& Richardson, architects, Boston, Messrs.
Mass.
2. A dwelling at Utica, N. Y., erected at a cost of $\$ 4,700$ complete. Floor plans, perspective view, etc.
Mr. W. H. Symonds, architect, New York. An Mr. W. H. Symonds, architect,
Old Colonial style of architecture.
3. Engravings and floor plan of the Fairfield Congregaof $\$ 52,000$. Messrs. J. C. Cady \& Co., architects, of $\$ w 2,000$. Me
New Yorkity.
4. A stable erected at Plainfield, N. J. A model design Messrs. Hartwell \& Richardson, architects, Boston, Mass.
An excellent design for a modern stable at Bridgeport, Conn. Mess
Bridgeport, Conn.
5. A residence at Belle Haven, Conn. A very picturesque design, perspective elevation and floor plans. Cost
$\$ 6,000$ complete. Mr. Frank W. Beal, architect, New York City.
View of a tasteful shop for a builder erected at Neuilly, Paris.
6. The Fifth AvenueTheater, New York.-View of the Worthington steam fire engine pump.-View of the Hygienic Cementand Asphalt Company's water-
tight scene pit. View of the Edison Electric lluminating Company's switchboard, with particulars of construction, etc.
Miscellaneous contents : A Pacific coast bathing es-tablishment-An improved spring hinge, illus-trated.-The Lewis open fire base burner, illus-trated-The J. A. Fay and Egan Co.-The H. W. illustrated.-A labor saving screw driver, illus-trastrated.-A self-feed rip saw, illustrated.-Shipping a factory across the Atlantic.-Architectural wood turning.-Tnnneling the Simplon.-New resawing
band saw machine, illustrated.-The Wheeler wood filler.-An improved hip shingle, illustrated.
The Scientific American Architects and Builders
Edition is issued monthly. $\$ 2.50$ a year. Single copies, Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practically, a large and splendid MAgazine of Architectres, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest circulation of any Architectural Publication in the world. Sold by
all newsdealers. MUNN \& CO., PUBLISERE all newsdealers. MUNN \& CO., PUBLISHERs,
861 Broad was, New York,
$\mathfrak{Z B u s i n e s s}$ and Personal.
fre charge for Insertion under this head is One Dollar a line for each insertion; about eioht words to a line. Adver-
tisements must be received at publication tisements must be received at publication offce as early as
Thursday morning to appearin the following week's issue

Acme engine, 1 to 5 H . P. See adv. next issue.
" U. S." metal polish. Indianapolis. Samples free.
Improved iron planers. W. A. Wilson, Rochester, N.Y.
 niversal and Prain Milling Machin
Pedrick \& Ayer. Philadelphia, Pa. Handle turning machinery. Trevor Mfg. Co., LockMicrobe K
uffalo, N. Y.
Wanted to Invest-Thirty or forty thousand dollars in
goodm fg. business. Address P.
Steam Hammers, lmproved Hydraulic Jacks, and Tube Screw machines, milling machines, and drill presses Centrifugal Pumps. Capacity, 100 to 40,000 pals. per Portable engines and boilers. Pacht engines and oilers. B. W. Payne \& Sons, Elmira, N. Y., and 41 Dey ret
To Let-A suite of desirable offices, adjacent to the Scientiff American offices, to let at moderate
Apply to Munn \& Co., 361 Broadway, New York.
Fine Castings in Brass, Bronze, Composition (Gun
Metal), German Silver. Unequaled facilities. Jas. J. Metai), German Silver. Unequaled facilities. Jas.
McKenna \& Bro., 424 and 428 East 23 d t., New York.
The best book for electricians and beginners in elec-
ricity is "Experimental Science," by Geo. M. Hopkins. By mail, 94 ; Munn \& Co., publishers, 361 Broadway, N. \mathbf{Y}. For the original Bogardus Universal Eccentric Mill, S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. \mathbf{Y} Canning machinery outfts complete, oil burners for coldering, air pumps, can wipers, can testers, labeling
oachines. Presses and dies. Burt Mfg. Co., Rochester
Competent persons who desire agencies for a new popular book, of ready sale, with handsome proft, may
apply to Munn \& Co., Scientific American office, 361 Broadway, New York.
Patent for Sale-A new specialty, all metal, for gene-
al and domestic use. Just patented in Europe and the United States. Sale established. Offered to responsible Want to Purchase-A patented vapor engine, the ight to manufacture and sell same, or to arrange with
manufacturer of one already in the market for their ex lusive uer cortain lars, Vapor Engine, P. O. box 773, New York,

Any Manufacturer
Any hantuacturer
of hardware or machinists specialties, desiring to be
represented in New York City and vicinity, will find it to is interest to adaress E. J. Hussey a Co., 80 John Street ew York. We are centrally loca
and can furnish best of references.
CE Send for new and complete catalogue of Scientific Jew York. Free on appliration.

HINTS TO CORRESPONDENTS

Names and Ad ress must accompany all leters

expected without remuneration.
Scientinic American Supplements referred
to may be had at the oftice. Price 10 cents ach.
Books referred to promptly supplied on receipt of
Books refrred to promptly supplied on receipt of
Minerals sent for examination should be distinctly
marked or labeled.
(4982) J. E. D. asks how a well that has notbeen used for some time can be cleaned, and if the water can be made drinkable without drawing it all off. A. It is not safe to use the water of a well that has not
been recently used until a thorough examination has been made as to the possibility of its containing dead nimals. If you are assured of this by examination, o by the smell of the water as drawn and by heating, then that the fresh incoming water will make the well safe fo household use for washing and finally for cooking; but
we do not recommend it for drinking for some time after we do not recommend it for drinking for some time after has been in use for other purposes.
(4983) J. G. H. asks: Is a cantilever ridge a truss bridge? How long a span has ever been built constructed on similar plan to one on front page of lever bridmber of Scientific American? A. A cantitruction of is a truss bridge of a particular type or con the longest cantilever spans yet made. In this bridg there are two spans of 1,710 feet each. See Scientific american Supplement, No. 478, for illustrated detail description.
(4984) J. G. R. says: Can you give me any points on tempering springs made of cast steel wire,
No. 8 gauge, about 6 inches long? A. For tempering Noes springs as described, heat the springs in a fire that is only moderately hot and large enough to heat the whole spring evenly. A muffle is preferred where many are to be done. When the springs are at a cherry red heat, they are to be plunged endwise into an oil bath (lara oil); then heated with the oil on them in the mufle or
a slow fire until the oil takes fire; then plunge them
into the oil bath. A plain, straight spring fis very easy to
manage. Coiled springs of a helix or volute form are
more difficult to temper, and require much care in heatmore difficult to temper, and require much care in heat ing evenly. In establishments where quantities are re-
quired, special ovens are built for heating and drawing the temper. Red hot lead ina crucible is also much used for heating evenly.
(4985) E. P. M. writes again: Thank you very much for the answer to my question, No. 4742, E.
P. W., inthe Scientific Ambrican of March 18. Yousay it would take 16 horse power to maintain the 1,000 pounds pressure with a $1 / 2$ inch discharge. Now would you be
kind enough to tell me how you worked the example, and give me the exact diameter and stroke of both the steam cylinder and of the water plunger, and how many strokes per minute it would require to maintain the above pres-
sure with the $1 / 2$ inch discharge? Also, what boiler perminute? A. The theoretical velocity of water from per minute? n nozle is to the square roo for the to the pressure multiplied by square root of twice gravity ($\sqrt{2} g . h$) $=$ feet per second. Then 1,000 pounds $\times 2 \cdot 3=2,300$ feet as the head due to 1,000 pounds pressure. The square root of twice gravity $(64 \cdot 33)=8.02$,
and the square root of $2,300=47 \cdot 95$. Then 47.95×8.02 $=383 \cdot 55$ feet per second, or 23,013 feet per minute. The friction of a nozzle may reduce this to 20,000 feet per
minute. The area of a minute. The area of a $1 / 2$ inch hole is 0.1963 of a square
inch. Then $0 \cdot 1963 \times 20,000$ feet $\times 12$ inches $=47,112$ cubic inch. Then $0 \cdot 1963 \times 20,000$ feet $\times 12$ inches $=47,112$ cubic
inches of water delivered per minute. If a pump makes
100 strokes or 50 revolutions per minute, then $\frac{47,112}{100}-=$
$471+$ cubic inches as the capacity of the water cylinder Assuming 10 inches for the length of the stroke, then
$\frac{471}{10}=47+$ square inches as the area of the piston. Add-
ing a small percentage for leakage, an 8 inch piston will be the proper size. The area of the 8 inch piston $=50+$ square inches and the pressure 1,000 pounds, the total
pressure will be 50,000 pounds. If you intend to 100 pounds steam pressure, then $\frac{50,000}{100}=500$ square inches as the area of the steam piston. To this you should add 25 per cent for pump friction, or a piston area of 625 meter of the steam piston. Then for the horse power 625 square inches $\times 100$ pounds $\times 83.3$ feet piston travel $=\frac{5,206,250}{23000}$
33,000
us say 16 instead of 160 horse power in former answer.
(4986) W. E. C. says : 1. In the use of a steam boiler for furnishing steam for a 100 horse power
engine, dry kiln, and heating buildings, to maintain a engine, dry kiln, and heating buildings, to maintain a
pressure of 80 pounds during the day and 30 pounds during the night, which will be the safest, best, and most economical way of feeding the boiler with water from a
well 12 feet deep? A. The proper way to feed your boilerfrom a well is through a steam pump with pistons proportionate for the work. You cannot trust the boiler
to the tender mercies of the pump acting automatically. Nothing but the care of the engineer will do for steaming at night, even under low steam. The water gauge should be connected direct to the boiler, and not through the
feed pipe. 2. Will a water column on a steam boiler show correctly the amount of water in the boiler if I connect it with the water with $11 / 4$ inch pipe and with the
steam with 2 inch pipe? A. One inch pipe is large steam with 2 inch pipe? A. One inch pipe is large
enough for water gauge connections, unless the water is hard, when 114 inch for both connections is preferred. It
will not show water height correctly when connected with eed or blow-off pipe.
(4987) D. S. W. writes: 1. I want to make a small storage battery. Will you kindly give me a
"point " or two ? How shall I prepare the red lead and litharge? A. Mix the red lead and litharge with dilute sulphuric acid; acid 1 part, water 9 parts. 2. How much of the surface of the plates should be covered with same ?
A. As much of the plate as is exposed to the electrolyte. A. As much of the plate as is exposed to the electrolyte,
3. What proportions of c. p. sulphuric acid and water for 3. What proportions of c. p. sulphuric acia and water for
the fluid? A. Acid 1 part, water 11 parts. 4. I intend using lead plates, $5 \times 6 \times \frac{14}{4}$, four plates to each cell, and from it? A. Two volts per cell.
(4988) W. Y. asks : Do you know of a that ordinary glue does not hold it well when the furniture is subjected to hot air furnace heat, whereas some
very old furniture that I have with brass inlaying in in appears to stand perfectly well. A. For metal inlaying
the toughest glue, which may be known by bending in the toughest glue, which may be known by bending in
the hands, should be used. Make the glue in the ordinary way, and, to each pint add a half ounce of glycerine and a half ounce of fine whiting or pulverized chalk
Thoroughly incorporate and use hot and rather stiff. The Thoroughly incorporate and use hot and rather stiff. The acid for a half minute, rinsing, and drying. This will give it a suitable roughness for holding the glue.
(4989) E. L. K. asks : Will you please give me your judgment in the matter as to whether you consider open hearth bar steel to be superior in quality,
toughness, and uuiformity over that of Bessemer steel, and whether you would consider a tool made from open that of one made from Bessemer? A. The open heart steel is becoming a favorite where extreme toughness is required, as for boilers and structural work rijiect
great stress. The actual difference is not great, ind in only in the extreme tests of doubling a plate two ways and hammering fiat without a flaw that open heart
the lead. Neither steel is used for cutting tools.
(4990) A. B. M. writes: I have a new electro-magnet for striking a bell and it does not demag-
netize quick enough. Please inform me what iron should he used, what treatment it should have, if any, if it should be devoid of carbon, or what its constituents should be
A. The cores of electro-magnets should be made of th finest and softest wrought iron. Possibly you may be able to correct your magnet by thoroughly annealing the cores; this you can do by heating them red hot and placing them in ashes or powdered lime to cool. The arma ture should not be allowed to touch the magnet core; if it
does, it will stick. You can prevent this by limiting th hovement of the armature, by inserting a short coppe
pin in the end of the core,
to the face of the armature.
(4991) L. E. K. asks : 1. What is the resistance of a 16 C. P. 50 volt lamp in ohms? A. About
50 ohms. 2 . What should be the thickness of mica between commutator segments in 8 light dynamo?
of field magnets. A. If it is a shunt machine, increase ance. 4. Will it injure storage battery to take out of acid and dry and lay away for future use after it
has been used a short time A. No
(4992) W. K. writes: I have made an induction coil, something in the style of the one described consisting of 500 No. 20 soft iron wires. Primary of two layers No. 16 (B. and S. gauge) double cotton-coveredcopper wire. Secondary consists of 3 inches silk-covered cop-
per wire, No. 36 (B. and S. gauge), closely wound and very carefully insulated throughout with paraffine and paraffine paper. Sections separated by about 1 inch solid
paraffine, with 6 cells Fuller battery. It gives 3 inch to $31 / 2$ inch sparks. Since making this coil I have
noticed that in nearly all the descriptions of coils that have seen, heavier wire for the primary is advised. Is No 16 (Am. gauge) sufficiently heavy to carry the current of above battery? A. Yes. Would I be likely to get a much No. 36 on secondary ? As there is plenty of space for it on the bobbin, I would put it on, if it would increase the
spark materially. A. Your coil yields remarkably good results. We would not advise making any change in it
(4993) G. E. F. writes: In reply to H. D. (4873), I have had occasion to replace broken teeth in be by drilling holes and tapping them for a screw thread, be by driling holes and tapping them for a screw thread,
then screwing in strong iron bolts till the thread binds sufficiently to hold the tooth, and then cutting off and shaping with the file. If the tooth must be of perfect form,
shape one out and fasten it by a sufficient number of set screws, with countersunk head, the squarepart of screw being cut off after fastening.
(4994) J. H. asks the manner by which nail hammers are tempered in large hammer factories.
Also, is the grinding and polighing done on wheels Also, is the grinding and polishing done on wheels or
belts ? Is there an automatic machine for grind-
ing hammers? kindly hefers? If you could not inform me on this, kindly refer me to parties that could. A. Hammers in
quantities are heated in large slow-burning fires or muftle quantities are heated in large slow-burning fires or muffle ovens, and dipped in. water either singly or in nests,
strung on rods through the eyes. The grinding is done strung on rods through the eyes. The grinding is done
on largegrindstones as to the plane parts, and angles and corners are ground on emery wheels. The finish is made on fine emery wheels and polishing belts of leather. Do not know of automatic machinery for hammer grinding. Possibly some of our readers may know of such.
(4995) W. T. asks: Can a clear-cut casting of Babbitt metal be made in a sand mould, and, injuring the design? Can a clear-cut casting of medal can coin bronze be made in a sand mould, and, if so, how can it be cleaned withoutmarring or injuringthe design?
Can such bronze be melted in a forge, and does it melt as easily as iron? A. Clean-cut or smooth castings cannot metal moulds clean and bright. Medal bronze of copper and tin alloy can be melted in a forge fire in a black lead or Hessian crucible to the extent of two or three pounds
very easily, by banking the fire by placing bricks around it. It melts much easier than iron. Byusingfine moulding sand, such as used by brass founders, a fair casting
may be made in moulds of medallion work that can be (4996) A Printer asks: Will you kindly ell how engraving and plate printing is done? I refer that which is seen on statements and calling cards. A. Plates for plate printing are cut by means of gravers. The ink, which is very thick, is rubbed into the grooves
or lines made by the graver. Any surplus ink that or lines made by the graver. Any surplus ink that re-
mains on the plate is removed by a cloth. The printing is effected in a roller press by pressing the paper into the inked lines.
(4997) S. B. asks : Will you please tell ne how they make calcium lights burn that they use in
the theater, and how much they cost? A. A calcium lamp costs about ten dollars. The light is produced by directing a jet of hydrogen or of coal gas and a jet of oxygen gas against a stick of lime.
heated very hot and becomes luminous.
(4998) F. S. K. writes : 1. I should like
oask whether there will be an archeological exhibit at Chicago, especially of Grecian, Roman, and Babylonian
carving. A. We have not yet received the lists of carving. A. We have not yet received the lists of the
Columbian exhibit.
2. How much is the pressure caused by water freezing? A. Water exerts an immense force by freezing when confined in an unyielding vessel, probably many thousand pounds per square inch. It has burst
bombshells when plugged full of water. 3. Would a greater quantity of water cause greater pressure ? A. The pressure per square inch would be increased with the
ncrease in volume in an unyielding vessel. 4. How could increase in volume in an unyielding vessel. 4. How could
I make a simple instrument for measuring the humidity of the atmosphere? A. The simplest hygrometer is a
strip of strong paper, 112 inch wide, fastened at the top of plastered wall or on a strip of wood, with a sma weight hung at the bottom to keep the paper straight. It will expand and contract with the changes in the atmospheric moisture. A piece of catgut, a few inches long,
hung with a weight to keep it straight, and a pointer attached, has a large range of tached, has a larg
moisture in the air
(4999) G. C. asks : Are lightning rods of any use in protecting a building during an electrical
storm? If so, how many are needed on a building 36 by $2 ; 30$ feet high? How are they to be put on? Are they manufactured or for sale in any of our Weste cities, and if so, by whom? A. Lightning rods are of every area 15 feet square. They may be nailed directly to the building if the rods are made of strips of copper.
The pointe should be about 5 or 6 feet above the roof. The points should be about 5 or 6 feet above the roof.
We presume almost any dealer in electrical aupplien in
your State could furnish you with lightning rods. We dvise you, however, to have your lightning rods put up (5000) P C. W Hos ground connection.
(5000) P. C. W.. H. N. G. and others ask how to make cheap filters. A. We give two forms of inof Réceipts, Notes and Queries. To make a filter with a

size sufficient to make a par

 port this wire cloth with and also a light frame of oak to keep the wire cloth from sagging. Fill in upon the wire cloth about three inche in depth of clear sharp sand then two inches of charcoal
broken finely, but no dust broken finely, but no dust.
Then on the charcoal four inches of clear, sharp sand. Fill up the barrel fite water and araw from the bottom
 course two barrels may be
substituted for the stone pots
if desired. Use two stone pots if desired. Use two stone pots
or jars, as shown in the accompanying engraving, the bottom one being a water jar with side
hole, if it can be procured, otherwise, if no faucet can be used the top jar can be removed to
enable the water to be dipped out. The top jar must have a
hole drilled or broken in the bottom, and a small flower po saucer inverted over the hole. Then fill in a layer of sharp clean sand, rather coarse, a
ayer of finer. sand, a layer of pulverized charcoal, with ne-third of the jar.
(5001) W. F. C. asks: What is the ex Fahrenheit? I mean when exposed to the heat of hea the sun. A. The expansion of ordinary bar iron between the temperatures of 32° and 572° is $0 \cdot 0000826$ of an inch range of temperature in rails through the year in you climate is about 90°, amounting to a change in length fo 00 feet of 0.7434 of an inch, or nearly $71 / 2$ inches to is ousand feet. The extreme difference for a 30 foot rail
0.223 of an inch. Rails laid at mean temperature of 60° $0 \cdot 223$ of an inch. Rails laid at mean temperature of 60
require 0.148 of an inch space for 30 foot rails. In nary practice a $3 / 6$ inch gauge is used in summer.
(5002) F. P.-The following prepara tion is used to render starched goods pliable: Take of
white wax 1 ounce, spermaceti 2 ounces, melt them to white wax 1 ounce, spermaceti 2 ounces, mett them to gether with a gentle heat. When you have prepared a
sufficient amount of starch, in the usual way, for a dozen pieces, put into it a piece of the polish about the size of a large pea, using more or less according to large or small
washing. Or thick gum solution (made by pouring boiling water upon gum a.abic) may be used. One table-
spoonful to a pint of starch gives clothes a beautiful spoonful to a pint of starch gives clothes a beautifu
gloss. Leclanche battery prism is composed of 40 parts bon, 5 parts gum shellac, 3 parts potassium bisulphate Mix, heat to 212° Fah., and compress in moulds under pressure of two
(5003) P. J. L. says : I would like to That is to add something to it so that there will be no mell of the oil or what is added. Also how to make camphor oil cheaply. A. The odor of kerosene may be
modified, if not entirely destroyed, by using the following following formula : Mix chloride of lime with petroeum in the proportion of three ounces for each gallon of the liquid to be purified. It is then introduced into a
cask. Some muriatic acid is added and the mixture is well agitated, so as to bring the whole of the liquid into intimate contact with the chlorine gas. Finally the pe
troleum is passed into another vessel containing slaked lime, which absorbs the free chlorine and leaves the oil
sufficiently deodorized and purified. Camphor oil made by allowing the crude camphor to remain packed loosely over a wire grating, so that the oil may drain out.
This method, which is crude and wasteful, is gradually giving place to hydraulic pressure.
(5004) C. W. H. asks : In what country supposed to have been done? Is it a fact that we have no tools now that will make an impression on said cop per ? Where can I get a history on such a subject ?
The so-called tempered copper tools are supposed to beo Egyptian or Hindoo origin, and were an alloy of copper to two thousand years before the Christian era. The same kind of tools can be made now ; they are inferior to ory. They are only alluded to in works on ancient Egypt.
orel
(5005) H. E. N. asks : Will you please give me a receipt for a mucilage for mounting plants in
a herbarium? Was there ever a book published givin the flora of Nebraska? If so, give name of publishers and price. A. Glycerine, $41 / 2$ parts ; soft soap, $41 / 2$ parts dissolve 11/2 parts salicylic acid in 30 parts alcohol. Shake thoroughly, and add to a mucilage made of $1391 / 2$ parts gum arabic and about 270 parts water. This mucilage to crack. Make up formula, using parts by weight. in regard to the flora of the State.
(5006) C. F. writes : I have a Climax burnisher which I purchased about three years ago.
Scratches appearing on the burnishing iron are generally removed with finest emery cloth. I have frequently had occasion to apply this remedy with invariable satisfactory result. A short time ago, however, the steel surface of fuses to work without profuse scratches. I succeed removing them and in polishing the surface again, but
scratches. I am positive that the fault is not with the
photographs, as these burnish perfectly well with any photographs, as these burnish perfectly well with any
other burnisher. Do you think that the softene steel is other burnisher. Do you think that the softened steel is
the cause of the trouble, and if so, how can I reharden the cause of the trouble, and if so, how can I reharden
it? A. Burnishing rolls are usually made of steel hardA. Burnishing rolls are usually made of steel hard-
ened or of chilled cast iron. In either case the repolishingof the surface would not make them seft. It may be possible the roll you have is case-hardened iron, which possoly a thin hard skin, which when polished off leaves
has only a soft surface. We advise you to address the makers of
(5007) G. M. S. ask how to melt gold and copper, and if an ordinary bellows will produce enough
heat. I have a crucible and bellows, but when I tried to melt it I could not do it. Is there any chemical or any-
thing I should putin it to keep it from oxidizing? A. thing I should putin it to keep it from oxidizing? A.
You can melt a small quantity of gold or copper (1 pound) You can melt a small quantity of gola or copper (1 pound)
in any blacksmith forge by buiding a flre pot of loose hick to hold the fire close to the crucible. Use boraz in the crucible to protect the the
(5008) W. K. writes : I have been experimenting considerably with primary batteries, and
have experienced the usual quantum of disappointment nd vexation with all of them. Have flnally settled s any, all things considered. I find that by placing in the porous cups one or two strips of zinc, the efficiency of he battery is vastly increased. I use two plates of carbon in each cell, 3 inches by 7 inches. Would it not be better to use in this battery cylinders of zinc, about the height of the porous cell, instead of the usual short cone or lump. I find that the strips of zinc keep well amalthe carbon surface? A. In some forms of Fuler battery the carbon surface? A. In some forms of Fuller battery thinders of zinc are used instead of conical pieces, but
there is more or lems waste in the use of pieces of this orm. An increase of carbon surface adds to the depolarizing power of the battery.
(5009) J. K. says: 1. I wish to know what is best for fne leather shoes. Is castor oil good or inwhat kind? A. There is nothing better for softening shoe leather than neat's foot oil. Castor oil is much used.
nt is not the best. A very little neat's foot oil on rubber oots will soften the surface and make them less liable to crack. 2. Why do water pipes rarcly burst when
frozen under ground ? A. Pipes partially protected in rozen under ground? A. Pipes partially protected in me ground freeze very slowly, whichallows the water to
move along the central line of the pipe and relieve the ressure, when the ice forming on the inside of the pipe can expand toward the center. If, even then, the pipe becomes frozen solid at two points, some distance apart, the intervening water upon freezing will burst the pipe. 3. What speed had a gang in a marble sawmill ought to run to do the best and most work ? A. About 200 feet
per minute. 4. In the marble quarry I work in there is great pressure to the stone closing in on the drills of hanneling machines and sometimes spoiling many dellars conth of marble. Can you give the cause ? A. There is
compression in the rock crust of the earth, caused by the shrinkage of the earth through loss of heat -the same cause that has wrinkled its surface into hills and mountains, and caused even your marble quarries to is cut in the process, as with the channeling machine, here the drills cut a 'close-fitting channel, the pressure is relieved and the walls of the channel close in, although amounts to enough movement to pinch the gang drills.
(5010) M. \& Son ask: 1. How to construct a cupola to melt about 200 pounds of cast iron, and
what is put in cast iron to help melt it? A. A cupola to melt 200 pounds of iron should be about 24 inches exhick. It shoule be about 4 feet high Cupolas of this hick. It should be about 4 feet high. Cupolas of this
ize are generally suspended on trunnions, so that they can be turned down into a horizontal position for cleaning, etc. The bottom of the cupola should be hinged, so
to permit of dumping the contents. There should be permit of dumping the contents. There should be spout below the discharge opening, and upon each side fere should be openings for receiving the blast pipes. recommend "Founding of Metals,"" by E. Kirs, price 2.50 ; "Casting and Founding," by R. E. Spretzson,
price $\$ 6$; "Practical Iron Founding," price $\$ 1.50$; "Iron and steel Founding," by C. Wylie, price \$2. Sometimes a little limestone or some oyster shells may be added to he coal and iron, to advantage, as a flux. This is generally done after the first charge. 2. How to construct a put in wrought iron to help melt it? A. Wrought iron cannot be melted and poured like cast iron. 3. What is he book to get on the manufacture of iron and steel? by I. L. Bell, price $\$ 8$; "Chemistry of Iron and Steel
(5011) E. B. C. writes: Does not a reacing valve always effect a waste of power? I have a $t 40$ punds only. If I put in a reducing valve e It in practically waste half the power of the steam so used? I have been told by severalengineers, in whom I have confldence, that the waste under these conditions is very mall-nothing like half; but it seems to me they are orkin. Substitute for the reducing valve an engine twould seem peands, with 40 pounds back pressure, and gine on 40 pounds should result. A. Either condition hat you name is a most wasteful practice. If you have no use for the exhaust, make a reducing valve of the cut-
off and use the whole boiler pressure on the piston for the hortest part of the stroke that will do the work If you shortest part of the stroke that will do the work. If you
require as a necessity steami at half the boiler pressure for other purposes than power, it is proper to use a rehave to be run with high pressure and the heating of buildings at low pressure. The running of engines with back pressure is also wasteful, only excepting that the exhaust steam can be used for its full value for heaiting or
(5012) J. G.-You will improve the tin flux by adding 10 per cent of sal ammoniac to the muriate
of zinc. Cover the surface of the tin with palm oil. You
can also maketin more fluid by adding 5 per cent of bis-
muth We have no books on this subject.
(5013) R. P. J. says: I have a 15 light incandescent dynamo which I am running with windmill power for charging 96 cells storage battery. I have trou-
ble with the heating of the armature when the speed runs above 2,700 -the required speed. The dynamo shunt wound. Can I remedr the heating by introducing resistance inte the shunt by arranging an automatic switch, to act when the speed exceeds 2,700 revolutions If this will not ansser, please make any suggestions that the heating by the method proposed. The only alternaof the windmill or opening the circuit of the dynamo.

TO INVENTORS.

An experience of forty-four years, and the preparation of more than one hundred thousand applications for pa-
tents at home and abroad, enable us to undertand the laws and practice on both continents, and to possess unsynopsis of the patent laws of the United States and all conegn countries may be bad on application, and person
contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices
which are low, in accordance with the times and our extensive facilities for conducting the business. Addres way, New Tork.

INDEX OF INVENTIONS

Unit Stater

May 2, 1893,

- CACK BEARING THAT DATE

Aging wines, spirits, or otber liquors, process of Air moistening apparatus, E. G. De Montmore...
Alarm. See Boiler alarm. Burgar and fre alarm.
Ele Amalectratarar, H. L. Simmonseciancal al.......
Armature attachment. W. . Packard
Armature dynamo-electric machine, W. Fritsche
 Autamatic safety switch, A
Axelub ricator, Dubrule \&
Axle, waron, A. G. Gllet.

Raline press C.B. Selover.

Battery. See Gallanic battery,
Bearrng for lithe paindles, ball, G. Hays..
Bed, spring

Bot or roa cutter, E. Cbaquette.

Bracelet and, whistle, combined, E. W. streeter.:
Bracket. See Roor bracket.
Brake. See Car brake. Vebicle brake. Vehicle

Buton, F. E. Hali.
Butcondetaching device, J. Jocidiman.
Button, reversible head, J. S. Klebes

Car brake slack adjuster, H. Hiark
Car briey
Car couk slack take-up, H. Hinckley
Car rake slack take-up, H.
Car coupping, D.
Car coupling,
Car coupling, A. Aarnes.
Rawles

Carbonating liquids, atomizing
Maeller.
Carpet stret cher,
Carriage wrench. Ebirgott.

Chain linss, machine tor ma
Cheese oress.j. L. Heller.
Choppng knife J. W. Alen.
Churn, J. T. Urbach...l.

Clothes pounder, G.
Cluteh,
Cluteh, J. Halks.

ratus, surface. E. The tise
Conformator . H . Vause.
Cooler. See Water cooler.

496,828:

为

Dye Dye

 ectric machines, perforated pole pice piece fr....

lectric motors for operating machinery, utiliz- ing Hormann $\&$ R

Elecrodes for primary or secondary baterie

Enine. Eines, means for connecting stationary ma- chines to portale

R

 F

 $$
\begin{aligned} & \text { Gold } \\ & \text { Grain } \\ & \text { Grain } \\ & \text { Grain } \\ & \text { Grindir } \\ & \text { Grindir } \\ & \text { Guard } \end{aligned}
$$
 \section*{}

新

J

DESIGNS.

TRADE MARKS.

[^0]
[^0]:

