different mining laws of the: States. Even from the
point of view of its advertisements only, the work will
have definite value for mining engineers and capitalists. How to Know the Wild Flowers a Guide to the Names, HaUNTS
and Habits of OUR Common Wild Flowers. By Mrs. Willian Starr lee. New York: Charles Scribner's
Sons. 1893. Pp. xv, 298. Price $\$ 1.50$. This is not a botany, but is designed to have a plac in the family where the botany with lis technical descrip the corner. There is no ignorance so profound and ducated people ignorance shown by even pand and boutthem. This work is intended as a guide and aid o such, and not only would the reader learn to have, a the authoress says, a "bowing acquaintance" with old
neighbors, but would with little effort be able to call them by name. The work possesses literary merit, and When the description seems to the authoress to wax a litt) dry, it is redeemed by some happy quotation or by some description is not sacrificed, however, and the scientific reatment is preserved throughout. There are separate ndices for the Latin, the technical, and the common English names of the various flowers. The plants may be eadily identiffed by the illustrations which are very care fully executed and are quite numerous, there being 10
plates, most of which were sketched directly from na pure. The book is handy in form and may be easil arried in a stroll through the woods.
ManUa of Irrigation Engineering.
By Herbert M. Wilson, C.E. First
dition. New York: John Wiley \&
Sons. 1893. Pp. xx, 351. Price $\$ 4$ Irrigation is every year acquiring increased importance
in the Western States. It will yet modify enormous areas of our Western Territories, and may even bring about of our Western Territories, and may even bring about
climatic changes. This work is therefore particularly timely and represents what has been a long felt want.
It is written thoroughly up to date and does not confine itself to the smaller features of irrigation, but treate of hegreatdams of the world as well as of the irrigating conduit. Numerous illustrations of structures and many diagrams are interspersed throughout the text, so that
the whole subject is thoroughly covered and illustrated. the whole subject is thoroughly covered and illustrated The measurement of water is treated very interestingly
including the current water meters, the miner's inch, etc. We cordially recommend the book to our readers.
Any of the above books may be purchased through
this office. Send for new book catalogue just pub-

SCIENTIFIC AMERICAN

BUILDING EDITION APRIL, 1893, NUMBER. -(No. 90.) TABLE OF CONTENTS.
Elegant plate in colors, showing an attractive cottage at Villa Park, Mt. Vernon, N. Y. Floor plans and Walter Stickels, architect, Mt. Vernon, N.
2. Plate in colors showing the handsome Queen Anne residence of the Hon. Craig A. March, at Plainfield,
N. J. Two perspective views andfioor plans. Mr. Chas. H. sm
3. A dwelling near Longwood, Mass, erected at a cost plans. A model design.
dwelling at Chester Hill, Mt. Vernon, N. Y ereoted at a cost of $\$ 4,750$ complete. Floor plans,
perspective view, etc. Mr. W. H. Symonds, architect, New York.
5. Engraving and floor plans of a residence at Oak wood, Staten Island, N. Y., erected at a cost of
$\$ 3,540$ complete. Mr. W. H. Mersereau, architect, New York.
6. A stable
sign.
sign. sign, treatedin the Queen Anne and Colonial styles. perspective elevation and fioor plans. Cost, \$8,250,
complete. Mesers. F. L. \& W. L. Price,architecte, Philadelphia.
3. Engraving and floor plans of a Queen Anne residenc at Newton Highlands, Mass. Cost,
Rand \& Taylor, architects, Boston.
A square-rigged house, recently erected at Allston, Mass, Cost, $\$ 2,600$. Plans and perspective elevaThe Fffth Avenue Theater, New York. View of thy main front, showing the terra cota decoratisis, the Riverside Bridge and Iron Co., and a view showing the fireproof arching, erected by the Guastavino Fireproof Construct.
Sketch of a dining-room freplace.
Miscellaneous contents : An improved woodworking machine, illustrated.-A new edge moulding or
shdping machine, illustrated.-The box industry.Natural gas at Geneva N. Y.-Plaster of Paris floors.-Insidesliding window blinds and screens, illustrated.--City pavemento-The Alberene laun-
dry tub, illustrated.-The " Murray " phaeton, illustrated.-An elegant bath tub, illustrated.-To thaw out
illustrated.
The Scientific American Architects and Builders lition is issued monthly. $\$ 2.50$ a year. Single copies, cents. Forty large quarto pages, equal to about
'o hundred ordinary book pages; forming, practilly, a large and splendid Magazene of Architec-
're, richly adorned with elegant plates in colors and ith fine engravings, illustrating the most interesting amples of Modern Architectural Construction and lied subjects.
The Fullness, Richness, Cheapness, and Convenience this work have won for it the Largeret Circulation
any Architectural Publication in the world. Sold by any Architectural Publication in the world. So
newedealers. MUNN \& CO., PUBLishers,

Pusiness and Personal.
ne charge for Insertion under this head is one Dollar a line
for each insertion a about eipht wuords to a line for each insertion; about eioht words to a line. Adver-
tisements must be ereceived at publication office as early as

Acme engine, 1 to 5 H. P. see adv. nest issue

Portable and Stationary Cylinder Boring
Pedrick $\&$ A yer. Phlladelphia, Pa.
Best Handle Machinery. Trevor Mfg. Co., Lockport
Have you tried "aluminum Babbitt metal"? Write The Improved Hydraplic Jacks, Punches, and Tube Expanders. R.
William Jessop
nakers, observe nakers, observe the centennial of their firm this year. Stow flexible shaft. Invented and manufactured by
tow Mfg. Co., Binghamton, N. Y. See adv., page 174 Scr he wachines, milling machines, and drill presses. Centrifugal Pumps for paper and pulp mills. Irrigating d sand pumpinggian. Thin Portable engines and boilers. Yacht engines and
boilers. B. W. Payn \& Sons, Elmira, N. Y., and 41 Dey
For Sale-Patent on improved mine car. See illustrated notice on page 180. For terms
Homer Durand, Starkville, Col
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum ap.
acid blowers, filter press pumps, etc.
Split Pulless at Low prices, and of same strength and Wperks, Drinker St., Philadelphia, Pa.
Perforated Metals of all kinds and for all purposes,

To Eet-A suite of desirable offices, adjacent to the scientific A merican offices, to let at moderate terms. Fine Castings in Brass, Bronze, Composition (Gun Metal), German Silver. Unequaled facilities Jas.
McKenna \& Bro., 424 and 425 East 23 d St., New York.
For sale -New 5 horse power upright engine, $5^{\prime \prime} \times{ }^{\prime \prime}$
cylinder and $30 \times 5 \mathrm{ft}$ boiler, upright, new. AM guaranteed. Spot cash, only $\$ 181$. Wm. C. Codd, BaltiLore, Md. The best book for electricians and beginners in elecBy mail. P4; Munn \& Co., publishers, 361 Broad wop . Canning machinery outfts complete, oil burners for oldering, air pumps, can wipers, cain testers, labeling
nachines. Presses and dies. Burt Mfg. Co., Rocheste
An inveator desires to communicate with inventors needing funds to patent, develop, or promote their in
ventions. References. " Financial," Scientific American, New York
Competent persons who desire agencies for a new
popular book. of ready sale, with handsome profit, may popular book. of ready sale, with handsome proft, may
apply to Munn \& Co., Scientific American offce, 361
Broadway, New York.

For Sale-Patent No. 49,166, lubricator. Inventors
Vilh. Lohmamn and Carl ג didersen, Copenhaken. De Vilh. Lohmann and Carl Andersen, Copenhaken. De-
scribed in Scientific American, April 8, page 219. Address Inve box 2212, New Yor
Inventors and Business Men Take Notice-We incor porate stock companies for any business. Send 10 cent
for report blanks. Don't wait. Write now. It may be

HINTS TO CORRESPONDENTS.

(4828) J. P. asks : What solution should be used in a Smee's cell in order to get the most strength
rom the cell ? A. The solution used in the Smee battery tom the cell? A. The solution used in the Smee batter well amalgamated and the platinized silver or carbon should
tion.
(482y) H. B. asks: Can you let me kñow anything conceruing metal plating with Russian white A. The Russian white metal is probably only a name given to Banea tin, with possibly a small admixture of
ismuth to make it flow easy. It is being extensivel bismuth to make it flow easy. It is being extensivel
advertised in the West. The work done with it is ex ellent. The directions are sold.
(4830) P. F. M. says : As your paper is one of our "standard text books" in our High School,
will you please answer in your "Notes and Queries:" will you please answer in your "Notes and Queries:" 1.
If water at 39° Fah. were perfectly confined, could it be frozen in any temperature ; i. e. could it not expand? A sity, 39°, upon being cooled below the freezing point sity, 39°, upon being cooled below the freezing point, few degrees below 32°. The increasing pressure from the expansion of the ice so retards the freezing of the remain
ing water that a temperature below zero may be reached before itis all frozen. 2 . WIll you please give rule for find ing horse power of ordinary locomotive, with cylinders 1 $\times 24$ and 5 foot drivers, steam pressure in boiler 130, and speed 15 miles per hour? 30 miles? A. The actual horse
depends entirely upon the cat-off, and the cut-off is governed by the actual pull required of the engine. Assuming
heavy train at 15 miles per hour and a mean piston pres ure of 50 pounds per square inch, the piston speed will be approximately $15 \mathrm{~m} . \times 5,880$ feet

1,320 feetwheel speed
per minute and ${ }_{15^{\prime}} \begin{gathered}1,320 \\ \text { (circumference of wheel) }\end{gathered}$
lutions per minute. As a revolution is equal to twice the stroke, then 88×4 feet $=352$ feet piston speed per min-

ute. The area of the cylinders is 2×226 square inches	
$7,955,200$	feet piston speed per minute $=\frac{7,955,200}{33,000}=241$ horse power. The possibilities of such an engine are about 40 horse power. The increase in power of the engine is no be no more than 300 horse power. 3. Whyare the wheel of a locomotive larger near the flange? And how can pass a curve when the wheels are worn half an inch

smaller next to the flange? A. The taper tread on driv maller next to the flange? A. The taper tread on driv ing wheels is to partially compensate by difference in cur
cumference made by the wheel flanges hugging the oute rail on curves, the wheels slipping to make up for the loss of compensation by taper. Wheels that are groov
run hard on curves, as well also on straight tracks.
(4831) G. J. L. writes : To settle a dispute will you kindly state what scientific astronomers
suppose or figurethe temperature of the boundless space suppose or figure the temperature of the boundless space
of the firmament outside of the infuence of suns and worlds? If it were possible to have such a thermomete what would it register if placed in the opposite directio where the sun, as far awn for atmosphere whatever? A. The temperature of inter planetary and stellar space is supposed not to be lower than absolute zero, or $461^{\circ} \mathrm{F}$
(4832) L. A. L. writes : Last fall I dug a well here for domestic use. I struck water at 26 feet, in a gravel bed, immediately below a stratum of blue clay.
We have used the water all winter and always considered We have used the water all winter and always considered it good (though hard) until a week or so ago, when developed a peculiar minerataste, having a bo of reddish
sediment in it. I inclose a sample of this latter, which I took from less than a to know what is the reason of it, and also if it is safe to use the water? A. The sample appears to be oxide of iron and clay. Probably it is harmless, but not pleasant to drink. Werecommend putting adrivepipe in the bot
tom of the well and connceting draw water from a deeper and possibly more a satisfactory stratum.
$(483$
(4833) L. S. F. asks the fastest way to
ind how many gallons a cistern or tank can hold, and ind how many gallons a cistern or tank can hold, and if
it is better to pump waterinto a tank throughthebottom I can use the pipes to lead the water off or where we need it ; but I think it is much harder on the pumps when the tank is half full. A. If tank is round, square the dia
meter in feet and decimals. Multiply the 07854 . Multiply last product by the height in feet, for cubic feet. Multiply, the cubic feet by 71/6 for gallons. Yo can pump into bottom of the tank or the distributing pipe ithout loss of power
(4834) L. W. B. asks if copper is more difficult to heat by hammering than soft iron. A. Cop-
per develops less heat than wrought iron by hammering or compression. Its specific heat is considerably less than that of wrought iron. It also parts with its heat
(4835) B. asks: Would the atmospheric spherical piece of gold which displaces the same amount mospheric pressure. The total pressure would be to at-

greater on the gold leat

(4836) G. S. N. asks how the induction coil in a Blake transmitter for a telephone is wound, amount of wire, etc. A. The induction coil in the Blake transmitter consists of a bundle of soft iron wires, No. 20 , inserted in a thin spool, about 24 inches long, with No. 36 wire wound in the primary wire, an intervening layer of writing paper being tightly wrapped on the primary beforewinding the secondary. The direction of the
(4837) G. D. C. asks : 1. Will the gravity or Crowfoot battery run the simple electric motor in Exget enough power to run a sewing machine or other light machinery? A. The gravity battery, owing to its resist ance, is not suitable for running an electric motor. 2 What size wire should I use to make one half the size of now I want a smaller one. A. If you intend to make a maller motor, one-half the size linear, No. 20 wire will
(4838) J. N. F. asks: How many strokes per minute can an air compressor, similar to the one used work successfully? Or, in other words, how many cubic work of air will valves of similar size and capacity reeive and deliver per minute? A. The Westinghouse a brake can safely make 250 single strokes per minute, and will deliver air at nearly their full capacity, the valves be-
ing equal to their pumping capacity. We cannot name the (4839) F. \& T. ask how many storage atteries it would take to run eight lights (incan descent) for five or eight hours, provided the cells were equired to run your lights depends upon the resistance of the lamps. For eight 20 volt lamps you will need 11 for eight 50 volt lamps you will require 26 cells; but these cells will run about 20 such lamps.
(4840) J. W. D. writes : I am winding some field magnets with two wires in parallel, and I wish
o determine their resistance when so connected. The two wires are of different sizes. Oneis No. 22 double cot on-covered and the other is No. 21 bare. I do not know how much of each yet, so I would be greatly obliged is you could give me some general rule for finding the re-
sistance. I should aloo like to know the comparative re
sistance of the fields and armature in shunt and series magnet with wire of two sizes. No. 22 wire runs 60 feet 6 inches to the ohm, while No. 21 is 76 feet 4 inches to the ohm. In a shunt wound machine the resistance of the feld magnet should be about fourteen times that of the armature, while in a series wound machine the resistance
should be as small as possible consistent with the proper excitement of the field maguet
(4841) B. J. E. says: If oil put in the ylinder of an engine would pass through the exhaust pipe (into a well into which the suction pipe runs) and be
 long time before enough oil to get into the boiler, as the boiler pipe, of course, is at the bottom of the well ? A. The oil from the exhaust pipe in the well might do n harm for a while; but its gradual accumulation would cause it to come within the range of the suction pipe and o the boiler. In the boiler it will tend to gather the dirt and loose scale, forming masses that agglomerate and nally lodge on the fire sheet, cause it to be overheated, bulge, and if not discovered in time may cause a dis from this cause alone. The oil will not ignite in ti: boiler ; the danger is from lodging overthe fire and allow ing the boiler plate to be heated red hot and to bulge.
(4842) P. B. asks : 1. How many volts illustrated in No. 641 of the Scientipic Aurpicas Sup plement? A. Two volts. 2. Of what resistance is th field magnet and of what resistance is the armature ver, that the entire resistance of the machineis not mor
han three or four ohms.
(4843) E. E. J. says : I am desirous to know which isthe hardest to bend, a solid bar, say 2 inches
in diameter and 6 feet long, or a hollow bar of the same
dimensions having a 1 inch hole in the center. What is dimensions having a 1 inch hole in the center. What is
their difference, both in strength and price of manufacture? A. The solid bar is the hardest to bend, i. e_{n} it will bear the greatest load, and costs less than a hollow bar, which by your dimensions would have to be a double of the same size. On the other hand, the same weight of netal as a tube is harder to bend, or will bear more weigh han a solid bar, both of the same length.
(4844) C. H. S. says: Will you please give me a rule, through Notes and Queries, for finding the remaining bearings of a survey when the interio angles, length of sides, and the bearing of one side are
given? A. Plot the survey on paper with the side having the given bearing for the base, and draw the meridian at the proper angle with the side given. Use the differ ence of the given course and the meridian for adjusting changes as the angles carry the lines across the cardinal points of the compass. Then retrace the angles and bearing the reverse way to prove the work. See Gilles pie's Surveying, by Staley, a complete guide to the sur vey and plotting of land. $\$ 3.50$, maile
(4845) W. H. P. writes : I have a storage battery which, after charging for abouttwenty hours with large aynamo, it will only run about two hours. It look to me as though it runs down while not in use, as it gives ook all right, but the positiveplates look empty. If so, how can I refill them? Is thereany articleon making and epairing storage batteries in the Scientipic American is short what number? A. Possibly your storage battery machines having too little resistance. We think you have destroyed your storage battery by subjecting it to the action of too much current. Better send the battery to the makers for refilling. We hardly think you will be
able to refill the plates yourself. You will find many able to refill the plates yourself. You will find many Supplement catalogue, which is mailed to any addree without charge.
(4846) A. L. E. writes: In your issue of March 4, 1893, page 134, C. L. Wolley describes a storage
cell. What is the use of the red lead paste? How are the connections made with dynamo or primary cells whe charging it? How long should the connection between dynamo and storage cell be kept up? When charged, how long will it be before it is necessary to charge again? Can you give a description of a small dynamo, ne say that would run from 10 to 0 incandescent lamps A. Red lead paste is used on storage battery plates to f easily converted into lead peroxide than the metalic lead The two poles of the battery sreconnected with the bind ing posts of the dynamo for charging, and the battery should always be connnected up in the same manner. It requires from five to seven hours to charge a storage battery. We cannot, within these limita, give you full in-
formation in regard to the construction and use of storage batteries and dynamos. We refer you to our Sup age batteries and
(4847) C. P. P.-1. Please give me a list of all the metals, as I am unable to find a complete list including the later discoveries. A. A list of metals wil soon be published in the Scientific American. ${ }^{2}$
What is the fastestrailroad time ever made? When and where was it made? A. The fastest railroad time is claimed at the rate of 80 to 90 miles per hour on the Cen tral Railroad of New Jersey, between Bound Brook and New York. See Scientific American, October 24 an
(4848) H. G. M. writes: I am designing an automatic plug for electric light circuits. The plan greatly when hot. Now what I want to know tspa will this substance have to be to heat and expand quite little with about 4 amperes and 110 volts? A. We know of no substance better adapted for your purpose than
brass. Compound bars of brass and steel are often used for thermostatic bars Possibly such a bar would b etter than one of brass only. Neither the brass bar no the compound bar would have great resistance
(4849) L. P. writes: I have built my house from plans made by you, and am more than
pleased with it. Since then a number of lightning rod

Would it not be just as safe to put up $1 / 2$ inch or $3 / 4$ inch gas pipe, with a good point and a large plate at the bot
om to scatter the current? A. Gas pipe is often nee for lightning rods, but iron is not as good; copper ie preferable. Probably the best form of lightning rod is copper strip nailed directly to a building and connected with a good earth plate.
(4850) F. K. \& Son ask: 1. What size belt should we use to deliver 11/6 horse power; speed of
main shaft 260 revolutions, with 12 inch pulley to drive line shaft, having an 18 inch pulley? A. A $1 / 2$ inch belt. What size belt should we use to deliver $1 / 2$ horse we, speed of main shaft 173 revolutions, with 10 inch inch belt. 3. What size belt should we use to delive with 16 inch pulley to drive line shaft with a 12 inch pul ley? A. A $11 / 2$ inch belt.
(4851) G. R. C. writes: A friend of mine would like to know why a Stevenson horizontal check feedpump; and as long as it clattersit leaks, and when it oes not is perfectly tight, and to stop its clattering he has o close the globe valve between the check andthe boiler, or open the pet cock on the air chamber. The clattering nd closed two or three instrument with the circuit open ir in the pump chamber is highly compresed. A. The to the pressure in the boiler. It is elastic and according springon the water in the pipe between the pump like a boiler. The action of the water in the boiler when making team is like a tremor or vibration, and communicates balancerl by the air pressire in the air chamber. The open ing of the pet cock breaks the exact balance and the losing of the valve between the boiler and the check valve also stope
with the boiler
(4852) H. H. S. asks : 1. What chemical is put in the porous cup of a Leclanche battery? A. xide of manganese. 2 What chemicals are used in lectroplating with copper, and in what proportion are ou to Supplement 310. 3. Is there any chemical tha will take the copper coating off the sticks of carbon from an anc light without destroying the carbon? A. Use
itric acid. 4. Isthere anyarticle on the construction of nd a descriptionine in the Supplement ? A. You will 278 and 279 , and of the Hitz machine in SUPPLEMENTB 584, and 647.
4853) E. F. S.-1. Where I work we have a large quantity of glue which has been used for
moulds in plaster casting (plaster of Paris). It has become ery dirty and hard from grease and bits of plaster, etc and unfit for use. Is there any way to renew it at reasonable cost? A. Glue and glycerine jelly, adding a lit le water to thin it, and strain it through a cloth, hot. strained jelly to evaporate the water. 2. Would ether or ato consideration rant in ice machines. 3. Some time agol I saw a descrip ton of magazine photograph camera in your paper cribed in Scientific American, July 16, 1892
(4854) O. G. F. M. says: 1. Have a shunt-wound dynamo, with 4 wire No. 20 on field and $11 / 2$
same on armature. I carry from 5 t 7 l 16-candle power lamps of 50 volts each; but the field magnets get very ert some resistance in field magnets. What is thereason Is the wire wound in the right proportion? A. Too much of your current goes around your field magnet. You
should rewind with finer wire, say No. 24, or use the machine as a series machine. 2. Can you give mea formula
of some good composition for use in blocking tablets of some good composition for use in blocking tablets,
something which will not adhere to the sheet of paper when torn off? A. The composition is said to be pre pared as follows : Glues 4 pounds; glycerine, 2 pounds inseed oil, $1 / 2$ pound; sugar, $1 / 4$ pound; aniline dyes, q. 8 .
o color. The glue is softened by soaking it in a little cold water, then dissolved together with the sugar in the glycerine, by aid of heat over a water bath. To this the
dyes are added, after which the oil is well stirred in. I is used hot. Another composition of a somewhat simila nature is prepared as follows: Glue, 1 pound; glycerine
4 ounces; glucose sirup, about 2 tablespoonfuls; tannin one-tenth ounce. Give the compositions an hour or more pads.
(4855) P. J. L. asks : 1. What objection can be urged against the sprocket wheel and chain for the friction greater than leather or rubber? A. 'The sprocket wheel and link belt is noisy under high speed or mber. It is le moles than beather under any speed, and seems to have been invented for a pecula and unyielding ped for the nature of belts or for a done or accomplished in the way of compounding the explosive force of gas compounds in gas engines, an combustion, the same as the steam cylinder? A. There has been no practical appli calion of a compounding system to the gasengine. Her losive foregur internitur action of the ex pounding, yet with the later improvements we com see why there is not a good field open for compounding and no latent heat to keep up the temperature, and there fore the principle of expansion in a second cylinder would都
(4856) A. E. H. asks : Would a lamp of the following description be safe and practical? Gasoline bottom, the burner to be not closer than 4 inches above the intervening space to be nsed for the generating of cast iron or something that will not break and that will atand conadderable presenure. A. We cannot recommend
any form of gasoline lamp for house use. There are line unless entirely isolated f om the lamp. There is a um of gasoline lamps or torches used for outdoor ain is ith large, smoky flames, in which the founregulated by cock. The thasoline is vaporized in the urner. They can be procured through the lamp trade. (4857) F. K. says: Please inform me hich of the common metals expands and contracts ost and how much per foot with a change of 20° tem. 1 so how much will an iron wire, No. 16 B. S., 10 feet ill it ivana the metals by changes of temperature. It expands a fraction over 0.004 of an inch per foot for 20° rise in temperaure. Iron wire about 0.002 of an inch per footfor 20° rise in temperature, or 0020 of an inch for a 10 foot rod,
its push will be equal to the elastic strength or size of the wire or rod.
(4858) A. B. asks : 1. Can double thick ndow glass be used for the glass plates of an "influne" electric machine? A. Yes; but it is not as desirable sthe thinner glass. 2. How can I dril a hole in the center of the glass plates? A. Make a drill from Stubs
wire, withoutheating or forging. Heat it to a low red nd plunge it into a solution of chloride of zinc (ordinary oldering fluid). With this drill you can readily make olesthroughaglass plate. Yo th Scubrict arpentine. 3. What numbers of the Scientific Ameriormaking an influence machine? A. You will findar-
 446, 648, 584 and 647.

TO INVENTORS.

nce of forty-four years, and the preparation of more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand t the
laws and practice on both continents, and to possess unequaled facclities for procuring patents everywhere. A
ynopsis of the patent laws of the United States and all foreign count ies may be had on application, and persons ntemplating the securing of patents, either at home or hich are low, in accordance with the times and our exnusive facilites for conducting the busines. Address MaN, New York.
way

INDEX OF INVENTIONS

which Lettera Patent of

March 28, 1893

AND EACH BEARING THATC DATE.

