 CIIENTIURIC

03 MCIRICEW
ntered at the Post Office of New York, N. Y., as Second Class matter. + Copyrighted, 1893, by Mnnn \& Co.
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, APRIL 8, 1893.
\(\left[\begin{array}{c}(3.00
WEEKLY.\end{array}\right]\) R.

GLAFCKE'S IMPROVEMENT IN PRISON CONSTRUCTION. In prisons built according to the old system, chances of escape by digging or cutting through the prison walls, doors, floors, or ceilings are available to the prisoners, but, by constant improvements in such structures, escape has been rendered more and more difficult, and yet escapes frequently occur from the most modern prisons.
The latest improvement in prison construction, which forms the subject of our illustration, appears to furnish as nearly absolute security as it is possible to obtain, the result being secured in a very simple way, and by the use of low-priced material.
A prison constructed according to this system not only offers great resistance to any operation that will tend to destroy or injure it or render it less secure, but it also affords a ready means of indicating any tampering with the structure and also of giving an alarm in case of an attempt being made to break out of or into the prison.
The cells built according to this plan are made entirely of iron or steel pipes which intercommunicate, so that water or any other fluid may be kept under pressure in them. With this construction, should pressure in them. With this construction, should
there be the slighest puncture or break, the small leak

Abstract

thus occasioned would at once give notice of the tampering with the pipes through the consequent reduction of pressure, which actuates an alarm; so that, beore the operations necessary to an entrance into or esape from the locked cell could be fairly begun, the fficers of the prison could be on hand to investigate the cause of the alarm. The walls, ceiling and floor of each cell are composed of pipes. The door, which is also composed of pipes, carries communicating therewith a lock, the parts of which are made tubular. The staple or keeper of thelock, through which the locking bar passes, is also made tubular. In front of each series of cells is arranged a cage, which is also of the same construction. The tubular system of each cell is connected by a pipe with pressure gauges, and an lectric alarm operated by pressure gauges at the wardens office. In some cases a small longitudinal pening is left for the introduction of food. The locks upon the doors are arranged to be ope- Fig. 1 of the engraving is a detail view, showing the ated byं pressure, the bolts being pushed construction of a large tubular cell door, with a porpushed by a fluid tion of the cell structure, pressure cabinet, alarm the piston, Anston. Any retrograde movement of gauges, etc., and Fig. 3 is an outside view of one of the ice piston, due to diminution of pressure, would bein- tubular hinges, Fig. 4 being a sectional view of the cated at the warden's office upon the pressure same, showing the passages for supplying water to the

This system of protection, which is applied to prison eells and cages, has a nother application which is not less valuable than for prison walls, ceilings, and doors, that s, for safe deposit vaults, bank safes and vaults, etc., for the system of pipes is as effective in preventing enrance as escape, so that an unauthorized person could ot gain entrance to a vault protected according to is system. In Fig. 8, we show another system of construction, in which the cell is composed of a framework of piping, with hollow metal boxes connected to the piping and with each other, so as to form a solid connuous wall having a smooth, plane face. The United States Treasury and Sub-Treasury might ell adopt protection of this kind. The same principle arried out on a suitable scale can be applied advantageusly to show cases containing valuables. nstruction of a large tubular cell door, with a porauge, and any considerable movement of this kind tubular part of the door. would result in giving an alarm upon the electric bell.

?

illustrated by Figs. 2 and 5, the latter showing the adjustable electrical contact arm carried by the spindle of the gauge behind the dial, and adapted to complete the electric circuit by engagement with a fixed contact piece. The details of the hydraulic lock are shown in Figs. 9 and 10. Figs. 8 and 11 show the hollow metal slab construction more particularly used in vaults, etc., while the remaining views show the complete jail structure ready for use.
It is obvious that this system may be applied to cells and vaults already built, or it may be placed around a cell block, whether it consists of modern steel cells or brick cells. In the application of this system to vaults and cells already in existence, the tubular walls may be erected around the whole structure, but the in ventor prefers to place the tubular walls inside of the existing vault or depository.
This improvement in prisons is the invention of Mr . P. Emerson Glafcke, of Cheyenne, Wyoming. It is protected by patents both in this country and abroad, the patents being owned jointly by the inventor and Mr. T. A. Kent, a prominent banker of Cheyenne. This system has been approved by some of the foremost bankers, wardens and prison boards in the United States. Without doubt, the economy of construction and the effectiveness of the device will lead to its adoption where safety and protection are required.

Artificial silk.

United States Consul Loomis, of St. Etienne, France, has recently sent to the State department a report giving information in regard to the Chardonnet process for converting wood pulp into what he calls silk. M. De Chardonnet has built a mill at Besançon, where the "silk" is now being manufactured.
The raw material is made from wood pulp, which is carefully dried in an oven and plunged in a mixture of sulphuric and nitric acids, then washed several times in water and dried by alcohol. The product thus prepared is dissolved in ether and pure alcohol, and the result is collodion, similar to that used in photography. This collodion, which is sticky and viscous, is inclosed in a solid receptacle, furnished with a filter in the lower end.
An air pump sends compressed air into the receptacle, and by its pressure the collodion is passed through the filter, which removes all impurities and flows into a tube placed horizontally. This tube is armed with 300 cocks, of which the spouts are made of glass and pierced by a small hole of the diameter of the thread of a cocoon as it is spun by the silk worm. The spin ner opens the cock and the collodion issues in a thread of extreme delicacy (it takes six to make a thread of the neasary consistence for weaving). This thread is not, bwever, fit to be rolled on the spools, by reason of its viscosity and softness.
To produce the necessary hardness, the glass tube already mentioned is surrounded by a small reservoir constantly filled with water. When the thread issues from the aperture in the manner described, it tra erses this water, which takes up the ether and alcohol, and then the collodion becomes solidified; that is o say, it is transformed into an elastic thread as re sisting and as brilliant as ordinary silk. The stuf manufactured was found to be dangerously inflamma be. M. De Chardonnet has apparently removed this difficulty "by plunging the spun thread into a solution of ammonia, thus rendering it as slow of combustion as any other material."
The consul adds: "This discovery seems to have a great future. I have talked with great men, silk mer chants, brokers, dyers, and men who manufactured silk goods, about the Chardonnet method of producing raw silk from wood, and it is universally admitted hat the process will eventually yield large practicable and profitable results.
It is proper for us to add that this so-called artificial silk is a very different substance chemically from that produced by silk worms, and there is not likely to any substitution of the one for the other in trade.

The directors of the Grusonwerk of Magdeburg Buckau, Germany, have issued a circular in which they state that the firm of Friedrich Krupp, of Essen has obtained the right of working the enormous plan of the Grusonwerk. In return for this the Krupp firm guarantees a fixed annual dividend to the sharehold ers of the Grusonwerk. This combination is of great iniportance, as the two firms virtually control the armor plate manufacture of Europe. The Gruson factory manufactures not only guns of all sizes, from small quick fire guns up to large size cannon, but they also make all kinds of armor, armored turrets, gun carriages, ammunition, etc. The Grusonwerk has been equally successful in the peaceful arts, and it manufactures a large variety of metallurgical and mining machinery, hydraulic machinery, gas engines, distill ing plants, railway material, etc. The enormou factory at Magdeburg-Buckau contains 75 steam en gines, 1,100 machine tools, 10 steam hammers, includ ing one of 100 tons, 18 cupolas and 29 open hearth furnaces.

Sritutific Ammerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year, for the U.S., Canada or Mexico... One copy, six months, for the U.S., Canada or Mexico.
 ne copy,one year,to any foreign country belonging to Postal Union. 4500

 Remit by postal or express money order, or by bank draft or check.MUNN \& CO., 361 Broadway, corner of Frauklin Street, New York.

The Scientific American Supplement

 Readers are specially requested to notify the
any fallure delay, or irregularity in receipt of papers.

NEW YORK, SATURDAY, APRIL 8, 1893.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT INO. 901.
For the week Ending April 8, 1893. Price 10 cents. For sale by all nemsudealers.

 cal time by leading geologists.............

 HII. MILITARE ENGGNEERINGA-The Soucher Prism-Tielemeter.

agricultural railways.

A large body of farmers have united in Kansas for the purpose of building an electric railway across the prairies to enable them to ship their cattle and other products to market, and thus puta million of dollars or more which they now claim to spend annually in transportation into a road which they themselves shall own. The scheme is a pretentious one, more pretentious than the present knowledge of electrical matters and the courage of the financial world would warrant, because the road as proposed is five hundred miles or more in length. Nevertheless a committee has been in Chicago investigating the matter with a view to adopting the storage battery or the trolley system, whichever one seems best adapted to the purpose.
Even if these farmers are somewhat ahead of the times in their purposes, they are foretelling what is soon to take place. At the present rate of electric railway building most of the larger towns and cities which have passenger traffic in sufficient volume to support an electric railway system will be well supplied in this particular in three or four years at the outside. When this field is well covered it is hardly probable that manufacturers of electric railway apparatus will give up the manufacture of a line of material of such unquestioned economic value as theirs, and they will extend their business in other directions, and the transportation of freight would naturally be the desired, in fact is the only, direction which gives promise of satisfactory financial returns. Several electric railways in various parts of the country already do a considerable business in the line of carrying freight, but the possibilities in this direction are by no means fully demonstrated yet. A great necessity in any inhabited section of country is good roads over which the products of the earth can be economically transported to market. In this respect our country is sadly lacking, and the farmers of Kansas and other Western States know how to appreciate this when oftentimes they use the corn they have raised for fuel because excessive freight charges make it impossible for them to ship it East and receive remunerative returns.
The scheme of the Kansas farmers to build an electric road is not so harebrained as it might be by any means. Such electric roads will not take the place of trunk lines of steam roads any more than electric light has taken the place of gas. One supplements the other. A few such electric roads for purposes of transporting freight, if built with regard to commercial needs, would prove valuable feeders to the steam roads and increase their amount of freightage.

When Edison Was Young

"I was an operator in the Memphis office when Thomas A. Edison applied to the manager for a position," said A. G. Rockfeller, a member of the Reminiscence Club, St. Louis. "He came walking into the office one morning looking like a veritable hayseed. He wore a hickory shirt, a pair of butternut pants tucked into the tops of boots a size too large and guiltless of blacking. 'Where's the boss q ' was his query as he glanced round the office. No one replied at once and he repeated the question. The manager asked him what he could do for him, and the future-great proceeded to strike him for a job. Business was rushing and the office was two men short; so almost any kind of a lightning slinger was welcome. He was assigned to a desk and a fusillade of winks went the rounds of the office, for the 'jay' was put on the St. Louis wire, the hardest in the office.
"At this end of the line was an operator who was chain lightning and knew it. Edison had hardly got seated before St. Louis called. The new comer responded and St. Louis started in on a long report, and he pumped it in like a house afire. Edison threw his leg over the arm of his chair, leisurely transferred a wad of spruce gum from his pocket to his mouth, pieked up a pen, examined it critically, and started in, about 200 words behind. He didn't stay there long, though. St. Louis let out another link of speed, and still another, and the instrument on Edison's table hummed like an old-style Singer sewing machine.

Every man in the office left his desk and gathered round the 'jay' to see what he was doing with that electric cyclone. Well, sir, he was right on the word, and was putting it down in the prettiest copperplate hand you ever saw, even crossing his t's, dotting his i's and punctuating with as much care as a man editing telegraph for 'rat' printers. St. Louis got tired by and by and began to slow down. Edison opened the key and said, 'Here, here! this is no primer class ! Get a hustle on you!' Well, sir, that broke St. Louis all up. He had been 'raw hiding' Memphis for a long time, and we were terribly sore,
and to have a man in our office that could walk all and to have a man in our office that could walk all over him made us feel like a man whose horse had won
the Derby. I saw the 'wizard' not long ago. He doesn't wear a hickory shirt nor put his pants in his boots, but he is very far from being a dude yet."Practical Electricity.

The Minot Ledge lighthonse is of granite ; height, 88 feet, the lower 40 feet being solid.

Notes from the World's Columbian Exposition.
The chiefs of departments at the World's Columb The chiefs of departments at the World's Columbian
Exposition recently held a protracted meeting, at which they fully discussed the progress of completing the buildings and of installing exhibits. The conditien of each department was fully discussed and the needs of some were considered, in order that they might catch up with others that are well along. After the whole situation had been fully analyzed, it was the general opinion of the meeting that if exhibitors are prompt in sending in their exhibits and energetic in installing them, there is no reason why the Exposition should not be opened on May 1 in most excellent condition.
A glance at the way work is being pushed now will show that no time is being lost. As many men are employed as can possibly be made use of. The great Manufactures and Liberal Arts Building resounds to the echo with the sound of driving nails and sawing lumber, with the rumble of freight cars which are bringing in cases of exhibits, and the tread of horses drawing truckloads of exhibits and lumber. The Japanese pavilion is completed and makes a very attractive show with its Oriental style of architecture and its bright colors. Several prominent manufacturers have nearly completed their pavilions, and Great Britain, Germany and France are well along with their work. The Austrian pavilion has just been laid out, while Canada, Denmark, Brazil, the Netherlands, Spain, Italy and other nations are fast bringing their pavilions into atturactive shape. Staff is quite extensively. used in ornamenting these pavilions, thus giving a more finished effect than was generally seen at the Centennial Exposition.
In the Agricultural Building a dozen or more State pavilions are nearly completed and give promise of very interesting displays, particularly in the line of natural woods, corn, grain and other products. In the Palace of Mechanic Arts the work of completing the building and of installing the power plant goes on side by side with the building of pavilions and installing of exhibits. In the Electricity Building several of the larger and more important of the exhibitors have already done considerable work. Workmen are now preparing for an exhibit in this building which will attract much attention. This will be a subterranean mine, completely fitted with electric mining machinery. In the Mining Building more has been accomplished proportionately toward completing the work of installing exhibits than perhaps in any other building. In the Transportation Building there is a good showing of work, and every day brings a change from the previous one. In Horticultural Hall a large number of men are at work on the flower and plant exhibits, and work has been begun building an immense mound under the dome. Within this mound there will be a perfect model of a cave recently discovered in the Black Hills. The stalactites and stalagmites for use
in this cave are already on the ground. The Women's Building, although one of the first structures completed, is somewhat behindhand, as no exhibit has yet been installed.
Work on the State buildings is nearly up with that on the Exposition buildings proper, and quite a number of the State buildings are completed. The North Dakota building is having put in placeia fine exhibit of the State products, and the building is quite elabor ately trimmed in the interior with corn and other na tive products. In the Kansas building is a fine display of animals, both wild and domestic, and also a showing of the State's products. These animals are exhibited by the State University. Iowa is making a very elaborate show, after the style of the corn 'palaces which have been built before in that State. The building is finely located at the extreme northeastern corner of the grounds on the lake shore, and the large hall is elaborately decorated with corn. There are cross sections of ears which are nailed on the wall in quite elaborate patterns, the bacigground being some bright color; while under the roof are long festoons of ears of corn, while bundles of grain and other native products are displayed with fine effect. There are, as yet, no exhibits in any of the other State buildings, but the buildings of the following States have been completed: Wisconsin, Ohio, Colorado, South Dakota, Nebraska, Arkansas, West Virginia, Utah, Montana Maryland, New Jersey, Connecticut, New Hampshire Maine, Virginia, Massachusetts, Rhode Island, Delaware, New York, Pennsylvania, Florida, Louisiana, Illinois, and Minnesota. The Virginia building, which is an exact representation of Washington's home at Mount Vernon, attracts much attention from visitors. The Massachusetts building is a fine reproduction of an old colonial mansion. The codfish weather vane attracts the Western eye. The New York building is a large, imposing structure, and is perhaps the most pretentious of any of the State buildings. The Florida building is unique and interesting, being a repro duction of the old fortification at St. Augustine. Con siderable work yet remains to be done on the build ings of the following States: California (a reproduction of the old mission station at Santa Barbara), Indiana Michigan, Washington, Texas, Kentucky, Ida-
ho, Vermont, Missouri, and the Territorial buildings of New Mexico, Arizona, and Oklahoma.
The Bureau of Music is laying out a programme that will cover the whole period after the Fair is opened until the close. The scheme upon which the programme is based contemplates outdoor music by the finest bands of America and Europe, so arranged that there shall be plenty of music each day. In addition to this it is proposed to have concerts every day, and society and festival concerts every week, in which leading organizations from all parts of the country will participate. Every conductor and society of note throughout the country has been assigued a definite time for furnishing music. The concerts proper will be held in Music Hall, while the bands will play in outdoor pavilions.

There will be no high tower at the Exposition to compare with the Eiffel tower that was built for the Paris Exposition, but some grand vistas have been provided for, one of the last being a promenade on the roof of the Manufactures and Liberal Arts Building. The concession has just been granted and contract awardod for four elevators to carry the passengers up to it. This roof is 237 feet high, and will command a grand view of the whole Exposition. The top of the dome of the Administration Building is some 30 feet higher, but does not have the area to accommodate people. Provision is also made on two other buildings at least for visitors. These two buildings are the Transportation Building, which will have a restaurant on the roof, over the golden entrance, as has been stated before in these columns, and the Women's Building, which will also have a restaurant on the roof. The concession for this last restaurant has just been a warded to a woman.
Mr. Frederick Sargent, who was made general nanager of the combined electrical and mechanical departments only a few weeks ago, has handed in his resignation, and it has been accepted. Mr. Sargent has served the Exposition faithfully, and much credit is due him for the efficient and comprehensive manner in which the power plant has been laid out.
The number of visitors within the Exposition gates has become quite a burden, now that work is being so rushed, and in order to restrict if possible the multitude, the price of admission has been increased from twenty-five to fifty cents, and the desired result seems to have been accomplished, for the time being, at least. The White Horse Inn, made so famous by Dickens, has been reproduced in staff, and an immense white horse has just been put in position over the entrance way. This building is to be formally dedicated by Dickens' admirers on May 10. The building is to be headquarters of the Columbian Pickwick Club.
All crafts or vessels run in conne 3 tion with the World's Columbian Exposition will fly two flags, the national flag and the Columbian maritime flag. The maritime flag is of white bunting with a wreath of oak leaves in the center, with a blue anchor in the center of the wreath. The gondolas will fly a flag modeled after those used in the fourteenth century.
The lagoons, basin, and other interior waterways have The lagoons, basin, and other interior waterways have all been dredged so that six feet is the minimum depth. This provides ample waterway, as the launches and other small boats will not draw over three feet. The fire boat which was built last year for use at the Exposition, and which has lain in the canal all winter under steam, to be ready for service at an instant's notice, draws so little water that it can run in any
part of the waterways. A covered way designed only part of the waterways. A covered way designed only
for the use of the fire boat gives it entrance from the basin into the South canal.
An interesting memorial of the Exposition is being prepared which is to be placed permanently in the Art Institute of Chicago. This will comprise the models for much of the art work at the Exposition, in cluding the statues, reliefs, and paintings.
One vote out of a total of sixty-one has stemmed the tide of a threatened strike of switchmen on the rail roads focusing at Chicago. Had the strike taken place the World's Columbian Exposition would have been seriously injured, so far as its financial success is con cerned. The escape was very narrow, but was only one of many vicissitudes through which the Exposition has passed. In most other instances it has had to
make the best of untoward circumstances, and considering all these circumstances it is a wonder that the Exposition has not been badly shaken. More obstacles have been thrown in the way by those who should have been its best friends than the general public is ware of. This is true with labor, and the fact that the switchmen's strike has been, for the time at least avoided is a relief. Labor organizationshave demand-
ed all the work to be done upon the grounds and buildings, and whenever there has been a remonstrance at unjust demands, there have been immediate threats of a strike and boycott. If there could have been har mony instead of antagonism between labor and the Exposition officials, all work, so far as the buildings and grounds are concerned, could have been completed some time ago. But with an eight hour working day and almost prohibitive prices for overwork or night
large cities, it has been imposible to accomplish more than has already been done. But the laboring man has not been the only one that has hampered the efforts of the Exposition officials. Congress has not been over-generous in its support, financial and otherwise and one or two railroads have endeavored to wring ex cessive charges out of the Exposition, while combinations in the business world have in several instances endeavored to make enormous profit out of the Fair An 1 perhaps most surprising of all, the local presp has made occasional virulent attacks on the Exposition which have not had the slightest foundation in truth or fact.
In short, the Exposition has had very little cordial support from many upon whom it most depends for success. It has had from the first to fight off barnacles of one sort or another.

An Important Patent Decision by the Supreme A ruling upon the validity of patents granted in the United States under foreign patents of the sameinven. tion was made by the Supreme Court of the United States March 27 , in the case of Henry Huber et al. agt. the N. O. Nelson Manufacturing Company, appealed from the Circuit Court for the Eastern District of Missouri. Mr. Justice Blatchford delivered the opinion. A patent for an "improvement in water closets" was A patent for an "improvement in water closets" was
issued April 7, 1874, in Great Britain. The patent was to run for fourteen years, with a proviso that if a stamp duty of $£ 100$ was not paid within seven years of date of issue, the patent would at the expiration of that term become void. Application for a patent in the United States under assignment was made November 29, 1881, and the patent granted June 27, 1882. The $£ 100$ stamp duty was not paid in Great Britain within the time required, and the patent there became void April 7, 1881. Under these facts the circuit court held that the patent granted in the United States was void, because it was granted after the British patent had ceased to exist, and judgment to this effect in favor of the defendants was affirmed. This decision, it is believed, destroys Edison's quadruplex telegraph patent and also his three microphone patents, which were not patented here until after the foreign patents had been taken, leaving the Bell company, after January next, to stand wholly on the Berliner patent.

The New American War Ship New York.
Within a few weeks the United States navy has had enrolled in its ranks as a reserve ship the New York of the American line. Almost coincidently with this event, which meant the securing of the fastest ships afloat, to be used if necessary in war, came the account of the unofficial trial trip of the new armored cruiser New York, which has just been finished at the Cramps' ship yard, in Philadelphia. The trip showed that the namesake of the naval reserve ship resembles or perhaps surpasses her in one respect-in speed the new cruiser appears to rank among the fastest ships of her class.
On Tuesday, March 21, the ship left Cramps' yard and proceeded down the Delaware, under her own steam, attaining about 17.5 knots, and anchored near the breakwater. On Saturday, March 25, the ship was taken out to sea. Two runs were first taken from five fathom lightship to northeast end lightship and return. The firstivu to the northward took 29 minutes 38 seconds, the second run to the southward took 29 minutes 51 seconds. The distance covered in each run was 9.88 nautical miles, giving rates of 20.03 and 19.87 nautical miles per hour. Next the ship was run out to sea into deeper water. Basing her record on the data obtained from the two distance trials, on a four hour run, a speed of 20.38 nautical miles per hour was maintained. As the water deepened, a speed of 20.57 miles was reached.

Metallic Tin on Cloth.
A new process, invented in Germany, allows a brilliant and flexible stratum of tin to be deposited upon cotton flber. A paste is first made of the powdered zinc of commerce and white of egg and spread on the material by means of a brush. This is then coagulated after drying by a current of superheated steam and the tissue is then introduced into a bath of perchloride of tin. The metal precipitates on the zinc in a finely divided state, and after rinsing and drying the cloth, it is passed through cylinders or calenders which give brilliance to the coat of tin. Beautiful metallic designs may be obtained in this way. It is stated that the process may be substituted entirely for the ordinary method of ornamenting cloth with tinfoil.

John S. Seymour, nominated to be Commissioner of Patents, is a lawyer, 45 years of age, and a resident of Norwalk, Conn. Two years ago he was elected State Senator, which was his first public service. He is reputed to be a man of much ability and doubtless will make an efficient Commissioner of Patents.

SIMPLE SLIDE CHANGER AND ECLIPSER

With perhaps the single exception of the photo graphic camera, there is probably no instrument of which so many different grades can be found as of optical lanterns, ranging as they do from the poor toy article with a candle for a light, up to the magnificent optical lantern employing electricity as an illuminant and costing hundreds and in some cases thousands of dollars.
The apparatus here described is not designed for us with either of these extremes, but is intended for a good single lantern used for projecting pho
tographic shades.
One does not need to be an adept in lan tern matters to know that half the effect is ost when the slides are passed through th field in successional order; and while the uperb effect secured by two or more lan terns and dissolving apparatus cannot be produced by a single lantern, slides can be hanged, without making the movement visible on the screen, by means of an eclipser which will momentarily shut off the ligh while the slide is being moved.
Several varieties of apparatus for this pur pose have been devised, most of them being complicated and expensive.
The engravings show a simple devic which is effectual in accomplishing the desired result, and if entirely homesmade the cost is very small indeed.
The principal part of the device consist of a wooden slide changer which may be purchased for a small sum from any dealer n optical lanterns, or it may be readily made by any one who is handy with tools.
The frame forming the fixed part is of the right size exteriorly to fit into the lantern. The opening through the frame is the same as that of a lantern slide mat. To this frame is fitted a slide having two pockets, one at either end, for receiving slides; the openings in the slide are larger than those f the fixed frame. In the bottom of each pocket is pivoted a brass lever, and in the outer end of each pocket is a space containing a vertical wooden rod, the lower end of which rests upon the shorter arm of the lever while the upper end projects above the slide and forms a stop for limiting the motion of the slide. The pressure of the finger on the top of the wooden rod, as shown in Fig. 2, starts the slide from the pocket, so that it may readily be re moved and replaced by another. Both pockets are seen in Fig. 1, which shows the operation of changing
To the lower part of the front of the fixed fram is hinged a shutter made of vulcanized fiber, and through the shutter, about one-half inch above its ower edge near opposite ends, are made holes, and in the fixed frame opposite these holes are bored obique holes for receiving the shutter-operating cord, which passes along the outer surface of the slide hrough the holes in the the rame and shutter and along the outer surface of the shutter between the holes. The ends of the cord pass through holes in the wooden strips secured to the sides of the slide at its ends, and each end of the cord is provided with a shoe button for a handle.
To the fixed frame, near one of the hinges of the shutter, is secured a thick piece of felt, which serves the double purpose of preventing the shutter from closing against the frame, so as to allow it to readily fall open when released, and of preventing noise.
In Fig. 2 a picture is being exhibited through the opening of the fixed frame, while slides are being changed in the other part of the apparatus. By draw. ing on the button at the right hand end of the side
slide the first operation is the closing of the shutter, the second is the shifting of the view while the shutte is closed, the third operation is the falling of th shutter on the release of the cord, and the exposure of the second view.

The engine constitutes a portion of the exhibit for warded by the London and Northwestern Railway, and was hoisted from the ship which brought her across the ocean to one of the huge lighters so much used in New York harbor for transporting railway ars. The exhibit was forwarded to Chicago by the New York Central Railway, and consisted, besides the engine, of two passenger coaches and a number of maller models and railway appliances
The locomotive is named the Queen-Empress, is 32

Fig. 1.

Fig. 2.

Fig. 3.

Smple slide changer and eclipser. ELIPSER.

line, and, to insure smooth action, the cord is coated ith black lead
To insure sufficient friction of the slide to prevent it from being moved until after the shutter is closed, a small stee'. spring is inserted between one of the upright bar:s of the fixed frame and the slide, as shown in Fig. 3.

ENGLISH RAILWAY EXHIBIT FOR CHICAGO.
Our illustration, from a photograph, represents one of the largest locomotives ever built in England, on its way to a place in the World's Exposition at Chicago.
the cars is a day coach and the other a sleeper. They are called saloon vestibule cars, and are entered from the sides instead of the ends. The interior of the sleeper is fitted up with compartments to contain fourteen people each. In each compartment is a toilet room. There is also a smoking room and compartment for the attendant. Both cars are painted a chocolate color up to the windows. Above that the color is white. The interior of the sleeper is fitted up in satin and walnut woods, and the upholstering is in dark plush. . The car is heated by a gasstove and provided with gas and electric lights. The day coach is a composite car, arranged to accommodate first, second and third class passengers.
Along with the train are several other exhibits of the English company, the most important being an exact reproduction of the old locomotive Rocket, the first successful engine built by George Stephenson, and first operated on the Liverpool and Manchester Railroad in 1829. There is also a model of the mogul type, called the Dreadnaught, which is the first compound engine to be operated in England. The entire exhibit of the London and Northwestern Railroad cost $\$ 50,000$, and will occupy 2,800 square feet of space.

Mragnetized Chain, Wheele for Towing.
An interesting application of electro-mag+ netism has recently been minde in. France in the industry of chain towing, which is extensively carried on on some of the large European rivers. The several turns of the chain on the towing drum necessary t) get the proper adhesion has been the chief cause of deterioration and rupture, and this fact; together with the difficulty of properly paying out the chain in rounding bends, especially where it is used in ascending the stream only, has directed attention to improvement in these matters. The experiments conducted by the Sociéte de Touage de la Basse Seine et de l'Oise upon the River Seine have culminated in the construction of a large tow boat, whose towing apparatus contains several magnetized pulleys.

The main towing pulley is but a little over 4 feet in diameter. It is simply a solenoid, whose soft iron coil is flanged to form the groove, the bottom of which is a bronze ring with rubber joints to prevent the wire coil from getting wet. The current is generated by a small dynamo. The whole construction is simple and very strong, and besides the advantage of having a small towing pulley there is the much greater t of adhesion is obtained with only three-quarters of a turn. A similar magnetized pulley acts as a brake on the slack of the chain, enabling it to be properly and regularly paid out. It is hoped that these improvements will render chain towing practicable on rivers when the rapidity of the current or the crookedness of the stream has hitherto prevented its adoption.

Paint for Racers

When the Galatea was over here, she was hauled out for the purpose of having her plates smoothed down and coated for the international races. This occupied three days, for first of all she was sandpapered all over, and every crack and flaw in the cement was filled up. Then over the paint were put two coatings of gold size, and in the last coat black lead or pot lead was mixed. When all had set hard the surface was polished with brushes. The result, of course, is perfection so long as it keeps clean, but weeds grow very quickly upon it. In point of fact, Galatea began to foul within a fortnight. It is said a good long and weighing 13 tons. There are four driving plan is to mix the black lead in a bucket with the wheels, each 7 feet 6 inches in diameter, and she is said to make over 90 miles an hour.
The passenger coaches are built according to the latest English patterns, and will be quite novel as compared to American vehicles of like chomactor. One of

Gunter's chain, used in measuring land, was invented by Edmund Gunter in 1606.

AN AUTOMATIC KNIFE GRINDER.

The knife grinder shown in the illustration, for which a patent has been applied for, has many admirable points recommending it for adoption in all well appointed mills and factories, chief among which is the fact that it is readily adjustable for flat or concave grinding. By slacking one bolt the slide or bed can be set at different angles before the emery wheel, which has a flat face with the outer corner rounded off.

the buffalo planer knife grinder.
Setting the bed at a right angle to the wheel spindle the knife travels back and forth against the flat face of the wheel and is ground a flat bevel, while, when the bed is set at another angle, the rounded corner of the wheel does the grinding, making a concave bevel. In this way a flat, stout edge is readily obtained for rough work, and a thin concave edge for fine work. The shifting of the belts that drive the bed back and forth is effected by bell cranks inside the pedestal, the arrangement being such that the bed can be adjusted at different angles without affecting the belt-shifting operation, and permitting the swinging of the bed while the machine is in motion. The machine, after starting, requires little or no attention, the carriage having an even back and forth traverse, and reversing without noise or jar. The shafts are steel and run in babbitt boxes, and all the work is done by first-class workmen. These machines are manufactured by Messrs. Samuel C. Rogers \& Co., of No. 27 Lock St. Buffalo, N. Y.

AN ATTACHMENT FOR BEDS.

A safety device to prevent children from falling out of an ordinary bed is shown in the picture, the device being readily removed from the side of and swung

WIERENGA'S attachment for beds.
under the bed when not in use. The improvement has been patented by Mr. A. C. Wierenga, of Zeeland, Mich. Fig. 1 represents the attachment in position at the side of the bed, and in Fig. 2 it is seen swung below the bed slats. The side frame is held to the slats by two or more hangers, which form an adjustable connection of the frame with the bedstead. The hangers are somewhat L-shaped, Fig. 4 showing a plan view, while in Fig. 8 may be seen a side view, and they each
have on one limb cross pins which engage and slide freely in a slot in the top side of a bed slat. The other limb of the hanger is rigidly connected with the bottom rail of the frame. On the headboard and footboard of the bedstead are folding braces to sup port the frame at the ends when it is in use as a guard as shown in Fig 3, the end link of each brace hooking on a stud on each end of the frame. When the frame is not in use, and is swung below the bed slats, it is held in a near!-y horizontal position by a simple support attached to the botton of the bed side rail, the attachment being then completely concealed from view.

New Solder for Aluminum.

Aluminum is soldered with the alloy given below, with the ordinary tinman's soldering iron, or with the blowpipe. It does not oxidize or discolor the metal. The following solders are employed for aluminum : No. 1-Pure tin ; melts at 250'. No. 2-Pure tin 1,000 parts, fine lead 50 parts; melts at from 280° to 300°. No. 3-Pure tin 1,000 parts, pure zinc 50 parts; melts No. $3-$ Pure tin 1,000 parts, pure zinc 50 parts; melts
at from 280° to 300°. These three solders may be used at from 280° to 300°. These three solders may be used
in the manufacture of aluminum trinkets. For the following two solders the soldering iron should be made of pure nickel. No. 4-Pure tin 1,000 parts, pure copper 10 to 15 parts; melts at from 350° to 450°. No. 5-Pure tin 1,000 parts, pure nickel 15 parts; melts at from 350° to 450°. No. 6 -Pure tin 900 parts, pure copper 100 parts, bismuth 2 to 3 parts ; melts at from 350° to 450°, and is recommended for soldering aluminum bronze.-J. Novel, Chem. News.

AN IMPROVED SLEEPING CAR.

In the car shown in the illustration, one or both berths may be elevated to the roof of the car, and there held until needed, giving a maximum of head room over the seats, while the lower berth may be elevated from its support upon the seats to a vertical position in engagement with the sides of the car, enabling the seats to be used in dressing, and affording room for convenient movement. The car also presents various other novel features. It forms the subject of a patent issued to Mr. William Sneckner, Hotel Winthrop, 125th Street and Seventh Avenue, New York City. Over each lower fixed partition separating the sections is a fixed partition secured to the sides and roof, the latter partition holding a sliding panel which is concealed in the lower partition when the car is in use as a day coach. The panels are moved by attached cables carried up over pulleys near the top of the car, and in a chamber formed between the outer and inner walls, a weight being secured to the free end of each cable. By the aid of the weights the panels are readily carried up, to render each section private. A fixed curtain at the top, in connection with the upper partition, forms a compartment in which both the upper and lower berths are located when not in use. The lower berth when in use rests upon two seats, but the upper berth is suspended by four cables, one at each corner, the cables being carried up over pulleys in the upper chamber, and thence to a cable connection with a drum upon a shaft adapted to be rotated by means of a crank. By means of a novel form of latch bars the lower berth may be readily connected with the upper one, to be carried within the upper compartment of its section when not in use. The front sections of the seats are hinged at their lower edges to drop downward, and the seat bottoms are removable, and when a lower berth is to be made up the seat bottom is placed in the space normally beneath the seat, and the hinged back of the seat is let down, presenting a table-like surface upon which the lower berth is supported. To hold the lower berth up out of the way, and thus afford room for moving about, a cable having a weight at its outer end is passed through an opening in the side wall of each section, near the end wall, the cable being passed over pulleys, and having at its inner end a hook. By attaching these hooks to pins at each end of the lower berth, the latter is readily raised to and held in a vertical position, as shown in the representation of one of the sections.

Utilization of Molasses.

Hitherto it has been found impossible to extract, the crystallizable saccharose from molasses, because the substances associated with it prevented crystallization. Messrs. Scheering have now found that by conver-

SNECRNER'S SLEEPING CAR. ing it into dextrose and lævulose by inversion and then heating with lime, the calcium compound of lævulose obtained by Dubrunfaut from /partly in the formation of the furward limb, down pure invert sugar may be separated from the molasses through which passes the coupling pin. The coupling in a state of perfect purity. By decomposing this calcium compound with carbonic acid a pure lævulose solution may then be obtained, the whole of the coloring material and other adventitious substances being retained with the lime compound of dextrose.-Pharm. Centralb. through which passes the coupling pin. The coupling the coupling together of cars of different heights. Further information relative to this improvement may be obtained by addressing the J. Lawrence Smith Car Coupling Co., J. H. MacMillan, Secretary. Ogden, Utah Ter.

GERM-PROOF WATER FILTER AND COOLER.

A filter so inexpensive that it is designed to find a place in every family, and which can be kept entirely clean and sweet without being taken apart and joints broken, is shown in the illustration, which represents a combined cooler and filter. This filter is designed to free water from microbes and all suspended matter

the meconnell filter.
and disease germs, and is highly indorsed by the medical fraternity for this purpose.

It has a large porous tube made of exceedingly fine mineral flour. The water is filtered by passing through the minute pores of the cylinder to the compartment below. The impurities are all retained on the outer surface of the cylinder, from which they are easily washed. The ice is placed on a grate in the upper part of the unfiltered water chamber, and when this grate is removed the cylinder can be taken out to be washed, or it may be washed, in its place either by being flushed or by brushing its surface. These filters are also made in another style to be attached to pipes by which water is supplied under pressure, and they are in each case made in various sizes to furnish any desired quantity of water. They are manufactured by the McConnell Filter Co., of Buffalo, N. Y.

THE NEW ENGINEERING BUILDING OF TH PENNSYLVANIA STATE COLLEGE.

The Pennsylvania State College is situated at State College, Center County, Pa., and was founded in 1859 Recently the college has grown rapidly and the new engineering building, which was dedicated February 22, 1893, will soon enable it, we hope, to attain a high

the pennsylvania state college-Engineering building. as for techical education, Drexel and Armour Institutes.
terials, the value of lubricants, cement, etc. A triple expansion engine of 150 horse power is provided, and will be largely used by the students for experimental purposes. Two engines are also connected with the dynamos which generate the electricity for the 1,000 incandescent lights distributed among the various buildings. The ventilating apparatus is very complete, fresh air being furnished in such quantities that the air is changed every ten minutes and can be warmed by passing over steam coils if desired. Six boilers of 80 horse power each furnish heat to the boilers of 80 horse power
various buildings and also power for actuating the ventilating fans. The boilers are connected with the various buildings by tunnels. On the first floor are offices, model rooms, etc., while in the annexed buildings are the machine shops, driven by electric motors, a foundry with an 18 inch cupola, a forge shop provided with a blower and smoke exhaustblower and smoke exhaust-
er. In an adjoining building is the wood turning ing is the wood turning
shop. The second floor of the main building (for the shops are only one story high) is devoted to recitation, leoture rooms, etc. From all appearances, the institution is now in a position to give a good course in engineering, and

PETERS' RAILWAY BLOCK SIGNAL

the plant will enable it to compete with the Pratt,

AN IMPROVED RAILWAY BLOCK SIGNAL.

By means of the block signal system shown in the illustration, the engineer of a train entering a block may tell whether or not there is a train within the block, its location, if there be any, and the direction in which it is going. Fig. 1 is a plan view indicating two blocks of six miles each, provided with the improved apparatus, as shown in perspective in Fig. 2, and Fig. 3 represents the signal or indicator case, partly in edge elevation and partly in central section. The signal indicator cases are arranged in pairs, with their backs adjacent and a lamp between them, and the hollow supporting post communicates with a conduit, through which and the post are laid wires from contact brushes alongside the track to magnets in the indicator cases, there being one magnet behind each figure or indicator mark upon each dial. The contact brushes consist of metal plates having upwardly extending springs or points, and they are placed in position to be hit by a brush upon the locomotive, being placed a mile apart, as shown in the view, each mile being marked by a brush, and each side track being also provided with one of the brushes. The dial has seven marked spaces, $1,2,3,4,5,6$, and 0 ,- and one of the magnets is arranged directly behind each. The blocks may be of any length found most convenient
The indicators on one side of the track are used to indicate trains going in one direction and sthoser on the other side indicate oppositely moving trains. A ground wire is connected to one pole of each of the magnets, and runs down through the hollow post to the ground, to complete the circuit through the magnets and energize them, whereby the indicator hand is drawn to the proper mag net and indicator mark. A wire runs from the contact brush at the side of the track; at the entrance to the block, to the magnet behind the " 1 " on the dial facing the direction from which the train enters; another wire runs from the same brush to the magnet behind the " 1 " of place among the technical institutions of the United the indicator case facing in the opposite direction at States. The building itself is built of red pressed brick with brown stone trimmings. Although the architecture of the building is not above criticism, still on the whole the effect is very pleasing. The main building is three stories in height and the entire group measures 266 by 208 feet, so that it will readily be seen that the effect when viewed from the campus is imposing. The interior arrangement is admirable, and shows much forethought on the part of both the architectiand the professors. The basement contains the machinery, eta, including machines for testing the ntroagth of mas
he indicator case facing in the opposite direction, at the other end of the block. At the end of the first mile of the block, connection is made from the contact so on until the train passes out of the block, the brush at the exit being connected with the wire running to the magnet behind the " 0 " on the dials, while from the contact brush of the siding a wire is run to " S " on the dials, when the train passes a switch or siding. The contact brush on the locomotive is charged with an electric current from a battery or dynamo in any
pany for a number of years, is a great advance on the inethod formerly employed. The system is clearly shown in the accompanying cut. It discards entirely the old pin block. A rib is cast on the surface of the iron main frame, and the strings are fastened to lugs with screw ends, which go through the rib, a squareheaded nut being screwed to each one. Turning the nut one way or the other, the string is tightened or loosened. All the strain comes directly on the iron plate, and the tension is due to screw resistance, and not to simple friction. The wires, starting directly from the lug, pass in almost a straight line to the agraffe and binder, so that the strain upon them is a straight one, and this does away with the bending back and forth which was the case when the old method was employed, and which was the principal cause of the breaking of the wires. In the new sys tem, the entire frame being of metal and the strings being attached to it at both ends, instead of one end being secured to wood; as in the wrist pin system, there is a compensation, as in a watch. If the strings tend to lengthen by rise of temperature, the same change affects the frame, so as tokeep up the tension upon the istrings, whose correctness of pitch, therefore, is entirely independent of climate and hygrometric changes. In tuning by the ordinary system the key has to be turned back and forth until the proper pitch is reached. In the Mason \& Hamlin system, the string is brought to the required pitch without any attempt required pitch without any attempt
at hitting the pitch by chance. The new system has three matked The new system has three marked
points of superiority to the cold method. The pianos stay in tune much longer, are more durable, and the quality of tone is more refined and musically pure.
The Mason \& Hamlin pianos have attained a marked success since their introduction, and the constantly increasing number in ase shows how theroughly the many points of superiority are appre ciated by lovers of music every where.
An illustrated catalogue describ ing the new niethod of stringing will be sent to any one on applica tion atothe main office of the com pany, 152 Tremont Street, Boston, or any of their branch offices or agencies.

The Brooklyn Library.

The Brooklyn Library is celebrated for the excellence of its catalogue, the work of the late S. B. Noyes. This catalogue is noticed in the "Enclopædia Britannica." The library numbers 105,000 volumes. In the reference department we notice the "Scientific American Cyclopedia of Receipts" occupies a prominent place, and is in constant demand. "Experimental Science" is also constantly in use. The present librarian is Mr. W. A. Bardwell, and under hir able management the library greatly flourishes.

Gorrespondence.

Crystallization of Honey.

To the Editor of the Scientific American
In your last issue you endeavor to answer a corre pondent who does not want his honey to candy or crystallize. Now all honey will crystallize if kept cool, at least this is the rule (with seldom an exception), and this also is an excellent proof of the purity of the honey. This product is not injured in the least by crystallization, but if one objects to it, all he need do is to keep it air-tight and warm; but it should be allowed to remain, say two weeks, after being taken from the hive in an open vessel to allow it to ripen.
W. K. Morrison.

Brooklyn, N. Y., March 24, 1893.

The Plans and Calculations for the Cruiser Bancrof To the Editor of the Scientific American:
In a recent issue of your paper in which you give very good account of the U.S. practice cruiser Ban croft, and her trial trip, you speak of her lines and model having contributed much to her remarkable speed, and say that they were made by the late Con structor Gatewood, of the U. S. navy. Allow me to correct you on this point. I have seen the original plan made by Constructor Gatewood, which is for a cruiser 10 feet 10 inches'deep and of 800 tons displacement. I hav also seen the plan from which the Bancroft was built which is an entirely different model, and is 11 feet 6 inches deep, of 830 tons displacement. Mr. Charles \mathbf{R} Hanscom, now superintendent of the ship yard depart ment of the Bath Iron Works, was in charge of the work, and Mr. A. B. Cassidy was the draughtsman. Mr Hanscom made all the plans and. calculations of dis placement, stability, shearing stresses, etc., and wrote the specifications for this ship, which were approved by Chief Constructor Wilson and adopted by Secre tary Tracy. By giying such publicity as you think advisable to this statement, you will put the credit fo the design of the Bancroft where it belongs.

Bath, Me., March 25, 1893.

To the Editor of the Scientific American.
In repeating the experiments on the " Persistence of Vision," described by Dr. T. O'Conor Sloane in the Scientific American of January 21, it occurred to me

to use an electrical vibrator for producing the results instead of the tuning fork which was described. This method has the advantage of allowing a better study of the figures, because of constant vibration. The card holder can be attached to the mechanism of an ordi nary electric bell, or a vibrator can be constructed fo the purpose. In this case a greater amplitude of vibra tion can be obtained. The spring supporting the armature should be very weak, and the current used should be just strong enough to move the armature. By this method an amplitude of vibration of three eighths of an inch or more can be obtained
By drawing the designs on the tracing cloth used by architects and engineers the results can be projected on a screen with a lantern, and thus be made visible to a large audience.

Richard H. Rich.
Beverly, Mass., January 30, 1893.

Swedged Screws

To the Editor of the Scientific American
The chance perusal of an issue of your paper con taining an account of the process of cold-forging wood screws, as practiced by the Alfierican Screw Company, calls to mind an interesting and perhaps not well known chapter in the history of the art.
For many years prior to 1890 resided in Utica, N. Y., a gentleman of the name of Harvey J. Harwood. In early life, Mr. Harwood was a working machinist, a vocation he left later on, to take up the business of photography. This business he followed for many years. Being of an inventive turn of mind and retaining his taste and love for mechanical matters, he experimented for some years, and eventually invented and constructed a machine for cold-forging or swedging wood screws. During his declining years Mr. Harwood was fond of visiting the shop in Utica in which the writer was at that time employed; and gaining his acquaintance, and, to a certain extent, his confidence, I was several times invited to inspect his machine, a
machine was somewhat crude in design and much too light for its work, it made screws, samples of which I till have.
About 1888 a gentleman, said to be a representativ of the American Screw Company, visited Utica, and in company with an acquaintance of mine called on Mr Harwood, who was then an old man, enfeebled in mind nd body.
The next day the Harwood machine was brought to the shop, carefully boxed and shipped to the Ameri can Screw Company. The published details of the American Screw Company's machine show great sim ilarity to those of Harwood's, the forming dies being apparently identical with those of Harwood. Mr Harwood was a man of singular truthfulness and transparency of character, and he always claimed and believed himself to be the first inventor of the cold process of screw making. While it is not the purpose of this communication to excite controversy, or in any sense detract from due merit, it seems only a jus compensation for years of unproductive toil that th dead inventor's name should be associated with a pro cess that formed a large part of his life work.
This is an honor that, to my knowledge, has never, even in a humble way, been accorded him.
s.

Decisions Relating to Patents.

NOVELTY.

In letters patent No. 253,572, issued February 14, 1882 o John E. Atwood, for an improved support for spin dles in spinning machines, the characteristic feature of the invention is " a supporting tube which is flexibly mounted with relation to the spindle rail, and contain the step and bolster bearings for the spindle, so that the latter and said tube may move together laterally in al directions during the self-adjustment of the spindle wisle carrying an unequally balanced bobbin and it yarn, instead of relying upon the movement of the spindle and its bearing within and independently of the supporting tube, as heretofore." It is held by the Circuit Court that this invention possessed patentable novelty over the spindle support of Francis J. Rab beth, covered by letters patent No. 227,129, issued in 1880, and over the unpatented Danforth spindle of 1842. 1.

COMBINATION
Letters patent No. 178,75Q, issued June 13, 1876, to Henry Ennis, for an improvement in telegraphic fire alarms, cover a device consisting of a hammer arm for perating a bell, a pencil recording a message on a traveling strip of paper, and a pencil for recording the time of day on the face of a rotating clock dial, all con nected by arms and pivots to the armature of an elec tro-magnet, so as to be simultaneously operated by an electric current. Claim 1 is for a telegraphic receiving instrument adapted to register a message and record the time of its reception, substantially as and for the purpose set forth. The Circuit Court decides that, while each of the two elements covered by the claim are old, the combination is not a mere aggregation, but, on the contrary, achieves a new and useful result by co-operating action. 2 .

anticipation

The Circuit Court rules that claim 1 of letters paten No. 301,884 , issued July 15, 1884, to Theodore E. King and Joseph Hammond, Jr., for an overshoe clasp, con sisting in the combination of a catch plate, a tongu pivoted directly to the tongue plate, and the tongue plate extending rearward of the pivot, and in contact with the catch plate, when the parts are engaged, was not anticipated by either the Hartzhorn patent of 1849 No. 6,736, or the Budd patent of 1871, No. 120,323. 3. The Circuit Court holds that letters patent No 178,750, issued June 13, 1876, to Henry Ennis, for an im provement in telegraphic fire alarms, consisting of hammer arm for operating a bell, a pencil for recording a message on a traveling strip of paper, and a penci for recording the time of day on the face of a rotating clock dial, all connected to the armature of an electro magnet so as to be simultaneously operated, were no anticipated by the old watchman's clocks, which make a mark on a time strip when a button is pressed, or by the British patent of October 12, 1872, to Whitehouse \& Philips, for a recording apparatus for public ve hicles. 4.
Letters patent No. 296,377, issued April 8, 1884, to John E. and Eugene Atwood, for an improvement in the means of driving spindles by bands, so as to permi the use of narrow spindle frames, consist of the combi nation of a drive pulley and a guide pulley having parallel axes, and arranged one above the other, two spindles on opposite sides of said pulleys, and two driving bands, each encircling both pulleys and the whirl of the spindle, and each consisting of three parts, two of which pass horizontally between the whirl and the adjacent sides of the pulley, and the third passing directly from one pulley to the other between the hori zontal portions. It is held by the Circuit Court that the patent was not anticipated by a machine alleged to have been constructed and used contnuously from 1877 by the W. G. \& A. R. Morrison Company in it factory at Willimantic, Conn. 5.

Letters patent No. 225,261, issued March 9, 1880, to Orator F. Woodward, are for a "new and useful improvement in compositions of matter for making moulded articles of manufacture," such as flower pots, vases, cuspidors, etc. Flying targets or "birds," though not specified by the patentee, were made in large numbers under the patent. Thecomposition consisted of gypsum and resin mixed under heat. The Circuit Court decides that the patent was not antici pated by certain previous compounds from which flying targets had never been made, and from which the patentees never contemplated that they would be made. 6.
The Circuit Court lays it down that letters patent Nos. 359,687 and 359,688 , both issued March 22, 1887, to Bernice J. Noyes, for an invention relating to a system of municipal signals, whereby, automatically, and independently of the operator's will, the reception of emergency signals is always marked by the ringing of a bell, while the reception of patrol signals on the same egister is never accompanied by an alarm, were not anticipated by either the patent of July 26, 1881, to J. W. Stover, for "improvements in telegraphic relays," the Field patent of June 19, 1883, for an apparatus for recording stock quotations, or the Wilson patents of March 3, 1885, and June 9, 1886, relating to a municipal telegraph apparatus. 7

WHAT CONSTITUTES INFRINGEMENT.

In letters patent No. 253,572 , issued February 14, 1882, o John E. Atwood, for an improved support for spindles in spinning machines, the characteristic feature of the invention is "a supporting tube which is flexibly mounted with relation to the spindle rail, and contains the step and bolster bearings for the spindle, so that the latter and said tube may move together laterally in all directions during the self-adjustment of the spindle, while carrying an unequally balanced bobbin and its arn, instead of relying upon the movement of the pindle and its bearing within and independently of the supporting tube, as heretofore." It is held by the Circuit Court that the 2d, 3d, and 5th claims of the At wood patent are infringed by a device substantially imilar in form, except that the bottom of the supporting tube is surrounded by a closed oil cup, which prevents the facility and promptness with which the flexibility of the spindle can be graduated; for a copyist cannot escape infringement by adding features which hinder the patented combination from exhibiting some of its minor advantages. 8.
Letters patent No. 178,750, issued June 13, 1876, to Henry Ennis, for an improvement in telegraphic fire alarms, cover a device consisting of a hammer arm for perating a bell, a pencil for recording a message on a raveling strip of paper, and a pencil for recording the time of day on the face of a rotating clock dial, all con nected by arms and pivots to the armature of an elec-ro-magnet, so as to be simultaneously operated by an electric current. In ruling the Circuit Court says that the claim is infringed by an apparatus having a mag net in the main circuit, whose armature controls the receiving device and time stamp as in the patent, notwithstanding that the motion is communi cated by means of relays or sub-circuits instead of by evers; for, both means being well known, the one is merely the equivalent of the other. 9.
The Circuit Court decides that claim 1 of letters pat ent No. 301,884, issued July 15, 1884, to Theodore E. King and Joseph Hammond, Jr., for an overshoe clasp, consisting in the combination of a catch plate, a tongue pivoted directly to the tongue plate, and the tongue late extending rearward of the pivot, and in contact with the catch plate, when the parts are engaged, is infringed by a buckle made under letters patent No 418,924, issued January 7, 1890, to John Nase, which shows a rearward extension of the upper plate, although it differs from the King and Hammond buckle in certain other respects. 10.

1. Sawyer Spindle Co. v. W. G. \& A. R. Morrison Co. 52 Federal Reporter, 590.
2. Municipal Signal Co. v. Gamewell Fire Alarm Tel. o., 52 Federal Reporter, 459.
3. Hammond Buckle Co. v. Goodyear Rubber Co. 52 Federal Reporter, 587.
4. Municipal Signal Co. v. Gamewell Fire Alarm T. Co., 52 Federal Reporter, 459
5. Atwood v. W. G. \& A. R. Morrison Co., 52 Federal Reporter, 475.
6. Cleveland Target Co. v. United States Pigeon Co., 52 Federal Reporter, 385
7. Municipal Signal Co. v. Gamewell Fire Alarm T Co., 52 Federal Reporter, 464.
8. Sawyer Spindle Co. v. W. G. \& A. R. Morrison Co. 52 Federal Reporter, 590.
9. Municipal Signal Co. v. Gamewell Fire Alarm T. Co., 52 Federal Reporter, 459.
10. Hammond Buckle Co. v. Goodyear Rubber Co. 52 Federal Reporter, 587.

Police statistics show that the arrests for drunkeness in London are at the annual rate of one to every 175 inhabitants ; in Birmingham, one to 153. in Man ahester, one to 71 ; and in Liverpool, one to 50.

BOILERS FOR THE NEW CRUISER CINCINNATI.
The new cruiser Cincinnati is now lying at the Brooklyn navy yard docks, receiving her machinery, which is the production in its entirety by the machine and boiler shops of the Brooklyn yard. The keel of the Cincinnati was laid in January, 1890. Built of teel. Length, 300 feet; beam, 42 feet; depth, $233 /$ feet Displacement, 3,183 tons. To have a main battery of ten 5 inch rifles, one 6 inch rifle. Secondary battery, eight 6 pounders, four 1 pounders, 2 Gatling guns, and a ram. Twin screws of bronze sectionalized and movable for variable pitch Triple expansion engines in separate compartments, aggregating 10,000 horse power, designed to give the ship a speed of 19 knots per hour. The boilers, three of which we illustrate as they lay upon the dock ready to be swung aboard by the great navy yard derrick, are representative of the best quality of material and workmanship that can be produced. They were designed by the engineering department of he navy and constructed of the toughest American teel under the supervision of Chief Engineer James H. Chasmer, U. S. N. They have been tested at 250 pounds hydrostatic pressure and are to carry 160 pounds pressure. The boiler plant consists of four main double end boilers of 14 feet 4 inches and 13 feet inches diameter respec tively by 20 feet $31 / 2$ inches in length, with six corru nch steel plate nch steel plate.
Two auxiliary boilers 11 feet 4 inches diameter, 9 feet $101 / 4$ inches long, single end with two corrugated furnaces each; boiler shells 1 inch steel plate. The aggregate grate surface of the boiler plant is 518 square feet,
age to Sweden, with Captain Ericsson's body on board. Since that time she has done 48,000 miles of cruising, visiting various European ports, remaining considerable time in the Mediterranean, and finally getting around to the Pacific, where she appeared in time to represent the United States at some of the Chilean ports during the temporary misunderstanding our government had with that power. She has come home government had with the great Columbian naval parade and review, but as a preliminary thereto it was highly essential that she should have her bottom cleaned and painted, for which purpose she was placed in the dry dock at the Brooklyn navy yard. Our engraving is from a photograph, and therefore faithfully represents, without any exaggeration, how completely the entire bottom of the vessel below the water line is covered by barnates, accumulated during her long cruise. Such an abundant deposit of these crustaceans as had fastened themselves on the hull of the vessel had the effect of materially lowering the speed of the vessel, as always happens in such cases, and for this reason officers of the navy claim that a vessel cruising in southern waters should have her bottom cleaned as often as twice a year. The Baltimore some twenty days in the dry dock, but after the naval review she will probably receive more extensive repairs.
The Baltimore was comBoiler shells of 115-64 lett, of the machine department of the Brooklyn navy pleted in 1889, and developed on her trial trip over
heating surface 18,179 square feet,number of tubes 3,992, 7 feet 4 inches long by $21 / 4$ inches diameter; ratio of grate surface to calorimeter 7 to 1 . Ratio of grate surace to heating surface 1 to 33 . Pounds of coal burned per square
The corrugated furnace shells were welded and rolled at the Continental Iron Works, Greenpoint.
We the Continental Iron Works, Greenpoint.
Whebted to Chief Draughtsman I. E. Bart-

BOILERS FOR THE U. S. CRUISER CINCINNATI.

lett, of the machine department of the Brooklyn navy yard, for details.

THE CRUISER BALTIMORE IN DRY DOCK.
It is about two and a half years since the cruiser thed in 185, and developed on her trial trip over acting triple-expansion engines, with two high pressure cylinders, each 42 inches diameter, two intermediates cylinders, each 42 inches diameter, two intermediates
60 inches diameter, and two low pressure 94 inches, Baltimore sailed out of New York harbor on the voy $-\left\lvert\, \begin{aligned} & \text { the piston stroke being } 42 \text { inches. She is } 335 \text { feet }\end{aligned}\right.$

THE U S. CRUISER BALTIMORE IN DRY DOCK, TO REMOVE BARNACLES FROM HER BOTTOM
length over all, 48 feet 6 inches moulded breadth, 19 feet 6 inches draught, and has a displacement of 4,400 tons. Her armament consists of four 8 -inch breechloading rifled guns, six 6 -inch breech-loaders, eight 6-pounder rapid-firing guns, and she has two steel masts with tops, in which Gatling guns are mounted. She is also fitted with five torpedo tubes.

A. Yucatan Exhibit at the Fair.

One of the most interesting displays that will be seen at the Fair will be that made within the " Ruined Palace of Mitla" by the Department of Ethnology. Prof. Edward H. Thompson, who has been consul at Merida for eight years, fifas prepared papier-mache moulds of the ancient sculptures found in the deserted cities of Yucatan, and thirty cases of these moulds have already arrived at the Park. They will be installed as soon as the building is completed. The ruins of Uxmal will be reproduced on an extensive scale, and among them will bè a perfect fac-simile of the temple and figure of the god "Kukulkan," or the great feathered serpent. The body of the serpent is wrought in the stonework all around the building, and this will be represented entire. The original materials were principally marble and coarser varieties of limestone, and the work shows that the ancient Yucatecos possessed great Yucatecos possessed great
skill in mechanical work manship, though their in dustrial arts were but poorly developed. One of the finest reproductions by Professor Thompson will be that of an arched gate of the ancient palace of Labra, which was literally chopped out of the jungle. -Chicago Inter-Ocean.

Borings in Broadway New York.

Mr. William Barclay Par sons, M. Am. Soc. C. E., read a paper recently be fore the society on this subject. We make the following abstract from the Transactions: In or der to ascertain the quality and nature of the materia underlying Broadway, in the city of New York, the Rapid Transit Commission of this city undertan a system of borings in 1891 under the direction of Chief Engineer William E Worthen, past president o this society, and under the immediate supervision o the writer as principal as sistant engineer.
In general, the system ollowed was to put down a test hole at every street crossing from South Ferry along Whitehall Street to Broadway, and thence to Thirty-fourth Street, a dis tance of about thtee and one-half miles. These beles were sunk by the water-jet process and were carried lown until rock was en en ountered. The method o
spot where, as far as the inspector in charge could tell, the line of the hole would not encounter any pipe subway, sewer or any other subsurface structure. One paving block would then be removed and a test would be made with a sounding rod for eight or nine feet, to etermine whether the location was free from obstruc tions. If so, a two-inch pipej would be driven to serve as a casing. In order to drive this pipe a small port able pile-driver was used, the top of the pipe being covered with a protecting cap. The hammer, weigh ing 150 lb ., was directed between four light meta guides and had a fall of about six feet, the whole arrangement being supported on a cast-iron stand The hammer was raised by hand power.
After two or three lengths of easing had been driven the protecting cap was removed and a tee screwed on in place, and down the pipe was inserted a three-quar ter inch wash pipe with a chisel point, in the corners of which were two small holes. Water was then forced into this wash pipe, while two men worked the pipe down by hand. The water thus discharged, washing the sand away from the foot of the wash pipe, flowed upward between the wash pipe and casing, carrying the sand with it. This water and sand flowed out. of he side

We present to our readers a successful print of this animated group from a photograph of the original, which reminds one of the great master, Anton Ritter von Fernkorn, who has ornamented Vienna with so many creations of his powerful genius. This group was his first great work, and his other monuments are the best in Vienna
We are indebted to Wiener Bauindustrie Zeitung for our illustration, and also the foregoing remarks.
Australia Grows the Largest Trees in the World.
A recent article inscience repeats the old idea, which has been frequently refuted, that the Sequoia gigantea, or Big Tree of California, is the largest tree known It has been shown many times that these trees are surpassed in both height and girth by the guin trees of Australasia. A large number of species are known, and many of them are mentioned in Baron Von Mueller's "Extra Tropical Plants," recently reviewed in these columns. An extract from this book will be of interest, as giving the dimensions of some of these mmense trees Of Eucalyptus amygdalinc it is caid "In sheltered, springy, forest glens attaining exa smooth stem and broad leares, producing also seed-
in a bucket and sampled by the inspector in charge. Some of the results obtained were quite different from what had been expected; first, rock was at a much greater depth than had been believed, being over 163 feet down at Duane Street; secondly, the rock at ! Canal Street is not the deepest along the line; thirdly, the material underlying the surface at Canal Street is not muck and fine sand, but, on the contrary, consists largely of good coarse gravel, and presents an excellent material for foundations.

FOUNTAIN OF SAINT GEORGE AND THE DRAGON, VIENNA, BY ANTON DOMINIR RITTER VON FERNKORN
Vienna has no abundance of public monuments, and it is therefore a pity that one of its choicest works of sculpture should be hidden in the courtyard of a palace where connoisseurs are the first to search for it. In fact, a great many Viennese have nf ver seen the original group, Saint George and the Dragon, which ornaments the fountain at the palace of Prince Montenuovo, situated in Strauchstreet, Vienna. It has, however, become quite popular, as so many excellent copies of it have been made.

FOUNTAIN OF SAINT GEORGE AND THE DRAGON VIENNA, BY ANTON DOMINIK RITTER VON FERNKORN.
lings of a foliage different from the ordinary form of E. amygdalina, which occurs in more open country, and has small narrow leaves and a rough brownish bark. The former species or variety, which has been called Eucalyptus regnans, represents probably the loftiest tree on the globe. Mr. J. Rollo, of Yarragon, measured a tree which was 410 feet high. Another tree in the Cape Otway ranges was found to be 415 feet high and 15 feet in diameter where cut in felling, at a considerable height above the ground. Another tree measured 69 feet in circumference at the base of the stem ; at 12 feet from the ground it had a diameter of 14 feet; at 78 feet a diameter of 9 feet; at 144 feet a diameter of 8 feet, and at 210 feet a diameter $\rho^{f} 5$ feet. [Thus, at a height in the air exceeding the height of almost every North American forest tree, this specimen had a diameter equal to most of our largest forest trees at the ground.] Other trees are known with a stem circumference of 66 feet at 5 feet from the ground. Prof. Wilson and Colonel Ellery obtained at Mount Sabine a measurement of 21 feet 8 inches in diameter of a stem, where cut, the length being 380 feet. Colonel Ellery had repeatedly reports of trees seven ax handles in diameter, and he met a tree on Mount Disappointment with a stem diameter of 33 feet. at about 4 feet from the ground." Other species also attain enormous size. Eucalyptus diversicolor is known to grow 400 feet. high, and trees have been measured 300 feet long without a branch! Boards 12 feet wide can frequently be obtained. E. globulus grows 300 feet high and furnishes ship keels 120 feet long. E. obliqua also attains 300 feet in height and 10 feet in diameter. A note in a recent number of Garden and Forest mentions a tree in Victoria 471 feet in height.
The colossal size of the trees of this genus is not the only peculiar feature they possess. Some are of exceedingly rapid growth, and are at the same time very durable. Eucalyptus amygdalina, for example, grew to a height of 50 feet in 8 years in the south of France. E. citriodora grew 20 feet high in 2 years in a district subject to protracted drought; and a trunk 40 feet long and 20 inches in diameter only broke after a flexion of 17 . incties, under a pressure of 49 tons. E. corymbosa is very durable, fence posts. that had been in the ground for 40 years showing hardly any decay. E. globulus grew 60 feet high in 11 years in California, and in Florida 40 feet in 4 years, with a stem a foot in diameter. The writer has seen treesin California, two years after planting the seed 20 feet high; and the wood, although easily cut when green, becomes almost as hard as iron when dry. In Guatemala it grew 120 feet in 12 years and had a stem diameter of 9 feet. Railway sleepers made of E. leucoxylon were quite sound after being laid 24 years. Piles driven for a whaling jetty in 1834 were taken out in 1877 perfectly sound, although the water swarmed with teredo. This was E.marginata. Still more remarkable is the fact that some species withstand excessive heat and also a considerable cold. E. microtheca, for example, resists a temperature of 18° F. in France and $154^{\circ} \mathrm{F}$. in central Australia. Besides serving as a timber tree, many species of Eucalyptus are used medicinally, producing a volatile oil very useful in treating various infectious diseases, like scarlet fever, especially when applied externally. Grown in malarious districts, they possess the power of purifying the air. Altogether, the genus may be classed as one of the most remarkable in the whole world.-Joseph F. James, M.Sc., in Science.

Aluminum is found combined with 195 other minerals, and, therefore, constitutes a large part of the crust of the earth, but until recently has been very expensive because of the difficulty of separating.
bIRDS WHICH NEST IN CAVITIES AND BURROWS.

by morris atrbs.

Of the birds of Michigan which nest in excavations in wood or earth, there are probably nearly fifty species. In this division of nesters I have met with twenty-eight species nearly all of which habitually occupy a cavity during the duties of nesting.
The woodpeckers are pre-eminent as excavators in solid wood, and undoubtedly all of the nine species found in Michigan follow this custom, and with the aid of friends I have recorded seven kinds of these car penters which bore or peck out their homes.
Then there are the nuthatches, which are capable of digging in soft decayed wood, but who quite as often select a site formerly occupied by a stronger billed bird. The white-breasted nuthatch, which is the commoner of the two and much more social in its relations with man, often chooses an artificial cavity in the cornice of a building. The opening may be small, while the interior is very capacious, and to fill this large space and have snug quarters, the industrious birds often carry in nearly a peck of rubbish. The house wren also not infrequently fills cavities with twigs, grass and other litter, and then, strange to say, often leaves the premises for other quarters. The oddities of this little snuff-colored bird in the arrangement of its household affairs are very amusing and will furnish entertainment for any student. Why it is that all wrens with which I am acquainted seem desirous of amassing real estate in the shape of a collec tion of nests is more than I can conjecture, but it is a habit with which all are possessed. I have known a pair of house wrens to engage in the act of building in cour different situations at one time. The winter wren, that ecstatic singer of the deep wild wood, rears its young in the hollow of some old log or stump.
Our vivacious acquaintance, the black-capped chick adee, digs out a shallow burrow in the decayed side of an old stump in early May. Not rarely, after working for a day or more, the pair encounter a layer of hard wood in the old weather-worn stump, and have to cease their efforts and look for a more suitable spot, for the little conical beak of this titmouse has not sufficient strength to penetrate hard substances. When the cavity is complete the bottom is lined with soft materials, nearly always dry. moss and the hair of some of our small mammals, generally rabbit fur. On this delicate bed seven or eight white eggs, dotted with pink, are laid. I do not know of a more tempting discovery than the finding of one of these little nests. The circular entrance, which is generally from two to three feet from the gronnd, is not much more than one inch and a quarter in diameter. The excavation is usually about six inches deep and is widened out to accommodate the prospective family. Nearly one-half of the space is filled with the fluffy material of the nest. The chickadee occasionally adopts other quarters than those excavated by itself, and has been known to come into the city and build in an outhouse, after the manner of the more social wren. This is one more instance of the adaptation of birds' ways to half civilized standard; or we may say that it is in conformity to the certain changes of evolution; de manded, as we can plainly understand, as in the case with the swallows and swifts.
Our common bluebird is another well-known example of the inhabiters of cavities. It never digs out these retreats, and seems to accept almost any kind of quarters, either in a clearing or in a bird house in the village.
One species of swallow builds regularly in cavities, of course accepting those provided for it, generally preferring those holes in dead trees about water, over which it largely secures its food, but occasionally taking possession of a bird house. It is a graceful, pleasing bird, with a glossy blue back and white under parts, and is known to the boys as the tree swallow.
Among the warblers there is but one species that nests in holes. This is the prothonotary or lawyer warbler, and is commonly called the golden swamp warbler. It builds its nest almost invariably at the edge of water or over it. It is a handsome, lively bird, and its nest of moss usually contains five or six eggs. The great crested flycatcher is the only one of the family in Michigan which selects an excavation for its; nest. The situation chosen varies greatly; hollow limbs, telegraph poles, fence rails and holes in stubs are the usual selections. The five or six eggs are laid in a nest composed of rubbish, and in which there is nearly always found a cast-off snake skin. Sometimes there are two of these skins, and I have found portions of three. This is the only species of bird which presents this peculiarity in Michigan, and naturalists have tried vainly to account for the habit.
Among the birds of prey there are several known which lay their eggs in holes. The common sparrow hawk lays its five or six blotched eggs in a cavity in a tall dead stub, while the screech and barred owls select somewhat similar situations. The great horned owl often builds its nest in a huge cavity in the trunk of a large forest tree, but the nest is about as of ten built in exposed situations in the crotches of the tree, after the exposed situations in ther

I have only met with one duck's nest, that of the mallard, placed otherwise than on the ground. This set of eleven eggs was laid in a deep cavity at the top of a large stub which stood in the water. The wood duck always builds its nest in the cavities of trees near the water.
Two kinds of swallows burrow in banks in the nesting season. The common bank swallow or sand martin is very abundant in sections, and I have seen as many as two hundred burrows in one bank on the

BANK WITH KINGFISHER'S NEST.

Kalamazoo River. These holes are generally about the length of one's arm, rarely longer, and at the end of a nearly straight burrow the flimsy nest of dead grass is found holding the five, six, or seven crystal-white eggs. As a rule the burrow has to be dug away in order to reach the nest, as the entrance is not of a size to admit the hand and arm. Another species, more often found breeding by isolated pairs, and much rarer, is a near relative, the rough-winged swallow, whose burrows are deeper and are further distinguished by having a round entrance hole, whereas the opening of the common bank swallow's burrow is elliptical in hape. The belted kingfisher is another burrower, and sometimes digs his tunnels over six feet in length. Gen erally they are between four and five feet deep, and
wind about slightly. At the end of this tunnel is an enwind about slightly. At the end of this tunnel is an en largement sufficient to accommodate six to eight glo

SECTION OF TRUNK SHOWING NEST OF A WOODPECKER.
bular white eggs and the sitting bird. The eggs are deposited on the bare, cold sand, usually in early May. Occasionally we observe oddities in the selection of a nesting site, as in the rare case of a robin building in a cavity in a stump. It is not unusual for bronzed grackles to nest in hollows in stubs, in newly cleared quarters, showing that a species that generally builds nests on limbs of trees can take advantage of oppor nests on limbs of trees can take adva
tunitien for protection when afforded.

The eavesand barn swallows and purplemartins and also the swifts accept the protection afforded by man by nesting under the eaves and within barns and sheds, and bird houses, cornices, and chimneys.
All owls, woodpeckers and the burrowing swallows and kingfishers lay white eggs, but the rule is not unvaried regarding white eggs with those species which breed in excavations, for the sparrow hawk, nuthatches, house wren, and brown creeper all lay well spotted eggs.

Funting the Polecat
 \section*{by thomas honmes.}

From the 15th of November till the 1st of March a good many of the dwellers in theruraldistricts of Connecticut, and especially in the Connecticut River Valley, find profitable employment in trapping polecats. The occupation is not a pleasant one for a person whose sense of smell is toned up to the point of fastidiousness, but it pays far better than farming or any other vocation that offers itself to the back-country dweller.
The trapper, about the middle of November, sets stone traps and baits them with pieces of fresh meat. A chicken's wing, the "hind quarter" of a musk rat, or a piece of fresh rabbit is considered a fetching bait. The trap is a heavy flat stone, supported by notched sticks that are held in place by' a spindle, upon the end of which the bait is placed. In attempting to take the meat from the spindle the trap is tripped and the stone falls on the animal,

The most favorable localities for setting these traps are under the walls around pasture lots and near ledges and old cellars or chimney stacks. Steel traps are sometimes used. They are placed in burrows; but it is necessary to carefully conceal them, or the animal will dig around the trap and escape.
When deep snow covers the ground, the skunk remains in its burrow and the trappers are obliged to wait until the ground is bare again before hunting the animal.

When the polecat is stirring, his favorite stamping ground is easily found, for the soil will be turned up as if by pigs. The animal roots in the ground for worms and roots of grass and certain shrubs. He is also fond of eggs and chickens, and he makes bad work for the farmer when he manages to get into his chicken house. He seems to hold the flesh of the fowl in a lower estimation than its blood. When a skunk finds himself in a well filled chicken house he proceeds to kill the fowls, and as he does so he drinks their blood, sometimes so gorging himself ${ }^{3}$ as to be unable to get away, and he falls into the hands of the person whose property he has destroyed.
In the fall skank hunting is quite a popular sport among the men and boys of the back-country. The hunt usually takes place on the "young o' the moon." The participants clothe themselves in raiment for which they care but little, and, armed with a stout club or pole, from eight to twelve feet long, they take to the field about nine o'clock in the evening.
The polecat has an uncanny preference for cemeteries, and, if moving at all, he will be found burrowing around a graveyard oftener than anywhere else. If there is a cemetery within a reasonable distance, the hunter makes it his objective point.
When the game is sighted, the hunter, moving as stealthily as possible, advances upon it, and if he manages to get within striking distance of it without having been noticed, he stamps on the ground. The animal, on hearing the sound, immediately faces the enemy. There is a quick blow of the club, carefully aimed, and the polecat's days are ended. It sometimes happens. that the aim of the hunter is faulty and the animal is not seriously hurt. Then it is that the man takes to his heels and beats an inglorious retreat.
From the fatty substance taken from the animal the country people try an oil, which they believe possesses wonderful medicinal properties, and it isfreely used by them in severe cases of croup, inflammation of the lungs, and rheumatic affections.
The true value of the animal lies in its pelt, which finds a ready market. The pelts are graded in three classifications, viz.: Stripe, half stripe, and black. In the majority of skunk pelts there is a white stripe running from the head to the tail. These are classed as striped skins. When the white stripe extends only half way along the back it is a "half stripe" skin. A black pelt has but very little white in it, and it brings a much higher price than either of the other classifications.

Within the past few years skunk skins have made a wonderful increase in value. Formerly the hides went slowly at ten cents apiece; but the demand has grown for them, and a stripe and half stripe pelt now brings the trapper from eighty cents to one dollar and a black skin goes at one dollar and a half.
The skins are used extensively in the manufacture of fur garments. The monkey skin capes and muffs that were so popular a year ago were largely made of black skunk skins. Large numbers-of them are annually ex ported to Europe, where they are manufactured into caps and other articles of wearing apparal

REGENTLY PATENTED INVENTIONS, Engineering.
Propeller Shaft Thrust Bearing. - Hancs C. Pederseen, Brooklyn, N. F. A. Aleeve having the outer end of the thrust block, a collar rotating on the exterior of the block having recesees in its inner face in which are ifted adjustable blocks, while friction rollers of the shatt balls being interposed between the outer ends of the rollers and the inner surfaces of the adjustable blocks. By this improvement, which is readilyadaptable Ito any propeller shaft, it is designed that the friction between the shaft and the bearing will be grestly
rediced, while the construction is economical and durareduced, while the construction is economical and dura-
ble, and quick and convenient access is afforded to any ble, and quic
of its parta.
Gas Generator.-John H. Miller, Jr., Galion, Ohio. This is a water gas generator for the
manufacture of gas for either heating or lighting purmanufacture of gas for either heating or lighting pur-
poses by the decomposition of steam and oil Above the fuel chamber is a vertical partition wall in the 裔iddle forming two compartments, with baffe plates arranged lets arranged at the top of the compartments. The improved generator is easily and economically operated, and very effective in producing a large volume and good quality of fixed gas, without being fouled by deposits of in and taken out, and afford a great heating surface for fixing the gas without the use of checker work.

Rallway Appliances.

Metallic Tie.-Albert E. Roberts, Norwalk, Ohio. The base or tie bar of this tie is formed of a steen plate with upwardly bent side flanges, in conjunction with which is osed a metal seat block, having ends in angular enlargements, into which angular detach-
able abutments are projected. This tie is designed to able abutments are projected. This tie is designed to absolutely prevent the spreading of rails, is not expensive
to manufacture, and can be quickly placed in position, to manufacture, and can be quickly placed in position,
the spikes as they are driven having their ends automatithe spikes as they are driven having their ends automati-
cally clamped to the seat block to prevent drawing.
Car Starter.-Karl J. Pihl and Oscar W. Hult, Brooklyn, N. Y. On one of the car axles are
two fixed clutch hubs and two loose clutch disks, a two fixed clutch hubs and two loose clutch disks, a
loose spiral spring on the axle being fast to the clutch loose spiral spring on the axle being fast to the clutch
lisks, with means of locking and unlocking either clutch disk. The device is very simple, and is adapted to store energy when the car is stopped, giving out such energy lng one of the axles as the car is started. The device operates effectively in either direction of travel.
Car Coupling.-Gustav Runge, Sidney, Neb. This invention provides an improvement in each of the twin jaws is locked in engagement by a pivot bolt passing through it, the object being to provide a more secure lock than in other couplings of this class.
This coupling can be readily arranged for coupling with the ordinary link and pin coupling.
Block Signal Sistem.-John La Burt, New York City. This system comprises a series of semaphores arranged along the track, a circuit closer connected with each and acting as a balance for it, an
electric motor at each geared to depress the arm and raise the circuit closer, a lever mechanism for tripping the circuit closer by the passing of a train, and electrical connections whereby the tripping of the circuit closer or the next semaphore. The system is comparatively simple sand not likely to get out of repair, is positive and
efflcient, and is antomatically operated by the movement efflcient, and is antomatically operated by the movement
of the train to throw up a semaphore as the train passes a of the train to throw up a semaphore as the train passes a
block, and throw down the arms in advance of and in the rear of a train. The invention also provides for antomatically shatting off stcam and stopping the
should the engineer accidentally ron over a block.
To Secure Railroads Against Loss or Freient.-Jóseph B. Mockridge, New York City. The invention provides an original system for control-
ling the shipping of merchandise to secure railroads and shippers of merchandise against loss of freight. The system prevents, first, the loading of merchandise in the wrong car at the shipping station; and secondly, in case it should happen that a package is wrongly loaded, in a
car, then it is at once detected, and the railroad will car, then it is at once detectea, and merchandise from the time it passed into its hands until it is delivered to the receiver. The means consist principally in printing
a shipping receipt with characters indicating the receivshipping receipt with characters indicating the receiv ing car, and a ticket containing like characters, so that
ticket and receipt control each other. The ticket is de livered to the stevedore and placed into a Treceptacle held temporarily on or near the car destined for a certain dis-
tant point.

Electrical.
Rocking Chair Attachment. Charles . E. Hartelius, Bay Ridge, N. Y. This is a
dynamo attachment, so arranged that the movement dynamo attachment, so arranged that the movemen
of the chair will operate the dynamo and generate a mild current of electricity, which passes through corrent passing throngh the body when the occa-
pant places his hands on the electrodes. This improvementdoes away with the use of batteries, and en ables a person to take a gentle shock for any desired
length of time, the chair being used in the ordinary way hen the hands are removed from the electrodes.

Mechanical.

LUbricator.- Vilhelm C. Th. Lohmann and Carl V. Andersen, Copenhagen, Denmark
This is a device adapted to antomatically deliver a re quired quantity of oil to moving parts of machinery. It operated by the machinery it lubricates, while it can be

Mould Forming Knife.-Louis His New York City. A vertically adjustable knife having an
inclined lower edge is held by adjusting serews in the opposite end uprights of a supporting frame, a gange over which moves a pointer, being secured to one of the
aprights. By means of this improvement a monld for propeller blade may be quickly and accurately formed
in a flask without the use of a pattern, the knife being quickly and nicely gadjustable to form a mould of ang

Continuous Brick Kiln.-James P Veirs, Omaha, Neb. In this kiln the brick burning pro ceeds continuously through a tunnel which returns into
itself, the drying and burning of bricks, the cooling and emoval of the burned bricks, and the recharging of the different parts of the to gel different parts of the tunnel. The invention covers a
pecculiar construction and arrangement of parts whereby the operations are carried out more expeditionsly, ec the bricks and a greater economy of heat and saving of fuel.

Agricultural.

Corn Harvester.- Rasmus Peder on, Dramman, Mirn. This machine is drawn between time, delivering the corn to tilting tables, and when bundles have been formed or suitable quantities accumn lated, the tabese are tilted to spill the corn upon the
grond. The construction is such that the cutters or groond. The construction is such that the cutters or
knives may be either stationary or laterally reciprocated knives may be either stationary or laterally reciprocated
as desired: The levers are all within convenient reach of the driver's seat, and the front of the machine may be lowered to cat the corr
ground as may be desired

Miscohaneous.

Addina Machine.- Augustus J. Brooks, Wichita Falls, Texas. This machine, while being simple, inexpensive, and easily operated, is adapted
to mechanically register the amounts of successive additions in such a way that there is no chance for mistake In operation, every complete revolution of the unita wheel moves the tens wheel, and every revolution of the latter moves made hy depunessing the kers marked with the cessive figures and where columns of figures are added and the amount of snccessive additions is registered, locking plate comes into use. The sum of an addition is displayed
machine.
Checr Reaister.-Carol T. Daniels, tively working apparatus which may be easily arrange for use, and is designed to kepep an abe ealutely arracurate
acconnt of sales made. Tablets of celluloid or similar material, each representing a defnite amount, are held in troughs of novel construction in such a way that, when
a sale is made, and the salesman preses downward on a sale is made, and the salesman preses downward on
key-plece, the front tablet is pushed througt a key-plece, the front tablet is pushed through a lilot into
drawer, the tablets being thus deposited in the drawer to e made
Photographic Printing Device.Wilhelm Ohse, Dessar, Germany. The frame of this
device has a back of translucent glass, the top and botdevice has a back of translucent glass, hithe top and bor
tom being of a clear glass backed with a colored strip, while a holder adapted to receive a negative is located at the front of the frame opposite the translucent glase, and The device is designed to facilitate printing at night by lamp light, and is designed to afford as good effects in
such printing, with certain negatives, as can be obtained with the best natural light-negatives of a certain density being thus better printed than can be done by sunlight.
Musical Instrument.-August Pet tersson, Eskilstuna, Sweden. This invention relates to
stringed instruments, such as violing, etc., providing an stringed instruments, such as violins, etc., providing an
improved instrument with additional strings, arranged in improved instrument witt additional strings, arranged in
connection with the regular estringg, to prounce additional armonious sounds that are difflcult to produce on ord ary violins. The invention consists of a detachable spindess connected with the additional strings, the latter being irranged close to the ordinary strings, so as to be
sounded simultaneously with the latter to produce harsounded simulta
monious sounds
Window.-Peter Vandernoth, New York City. This window comprises a frame having a movable sill, parallel guide rods arranged on opposite
sides of the frame, and overlapping window sashes held to slide and swing on the guide rods, the lower sash rest ing normally on the sill. With this improvement the window sashes may be swumg wide open and raised to
the upper portion of the frame, thus opening the entire the apper portion of the frame, thus opening the entire
window to permit the free circulation of air and to facilitate the passing in and out of various articles. The may be cased up tightly if desired to have the appeearance

Shutter Worker.-Louis Kutscher Sew britain, Conn. This is and which may connection with any blind carried by the window frame. It can be operated from the inside of a room to open or close the shutters, and to hold them locked in an open or
cloeed position, or in any intermediate position, the de vice being very simple, durable, and \{inexpensivie in construction.
SCRU
Sćrubber.-Ophelia Smith, Shepherdsville, Ky. This is a reversible device, having a scrubbing brush on one side and a mop on the other, for first
loosening the dirt on a floor with the brush and then folowing with the mop, there being a further attachment a a wringer by means of which the mop may be easily nrong without tonching it with the
not being required to bend mueh.
Bread Raiser.-John C. Nicholls, Blue Mound, Ill. This apparatus includes an outer cas-
ing having an inner r raining chamber,
bot olow which ia
heat in the raiaing chamber-one by adjosting the flame peningg and the thirr by avalve-cone valved air inlet ing. The heat may be thus evenly distributed to the diferent portions of the raising chamber, the air of which will not be
the flame.
FaN.-Herman Scheuer, New York City. This is a simple form of fan adapted to be readily opened and closed, or snugly folded. It comprises a cir-
cular folding web, a metallic handle made in sections, Cular folding web, a metalich hande made in seccions, wooden strips securace on each metalic handile eection and
connecter with the end of the web, and a metallic block onnected with the enc of the web, and a metalic bloct
held in the handle eection and clam ping the woodenstrip in place at its outer end.
Pnedmatic Tire.-'Foster H. Irons, Toledo, Ohio. This tire is formed with an exterior and an inner tube, each tube having a joint in its inner side, arranged to cover the joint. The rubber tubes of the tire are moulded in a spiral shape, and straightened out when
formed into a tire, thus contracting and condensing the ormed into a ire, thus contracting and condensing the will be closed by the pressure of the adjacent parts of

FUNNEL--Edward N. Gaudron, Portand, Oregon. Two patents have been granted this in-
ventor for a funnel for conveniently flling liquids into receptacles, the funnel automatically closing when the tining the ligqid the proper height, at the same time re is removed from the filled vessel. A pivoted cylinder closed at its ends and containing a ball is connected at one side of its fulcrum with a valve adapted to close the
funnel nozzle, a float being connected with the cylinder fannel nozzle, a float being connected with the cylinder a tining the ball, to trip the cylinder on the rising of the luid. One of the patents egpecially provides for a mag
Ale Tap.-John Neumann, Brooklyn N. Y. Two patents have been issued to this inventor for ale taps, one patent providing specially for a tap adapted
o withstand blows of a mallet when the tap is driven into a plugged cask, the tap being convenient to remove from the tap shank, and being easy to manofacture, Th shell of the tap, which may advantageously be made of cheaper metal than brass, has a fancect.protecting skeleton frame in front, an insertible faucet, and means for con-
necting the skeleton frame and fancet. The other paten provides a tap or spigome ancecially adet. The other paten casks in vaults or cellars, to be connected with a dispeng ing device in a room above. The tap is cheap and simple, while it is more durable than those of ordinary con struction. The major portion of the tap may be made o
malleable iron or soft teel, instead of brass, thereby greatly reducing the cost of production, and greatfacility afforded for extending the tubular connection in an irection from either side of the tap stock.
Loading Device.-Louis A. De Mayo, New York City. This invention relates to devices fo ther veesels, providing new and Improved means there for, to facilitate performing the work rapidly, withou
requiring much labor. Boxes, each having doors in it requiring much habor. Boxes, each having doors in
sides are mounted to slide vertically in the barge, each o the boxes being preferably of nearly the width of the parately or collectively.
Suspenders.-Michael Feldman, New York City. This iuvention provides suspendersdesignea to ingure the comfort of the wearer, the rear suspender according to the movement of the wearer's body. The connection for the rear ends of the ehoulder strapsis
provided with an elastic band, and its middle portion LiDa
Ladder.-Charles V. Childs, Pittsburg, Pa. This ladder is made in two sections hinged
together, and a truss connecting the two sections with each other in sucha manner as to prevent the section from spreading when the ladder is used as a step ladder,
and to strengthen thesections when they are extended to form a straight ladder. The ladder may be quickly ladder and wice veras, and it can be very cheaply mann-

Rotating Grain Weigher.-Benja min Simons, Charleston, S. C. Fulcrumed upon a main frame is a balance frame carrying a rotary bucket wheel
at one end and a track way at its opposite end, upon which travels a movable weight, stops on the main frame imiting the opposite movements of the weight. Auto
matic locking devices are adapted to lock the bucket wheel from rotating when raised, becoming disconnectei therefrom when the wheel is depressed. Upon the up peco board of the frame is a registering
STrap.-Nils. Nilsson, Brooklyn, N. Y. This is a metalic strap adapted to be osed on packin
casee and boxes of all kinds the thans or straps bein also capable of use as corner irons simply. The strap hai openings to receive nailis and fastening devices, the metal around each opening being so shaped that when the nails are driven the openings will be entirely closed, and the
metal at the edges will be driven down into the materia netal at the edges will be driven down
rom which the box or casing is made.
Hoof Trimmer.-Henry C. McCleave, Trimble, Ill. This tool comprises a knife part having an having an upturned hook or lip at its outer end, the ful crum piece having a series of holes by which it may be adjustably attached by a pivot to the knife. The imple nent is designed to greatly facilitate trimming the hoofs of horses or other animals preparatory to shoeing them,

MATCE Bo

Match Box.-Howard Cramer, New berry, Penn. This invention provides a box in
which the matches are retained by their heade, elightuly which the matcones are retained by their heada, inightil ally Ignited as they are withdrawn, without setting fre to
smokers or others asing matches from carrying off
handful of matches when it is intended to supply gratis handfol
bat one.
Sus.
Shampooing Hatr and Scalp.-Will: iam C. Voss, Geneseo, IIl. A steam shampooing device is provided by this invention, the device beingalso arranged to dry the hair and scalp after they have been subjected
to the action of steam. It is deaigned that a cleansing compound shall be sprayed upon the hair and scalp dur. ing steaming, the arrangement being such as to prevent
the hair and scalp from being too highly heated A bel. the hair and scalp from being too highly heated. A del.
lows or air attachment may be need or not as desirean Owws or air attachment may be uesed or not as desired,
and either hot or cold air used in drying the hair and scalp.
Syringe. - Joshua M. Wardell, Cadillac, Mich. This invention provides novel features in the
ozzze and body of the syringe, whereby water of the reaired temperature may be discharged in a circle of jete or streams from the nozzle.
Nors.-Copies of any of the above patents will be farnished by Munn \& Co.. for 25 cents each. Please
send name of the patentee, title of invention, and date send name of
of this paper.

NEW BOOKS AND PUBLICATIONS.

Star Maps for Every Month in the Year.
North Amecially prepared for use in
Ay Richard A. Proctor.-LLuminous STARS. A me-
thod for quickly learning the names and positions of the constellations,
the movements of the planets, etc.
By Alfred E. Beach. New York: ${ }_{\$ 2.50}$ Mun
In this very elegant work we have given Proctor's celevisible during different parts of the year.
these mape are very elegantly printed in bue ground with the stara' Constellation outlines, Greek letters and names in white. To make each map precise, the hours it corresponds to
on each of six dates are given with each map. On the on each of six dates are given with each map.
page opposite each map is given a full description.
The second portion of the work, "Luminonon, stara," will have a more special interest, derived from its novelty
a a delightful method of studying astronomy. The use as a delightful method of studying astronomy. The use
of phosphorescent stars upon a dark background, or of dark stars upon a phosphorescent background, has already been described by Mr. Beach to the readers of the
Screvviric Amkrcas. In this work we have the esme ScievTrific Amrrican. In this work we have the same subject put into permanent shape for the library and
pome. It is a home book-one which will do much to
the Living Method for Learning ElVING METHOD FOR LEARNING
How To Think IN FRENGE. By
Charles F. Kroh, A.M. London; and
Hoboken, N. J. Published by the
author. Pp. 140, vii, ii. Price \$1. Prof. Kroen, in stating the basis of his method of earning Freench, states that you cannot speak French
while thinking in English. To learn French he obwhile thinking in English. To learn French he oboo associate complete French sentences with his
daily actions. This book therefore carrying out this dea gives French sentences which describe the general actions of any one's daily existence, and presents an
ingenious, easy, and practical system of rapidly acquiringenious, easy, and practical system of rapidly acquir-
ing familisrity with this beautifol language. It is deciddly the best work for the learner that has come under or notice. The "living method" is an outgrowth of
the "natural method." As a work, the author is preparing to supply at $\$ 5$ a set phohe fundamental F rench sentences, the object being not o supersede the teacher, but to lighten his labor by nabling the learner to practice at home.
Poor's Handbook of Investment Se-
curities. A supplement to Poor's CURITIES. A supplement to Poor's
Manual of Railroads 1892-93. Pp. 986.

We have to acknowledge the receipt of this standard work. Any review of it seems quite annecessary, in the
light of the authoritative stand which has been taken by Poor's Manual of Railroads among financiers. What hat book does for railroads, his does for various investment securities. Every kind of information required by ments, interest paid, when payable, and range of values xhaustively treated here. It is the third annual issue and it is safe to say that many of those posesering the one work will have equal necessity for the other.
LogArithmic TABLes. By Professor
George William Jones, of Cornell George William Jones, of Cornell
University. Fourth edition. Lon.
don: Macmillan \& Co. Ithaca, \mathbf{N}. don: Macmillan \& Co. Ithaca, N.
Y. George W. Jones. 1893. Pp. 160 .
Price $\$ 1$.
Thesetables will be welcomed by computers from theh particularly clear arrangement. The numbers are widel, spaced, and every facility is given for the application on
differences in finding logarithms to the final figure. Tha ange covered may be deduced from the fact that ther and logarithmic functions, some very valuable collection of data, etc., are given under mathematical constants use in chemistry, engineering and physics, The anthor offer reward of $\$ 1$ for the first notice of each error, an ez
cellent guarantee for the subsequent editions which w re sure will follow the present
he Mining Directory and Refer CaNADA AND MEXICO. George W W
Ramage, editor. Chicago, Ill.: Pool
Ramage, editor. Chicago, Ill.: Pool
Bros., publishers. 1892. Pp. 551
Price $\$ 10$.
To those interested in mining engineering, and t
 ensable. The book contains a most exhanastive ilist
different mining laws of the States. Even from the
point of view of ite advertisements only, the work will
have defnite value for mining engineers and capitaliste.
How to Know the Wild Flowers a GUide to the Names, HaUNTS
Flowers. By Mrs. William Star
Dana. Illustrated by Marion Satter
lee. New York: Charles Scribner's
Sons. 1893. Pp. x v, 298. Price $\$ 1.50$.
This is not a botany, but is designed to have a plac In the family where the botany with its technical descrip the coriner. There is no ignorance so profound an startling as the ignorance shown by even intelligent and educated people about the commonest plants and flower bout them. This work is intended as a guide and aid to such, and not only would the reader learn to have, as the authoress says, a "bowing acquaintance" with old
neighbors, but would with little effort be able to call them by name. The work possesses literary merit, and when the description seems to the authoress to wax a litt]
dry, it is redeemed by some happy quotation or by som dry, it is redeemed by some happy quotation or by some
song of summertide. The accuracy and precision of the description is not sacrificed, however, and the scientific reatment is preserved throughout. There are separate indices for the Latin, the technical, and the common English names of the various flowers. The plants may b readily identified by the illustrations which are very care ully executed and are quite numerous, there being 10 plates, most of which were sketched directly from na-
ture. The book is handy in form and may be easily arried in a stroll through the woods.
Manúal of Irrigation Engineering.
By Herbert M. Wilson, C.E. First
By Herbert M. Wilson, C. E. First
edition. New York: John Wiley \&
Sons. 1893. Pp. xx, 351. Price $\$ 4$ Irrigation is every year acquiring increased importance
in the Western States. It will yet modify enormous areas of our Western Territories, and may even bring about of our Western Territories, and may even bring about
climatic changes. This work is therefore particularly timely and represents what has been a long felt want.
It is written thoroughly up to date and does not confine itself to the smaller features of irrigation, but treats of the great dams of the world as well as of the irrigating conduit. Numerous illustrations of structures and many diagrams are interspersed throughout the text, so that
the whole subject is thoroughly covered and illustrated. The whole subject is thoroughly covered and illustrated The measurement of water is treated very interestingly
including the current water meters, the miner's inch, etc. We cordially recommend the book to our readers.
Any of the above books may be purchased through
this office. Send for new book catalogue just published. Munn \& Co., 361 Broadway, New York.

SCIENTIFIC AMERICAN

BUILDINGEDITIOI APRIL, 1893, NUMBER.-(No. 90.)
table of Contents.
Elogant plate in colors, showing an attractive cottage perspective elevations. Cost $\$ 4,500$ complete. Mr late in colors showing the handsome Queen An residence of the Hon. Craig A. March, at Plainfield,
N. J. Two perspective views and fioor plans. Mr. Chas. H. Sn
3. A dwelling near Longwood, Mass., erected at a cost of $\$ 5,200$ complete. Pe
plans. A model design.
ereoted at a cost of $\$ 4$ Hill, Mt. Vernon, N. perspective view, etc. Mr. W. H. Symonds, architect, New York.
5. Engraving and fioor plans of a residence at Oak wood, Staten Island, N. Y., erected at a cost
$\$ 3,540$ complete. Mr. W. H. Mersereau, architect $\$ 3,540$ comp
New York.
6. A stable erected at Bridgeport, Conn. A uniqui de sign.
residence at Wayne, Pa. A very picturesque de perspective elevation and fioor plans. Cost, $\$ 6,250$
complete. Messrs. F. L. \& W. L. Price, architects, complete. Me
Philadelphia
3. Engraving and floor plans of a Queen Anne residenc at Newton Highlands, Mass. Cost,
Rand \& Taylor, architects, Boston.
D. A square-rigged house, recently erected at Allston, Mass. Cost, $\$$, 600 . Plans and perspective eleva-
tiot. Mr. A. W. Pease, architect, Boston, Mass.
0. The Fifth Avenue Theater, New York. View of the main front, showing the terra cotta decorations; also view showing the iron framework, erected by
the Riverside Bridge and Iron Co., and a view showing the fireproof arching, erected by the Guastavino Fireproof Construction

1. Sketch of a dining-room fireplace
machine, illustrated.-A new edge mouldingin machine, illustrated.-A new edge moulding or
shatping machine, illustrated.-The box industry.Natural gas at Geneva, N. Y.-Plaster of Paris illustrated.-City pavements-The Alberene laundry tub, illustrated.-The "Murray" phaeton,
illustrated.-An elegant bath tub, illustrated.-To thaw out frozen pipes.-Improved plane irons, Hustrated
The Scientific American Architects and Builders lition is issued monthly. $\$ 2.50$ a year. Single copies, cents. Forty large quarto pages, equal to about 'o hundred ordinary book pages; forming, practiTRE, richly adorned with elegant plates in colors and ith fine engravings, illustrating the most interesting amples of
lied subjects.
The Fullness, Richness, Cheapness, and Convenience this work have won for it the Labgerst Circulation any Architectural Publication in the world. Sold by newsdealers. MUNN \& CO., Publishers,

Business and Personal.
he charge for Insertion under this head is (me Dollar a line
for each insertion; about eight words to a line. Adver-
tisements must be received at publication tisements must be received at pubtication office as early as
Thursay morning to appearin the following week's issu

Acme engine, 1 to 5 H. P. See adv. next issue

and Stationary Cylinder Boring
Pedrick \& Ayer. Philadelphia, Pa

Best Handle Machinery Trevor Mfg Co,

Have you tried "aluminum Babbitt metal"? Write The Improved Hydraplic Jacks, Punches, and Tube William Jessop \& Sons, Ltd., the celebrated steel Stow flexible shaft. Invented and manufactured by
tow Mfg. Co., Binghamton, N. Y. See adv, page 174 . tow Mfg. Co., Binghamton, N. Y. See adv., page 174. Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps for paper and pulp mills. Irrigating Portable engines and boilers. Yacht engines and oilers. B. W. Pa.
Street, New York.
For Sale-Patent on improved mine car. See illustrated notice on page 180. For terms
Homer Durand, Starkville, Col
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum ap
acid blowers, fllter press pumps, etc.
Split Pulleys at Low prices, and of same strength and Works, Drinker St., Pbiladelphia, Pa.
Perforated Metals of all kinds and for all purposes, Perforated Metals of or special. Address, stating requirements, The
Harrington \& King Perforating Co., Chicago. To Zet-A suite of desirable offices, adjacent to the Scientifc American offices, to let at modera
Apply to Munn \& Co., 361 Broadway, New York. Fine Castings in Brass, Bronze, Composition (Gun
 For Sale-New 5 horse power upright engine, $5^{\prime \prime} \times 5{ }^{\prime}$
ylinder and $30 \times 5 \mathrm{ft}$. boiler, upright, new. All guaran ed. Spot cash, only \$181. Wm. C. Codd, Baltiiuore, Md The best book for electricians and beginners in elec-
tricity is "Experimental Science," by Geo. M. Hopkins. tricity is "Experimental Science," by Geo. M. Hopkins.
By mail. $\$ 1$; Munn \& Co., publishers, 361 Broadway, N. \mathbf{Y}. Canning machinery outfts complete, oil burners for Cidering, air pumps, can wipers, can testers, labeing
machines. Presses and dies. Burt Mfg. Co., Rochester

An investor desires to communicate with inventors needing funds to patent, develop, or promote their in
ventions. References. "Financial," Scientific Ameri cantions. Refe
Competent persons who desire agencies for a new
oopular book. of ready sale, with handsome proft, may apply to Munn o $\&$ Co., Scientific American office, 361 Broadway, New York.
For Sale-Patent No. 444,106, lubricator. Inventors, scribed in Scientific American, April 8, page 219. Addres Inventors and Business Men

Ien Take Notice-We incor or report blanks. Don't wait. Write now. It may be

HINTS TO CORRESPONDENTS Names and Addyess must accompany all letters,
or no attention will be paid thereto. This is for our
information aud not for publication. information ayd not for publication.
References to former artices or answers should
givedate of paper and pace or number of question.
Inquiries not answered in reasonable time should givedate of paper and page or number of question
In quiriries not answered in reasonable time sould
be repeated, correspondents will bear in mind that
some answers require not a little research, and
 perponal rather than general interest cannot be
expected without remuneration.
to may be American Suppements referred
to mad at the office. Price 10 cents each. Book s referred to promptly supplied on receipt
oprice.
Minals sent for examination should be distinctly
(4828) J. P. asks : What solution should be used in a Smee's cell in order to get the most strength
from the cell? A. The solution used in the Smee battery is sulphuric acid 1 part, water 9 parts. The zince must be well amalgamated and the platinized silver or carbon should be in good condition to insure perfect depolariza-
tion.
(4829) H. B. asks : Can you let me know anything concersing metal plating with Russian white
metal for knives and forks? That is, the metal is melted A. The Russian white metal is probably only a name given to Banca tin, with possibly a small admixture of
ismuth to make it flow easy. It is being extensively advertised in the West. The work done with it is ex cellent. The directions are sold.
(4830) P. F, M. says : As your paper
one of our "standard text books" in our High School, is one of our "standard text books " in our High School,
will you please answer in your "Notes and Queries:" If water at 39° Fah. were perfectly confined, could it be frozen in any temperature; i.e. could it not expand ? A.
Water when confined at the temperature of greatest density, 39°, upon being cooled below the freezing point
produces an immense pressure, and begins to freeze at fow degrees below 32°. The increasing pressure from the expansion of the ice so retards the freezing of the remaining water that a temperature below zero may be reached
before it is all frozen. 2 . Will you please give rule for find ing horse power of ordinary locomotive, withcylinders 1 $\times 24$ and 5 foot drivers, steam pressure in boiler 130, and speed 15 miles per hour? 30 miles? A. The actual horse
power of a locomotive is so variable that
depends entirely upon the cut-off, and the cut-off is govern ed by the actual pull required of the engine. Assuming a heavy train at 15 miles per hour and a mean piston pressare of 50 pounds per square inch, th
approximately $-\mathrm{m} . \times 5,280$ feet
per minute and $\frac{1,320}{15^{\prime} \text { (circumference of wheel) }}$
lutions per minute. As a revolution is equal to twice the stroke, then 88×4 feet $=352$ feet piston speed per min
ute. The area of the cylinders is 2×226 square inches $=452$ square inches $\times 50$ pounds mean pressure $\times 352$ feet piston speed per minute $=\frac{7,955,200}{33,000}=241$ horse power. The possibilities of such an engine are about 400 horse power. The increase in power of the engine is no proportional to the increase in speed, and for 30 miles may
be no more than 300 horse power. 3. Whyare the wheels of a locomotive larger near the flange? And how can it pass a curve when the wheels are worn half an inch maller next to the flange? A. The taper tread on driv ing wheels is to partially compensate by difference in cir
cumference made by the wheel flanges hugging the outer rail on curves, the wheels slipping to make up for the loss of compensation by taper. Wheels that are groove run hard on curves, as well also on straight tracks.
(4831) G. J. L. writes: To settle a dispute will you kindly state what scientific astronomer suppose or figure the temperature of the boundless space of the firmament outside of the influence of suns and
worlds ? If it were possible to have such a thermometer, what would it register if placed in the opposite directio where the sun, as rays would not be affected by friction atmosphere whatever? A. The temperature of inter planetary and stellar space is supposed not to be lower
than absolute zero, or 461° Fah. below zero Fah., or 493° below absolute zero, or
(4832) L. A. L. writes: Last fall I dug a well here for domestic use. I struck water at 26 feet, in a gravel bed, immediately below a stratum of blue clay. We have used the water all winter and always considered
it good (though hard) until a week or so ago, when it developed a peculiar minera taste, having a lot of reddish sediment in it. I inclose a sample of this latter, which
took from less than a gallon of the water. I would like to know what is the reason of it, and also if it is safe to use the water? A. The sample appears to be oxide of iron and clay. Probably it is harmless, but not pleasant to drink. We recommend putting a drive pipe in the bot
tom of the well and connecting directly with a pump to draw water from a deeper and possibly more satisfactor stratum.
(4833) L. S. F. asks the fastest way to find how many gallons a cistern or tank can hold, and if
it is better to pump water into a tank through the bottom. can use the pipes to lead the water off or where we nee it; but I think it is much harder on the pumps when the
tank is half full. A. If tank is round, square the diameter in feet and decimals. Multiply the product by 07854 . Multiply last product by the height in feet, for cubic feet. Multiply, the cubic feet by $71 /$ for gallons. You can pump into bottom of the tank or the distributing pipe
(4834) L. W. B. asks if copper is more difficult to heat by hammering than soft iron. A. Cop-
per develope less heat than wrought iron by hammering per develops less heat than wrought iron by hammering
or compression. Its specific heat is considerably less or compression. Its specific heat is considerably less
than that of wrought iron. It also parts with its heat faster than iron.
(4835) B. asks: Would the atmospheric pherical piece of gold which displaces the same spherical piece of gold which displaces the same amoun
of air? A. The pressure is as the surface exposed to at mospheric pressure. The total pressure would be much
greater on the gold leaf.
(4836) G. S. N. asks how the induction ooil in a Blake transmitter for a telephone is wound ransmitter consists of a bundle of soft iron wires, No. 20 , inserted in a thin spool, about 24/2 inches long, with
two layers of No. 20 wire on the spool and ten layers of two layers of No. 20 wire on the spool and ten layers of
No. 36 wire wound in the primary wire, an intervening No. 36 wire wound in the primary wire, an intervening
layer of writing paper being tightly wrapped on the primary before winding the secondary. The direction of the
(4837) G. D. C. asks : 1. Will the gravity Crowfol Sciences If so, how many cells will it take get enough power to run a sewing machine or other light machinery ? A. The gravity battery, owing to its resistWhat size wire should I use to make one half the size of he one described ? I have completed the one man powe now I want a smaller one. A. If you intend to make a about righ
(4838) J. N. F. asks : How many strokes er minute can an air compressor, similar to the one used work successfully? Or, in other words, how many cubic nches of air will valves of similar size and capacity receive and deliver per minute? A. The Westinghouse air brake can safely make 250 single strokes per minute, and
ill deliver air at nearly their full capacity, the valves be will deliver air at nearly their full capacity, the valves be-
ngequal to their pumping capacity. We cannot name the
(4839) F. \& T. ask how many storage atteries it would take to run eight lights (incanescent) for five or eight hours, provided the cells wer about $12 \times 7 \times 5!$ A. The number of storage batteries
required to run your lights depends upon the resistance of the lamps. For eight 20 volt lamps you will need 1 or eight 50 volt lamps you will require 26 cells; but these cells will run about 20 such lamps.
(4840) J. W. D. writes : I am winding some field magnets with two wires in parallel, and I wish wo wires are of differentsizes. Oneis No. 22 double cot
the on-covered and the other is No. 21 bare. I do not know how much of each yet, so I would be greatly obliged if
sistance of the fields and armature in shunt and series wound dynamos. A. It is bad practice to wind the field magnet with wire of two sizes. No. 22 wire runs 60 feet 6 inches to the ohm, while No. 21 is. 76 feet 4 inches to the ohm. In a shunt wound machine the resistance of the field magnet should be about fourteen times that of the
armature, while in a series wound machine the resistance armature, while in a series wound machine the resistance
should be as small as possible consistent with the proper excitement of the field magnet
(4841) B. J. E. says : If oil put in the cylinder of an engine would pass through the exhaus pipe (into a well into which the suction pipe runs) and be
drawn into the boiler with the water, would the oil ignite drawn into the boiler with the water, would the oil ignite
or cause boiler explosion if taken up? Or would it take long time before enough oil to get into the boiler, as the boiler pipe, of course, is at the bottom of the well ? . The oil from the exhaust pipe in the well might do no harm for a while; but its gradual accumulation would cause it to come within the range of the suction pipe and o the boiler. In the boiler it will tend to gather the dirt and loose scale, forming masses that agglomerate and nally lodge on the fire sheet, cause it to be overheated, bulge, and if not discovered in time may cause a dis-
aster. Many a boiler has made a large bill of expense aster. Many a boiler has made a large bill of expense
from this cause alone. The oil will not ignite in the boiler; the danger is from lodging overthe fire and allowing the boiler plate to be heated red hot and to bulge. (4842) P. B. asks : 1. How many volts oes itrastrat in 041 of the Scien and plement? A. Two volts. 2. Of what resistance is the feld magnet and of what resistance is the armature The resistance has not been measured. We think, how ver, that the entire resistance of the machine is not more
(4843) E. E. J. says : I am desirous to know whichist the hardest to bend, a solid bar, say 2 inches
in diameter and 6 feet long, or a hollow bar of the same in diameter and 6 feet long, or a hollow bar of the same dimensions having a 1 inch hole in the center. What is
their difference, both in strength and price of manufacture? A. The solid bar is the hardest to bend, i. e., it will bear the greatest load, and costs less than a hollow extra strong pipe, which costs twice as much as a solid ba of the same size. On the other hand, the same weight of
metal as a tube is harder to bend, or will bear more weigh metal as a tube is harder to bend, or will bear more weigh than a solid bar, both of the same length.
(4844) C. H. S. says: Will you please give me a rule, through Notes and Queries, for finding the remaining bearings of a survey when the interior
angles, length of sides, and the bearing of one side are given? A. Plot the survey on paper with the side having the given bearing for the base, and draw the meridian at the proper angle with the side given. Use the differ-
ence of the given course and the ineridian for adjusting the several angles of the plot. Make the necessar changes of bearing the reverse way to prove the work. See Gilles pie's Surveying, by Staley, a complete guide to the surey and plotting of land. $\$ 3.50$, maile
(4845) W. H. P. writes: I have a storage battery which, after charging for abouttwenty hours with arge dynamo, it will only run about two hours. It look to me as though it runs down while not in use, as it gives large spark when freshly charged. The negative plates look all right, but the positive plates look empty. If so,
how can I refill them ? Is there any articleon making and how can I refill them? Is there any article on making an If so, what number? A. Possibly your storage battery is short-circuited, or it may be that you are using it on have destroyed your storage battery by subjecting it to he action of too much current. Better send the battery to the makers for refilling. We hardly think you will be
able to refill the plates yourself. You will find many able to refill the plates yourself. You will find many
references to articles on storage batteries in our new Supplement catalogue, which is mailed to any addree without charge.
(4846) A. L. E. writes: In your issue of March 4, 1893, page 134, C. L. Wolley describes a storage cell. What is the use of the red lead paste? How are
the connections made with dynamo or primary cells when charging it? How long should the connection betwee dynamo and storage cell be kept up? When charged, hain long will it be before it is necessary to charge it one say that would run from 10 to 20 incandescent lamps, A. Red lead paste is used on storage battery plates to fa easily converted into the oxide, he than the beallic more The two poles of the battery areconnected with the bind ing posts of the dynamo for charging and the batter should always be connnected up in the same manner. requires from five to seven hours to charge a storage bat tery. We cannot, within these limita, give you full in ormation in regard to the construction and use of stor PLEMENT catalogue
(4847) C. P. P.-1. Please give me a list of all the metals, as I am unable to find a complete list,
including the later discoveries. A. A list of metals will including the later discoveries. A. A list of metals wil Soon be published in the SCIENTIFIC AMERICAN.
What is the fastest railroad time ever made? When and where was it made? A. The fastest railroad time is claimed at the rate of 80 to 90 miles per hour on the cen New York. November 21, 1891, fientific American, october 24 an
(4848) H. G. M. writes : I am designing an automatic plug for electric light circuits. The plan greatly when hot. Now what I want to know is wh will this substance have to be to heat and expand quite a little with about 4 amperes and 110 volts? A. We know of no substance better adapted for your purpose than
brass. Compound bars of brass and steel are often used for thermostatic bars. Possibly such a bar would b better than one of brass only. Neither the brass bar no he compound bar would have great resistance
(4849) L. P. writes: I have built my house from plans made by you, and am more than
pleased with it. Since then a number of lightning rod pleased with it. Since then a number of lightning rod

Would it not be just as safe to put up $1 / 2$ inch or $3 / 4$ inch
gas pipe, with a good point and a large plate at the bot om to scatter the arr for lightning rods, but iron is not as good; copper is preferable. Probably the best form of lightning rod is a
copper strip nailed directly to a building and connected with a good earth plate.
(4850) F. K. \& Son ask : 1. What size belt should we use to deliver $11 / 2$ horse power; speed of
main shaft 260 revolutions, with 12 inch pulley to drive line shaft, having an 18 inch pulley? A. A $11 / 2$ inch belt What size belt should we use to deliver $11 / 2$ horse pulley, to drive main shaft 173 revolutions, with 10 inch pulley, to drive line shaft with 16 inch pulley? A. A inch belt. 3. What size belt should we use to deliver ley? A. A $11 / 2$ inch belt.
(4851) G. R. C. writes: A friend of mine valve will clatter, and does not seat when he stops the feed pump; and as long as it clattersit leaks, and when it does not is perfectly tight, and to stop its clattering he has close the globe valve between the check and the boile or open the petcock on the air chamber. The clattering resembles a telegraph instrument with the circuit open air in the pump chamber is highly compressed, according the pressure in the boiler. It is elastic and acts like boiler. The action of the water in the boiler when making team is like a tremor or vibration, and communicates a ibratory motion to the water in the feed pipe, which is
 overpressure from the boiler closes the check valve. The losing of the valve between the boiler and the check with the boiler
(4852) H. H. S. asks: 1. What chemical is put in the porols cup of a Leclanche battery? A xide of manganese. 2. What chemicals are used in lectroplating with copper, and in what proportion are they mixed? A. For an answer to this query we refe you to Supplement 310. 3. Is there any chemical that in arc light without degtroying the carbon? A. Us itric acid. 4. Is there any article on the construction of an electric machine in the SUPPLEMENT? A. You will
find a description of the Holtz machine in SUPPLEMENTS 278 and 279 , and
648,584 , and 647 .
(4853) E. F. S.-1. Where I work we have a large quantity of glue which has been used fo very dirty and hard from grease and bits of plaster, etc and unfit for use. Is there any way to renew it at reasonable cost? A. Glue and glycerine jelly, adding a lit
tle water to thin it, and strain it through a cloth, hot Skim off any oil that may rise in heating. Boil the chloroform work better in an ice machine, nottaking cost into consideration? A. Ether is preferable as a refrige ion of magazine photograph camera in your paper Where can I find it? A. The magazine camera is de cribed in Scientipic American, July 16, 1892.
(4854) O. G. F. M. says: 1. Have shunt-wound dynamo, with 4 wire No. 20 on field and 11/
same on armature. I carry from 5 to 716 -candle powe amps of 50 volts each; but the field magnets get ver sert some resistance in field magnets. What is thereason ts the wire wound in the right proportion? A. Too much hould rewind goes around your field magnet. You chine as a series machine. 2. Can you give mea formula of some good composition for use in blocking tablets when torn off? A. The composition is said to be pre ared as follows : Glues 4 pounds; glycerine, 2 pounds to color. The glue is softened by soaking it in a little cold water, then dissolved together with the sugar in the dyes are added, after which the oil is well stirred in. It is used hot. Anothercomposition of a somewhat similar nature is prepared as follows : Glue, 1 pound; glycerine,
4 ounces; glucose sirup, about 2 tablespoonfuls; tannin one-tenth ounce. Give the compositions an hour or mor to dry or set before cutting or handling the
(4855) P. J. L. asks : 1. What objection can be urged against the sprocket wheel and chain fo he friction great sprocket wheel and link belt is noisy under high speed or rubber. It isbere more friction than belts or leather under any speed, and aeems to hs transmitter of powe peculiar work not slow and unyielding pull. 2. What, if anything, has been done or accomplished in the way of compounding the explosive force of gas compounds in gas engines, and combustion, the same as the condensation of stean in a steam cylinder? A. There has been no practical applitofore, the impoung system to the gasengine. Here plosive force seems to have been a bar to efforts at com pounding, yet with the later impro ments we do no多 and no latent ore the principle of expansion in a second cylinder would
(4856) A. E. H. asks: Would a lamp of the following description be safe and practical? Gasoline bottom, the burner to be not closer than 4 inches above, he intervening space to be used for the generating of cast iron or something that will not break and that will thand conalderable pressure. A. We cannot recommend
ny form of gasoline lamp for house use. There ar
many difficulties and dangers attending the use of gasoine unless entirely isolated from the lamp. There is a lass of gasoline lamps or torches used for outdoor in is on with large, smoky flames, in which the foun regulated by a cock. The gasoline is vaporized in the They can be procured through the lamp trade (4857) F. K. says : Please inform me ich of the common metals expands and contracts Also how much will per foot with a change of 20° tem. 0 expand with 20° rise in temperature and what force il e metals by changes of temperature. It expands a frac on over 0.004 of an inch per foot for 20° rise in temperature. Iron wire about 0.002 of an inch per foot for 20 rise in temperature, or 0.020 of an inch for a 10 foot rod
its push will be equal to the elastic strength or size of its push will be e
the wire or rod.
(4858) A. B. asks : 1. Can double thick indow glass be used for the glass plates of an "influnce" electric machine? A. Yes; but it is not as desirable s the thinner glass. 2. How can I drill a hole in the center of the glass plates? A. Make a drill from Stubs wre, without heating or forging. Heat it to a low red oldering fluid). With this drill you can readily make oles through a glass plate. You should lubricate it with IN SUPPLEMENT give the best directions and drawing or making an influence machine? A. You will find ar cles on the Wimshurst machine in Supplement, Nos. $546,648,584$ and 647.

TO INVENTORS.

An exp than one hundred thousand applice preparation tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled faclitities for procuring patents everywhere. A reign countries may be had on upplication, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices hich are low, in accor-ante wh the thes and exMUNN \& CO., office SCIENTIFIC AMERICAN, 361 Broadray, New York.

INDEX OF INVENTIONS

of

March 28, 1893
AND EACH BEARING THAT DATE.

Cane and camp stol, com
Car brake, M. E. Campany
Car brake, C . Whitacre

burne.a....... Ruitiven...................
Carding engines, device for adjusting the bends

494,298

494,434
494,267

urn and b halser.
Cigar bunching machine, C. Browning. Cigar fllers, apparatus for making, Ni. H. Borg- feldt.
garette roiling case, E. Sclimidit..................
asp. yill, ce
eaner. See S
Clock mover
Cloth drying, tentering, and trimming mach ine,
Cloth nappin
硣,
Clothes drier, w. E. B. Harris:
Clothes line support, safety, T .
Clothes pin
tch,
ee
Com-treed
mbinatio
Compass, beam, N
Confessional, porta
nveyer,
Copper, ap paratus for electrolyzing.
Copyholder,
Corn husker
Piling. See Car coupling, ${ }^{\text {Pipe coupling. Thill coupling. }}$
r, m
dilivator and

Dow Dra Dri Dit

 Electric signal, switch moving, and interiocking
mechanism. Rammey JI. \& Harden
Electrical excitation of vacuum tubes, H. T. Bar-
nett Electicai Meter. G. Rennerfelt.....
Elevator. See
Elevator wells. device for operatic

-

DESIGNS．

TRADE MARKS．

A printed copy of the epecitication and drawing of
any patent in the form oing ifit，or any patent in print

2fdoertisements．
Inside Page，each insertion－－ 75 cents a line
RIT For some clases of Advertisements，Speciol and

Patent Foot Power Machinery Complete Outfits．

ICE－HOUSE AND COLD ROOM．－BY R
 PLKAFNT， 59 ．Price 10 c
and from ail newdealers．

The Sebastian－May Co Foot\＆ATJES
Drill Presees，chucks，Drills，Dogs， Onits．Leathes on trialateure

WM GRAYER
TANK WORKS

Hanulacturers of Iron and steed STORAGE TANKS
3d Floor，Roplokery Bld OHICAGO，ILL．

IMPROVED ATMEP MODERN ENGINE LA NCO DESIGNS

After being on the Market Seven Years THE AGIE AUTOMATIC ENGINE AND BOILER ETITITETREDE：
TVO For either Natural Gas or Petro

EXPERT MODEL MAKING，Mstahishea

ONLY $\begin{gathered}\text { A Practical Little Book．} \\ \text { A5 } \\ \text { HOW TO MAKEA } \\ \text { H．P }\end{gathered}$ CENTS 25

Inventions and Novelties Developed．
 STEVENSS PATENT SPBING CALIPERS

OTTO GAS ENGINE WORKS，PHILADELPHIA．
「エアコ

ESTABAIISHED 1845.
The Most Popular Scientific Paper in the World Only 83.00 a Year，Including Postage
This widely circulated and splendidly illustrated This widely circulated and splendidy illustrated teen pages of useful information and a large number of origin engravings of new inventions and discoveries， representing Emgineering Works，Steam Machinery，
New Inventions，Novelties in Mechanics，Manufactures Chemistry，Electricity Telegraphy，Photography，Archi－ tecture，Agriculture，Horticulture，Natural History etc．Complete list of patents each week．
Terms of Subscription．－One copa of the Scren－ postage prepaid，to any subscriber in the United States Canada，or Mexico，on receipt of three dollars by the publishers；six months， 81.50 ；three months， 81.00 ．
Clubs．－Special rates for several names，and Clubs．－Special rates for several names，and to Pos
Masters．Write for particulars． Masters．Write for particulars．
Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed， seldom goes astray，but is at the sender＇s risk．Addres MUNN \＆CO．， 361 1Broadway，New York

Scientific Samericaut Supplement This is a separate and distinct publication from THI every number containing sixteen large pages full of en－ gravings，many of which are taken from forelgn paper and accompanied with translated descriptions．THE
 sents the most recent papers by eminent writers in al the principal departments of science and the Useful Arts，embracing Biology，Geology，Mineralogy．Natura History，Geography，Archæology，Astronomy Chemis Steam and Rallway Engineering，Mining，Ship Bailding． Marine Engineering，Photography，Technology，Manu fac uring Industries，Sanitary Engineering，Agriculture， Horticulture，Domestic Economy，Blography，Medicine obtainable in no other publication． The most important Engineering Wroiks，Mechanisms， and described in the SUPPLEMENT．
Price for the SUPPLEMENT for the United States CCIENTIFIC MERICAN and one copy of the STPPIE MENT，both mailed for oneyear to ope address for 87.00 ． Stagle coples， 10 cents．Address and remit by postal order， express money order，or check，
MUNN \＆CO．${ }^{661}$ ．

SHuildiny（fitition．
The scientific american Architects＇and Buildires Rdition is issued monthly． 82.50 a year． to about two hundred ordinary lequarto pages，equa large and splendid Magazine of Architecture，richly adorned with elegant plates in colors，and with other fin engravings；illustrating the most interesting examples
of modern architectural construction and allied subjects． A special feature is the presentation in each number of a variety of the latest and best plans for private resi－
dences，eity and country，including those of very mod－ dences，city and country，including those of very mod
erate cost as well as the more expensive．Drawings in perspective and in color are given，together with full Plans，Speciffcations，Sheets of Details，Estimates，etc． The elegance and cheapness of this magnificent work
have won for it the Largest Circulation of Architectural publication in the world．Soid by all news dealers． 82.50 a year：Remit to
MUNN \＆ECO．，Publishers， 361 Broadway，New York

UNRIVALED -FOR- Excellence of Design and	
Construction Simplicity,	YPEMNRI
Easy Operatio Speed,	Adopted as the Official Writing Machine of the World's Columbian Exposition.
Durability. Send for Catalogue.	Wyckoff, Seamans \& Benedict, 327 BROADWAY, NEW YORK

No one ever wrote 1000 Letters an Hour, EDISON MIMEOGRAPH

 \section*{
 \section*{
 TT SENDFOR SURCATALOGUE A HORN LIKE MATERJAL LIGHT AND SOFTRONG CAN BE WORKED LIKEAME METAP.L.
DELAWARE HARD FIBRE GO WILMINGTON DEL}
SCIENTIFIG AMERICAN SUPPLE-

SINTZ GAS ENGINE CO.

 Our Shop
Is a highly organized and well-equipped
institution for furthering the mechanical ideas of inventors, by the making of experiments and the construction of models. $\underset{\text { The Jones Bre }}{ }$

${ }^{\text {H Fou are interested in }}$ RICITY
 ELECTRICAL SUPPLIES, STANLEY \& PATTERSON,

MUNSON" TYPEWRITER.

* MhE "erolutun, the outrouth of parar of ereeren
 INTERCHANGEABLE STEEL TYPE WHEEL

Tro Tnveintore.

R
s.

STEEL TYPE FOR TYPEWRITERS

WATER POWER, Mhenpent in the worly,

ALUMINUM : ITS USES AND AP-

JUST PUBLISHED.
$\alpha+2)^{r} \times A_{0} a_{0}$

By Richard A. Proctor, F.R.A.S.

A series of twelve elegantly printed Maps of the Heavens, one for every
month in the year. Specially prepared for use in North America. With descriptions accompanying each map, giving the names of the principal stars and constellations, showing their relative positions at given hours and days of the nonth.
A most beautiful and convenient work, specially adapted for the use of those who desire to acquire a general knowledge of the starry realms.
To which is added a description of the method of preparing and using artificial uminous stars as an aid in fixing in the mind the names and places of the various stars and constellations, by Alfred E. Beach.
Altogether this is one of the most popular, useful, and valuable works of the ever published. Price $\$ 2.50$.

M UNN \& CO., Publishers,
361 BROADWAY, NEW YORK.
PROPOSALS.

THOMPSON IMPROVED INDICATOR

STEAM PRESSURE GAUGES, ETC. 34 Chardon Street, Boston, Mass.

WE SEND FREE

TO BUSINESS MEN

The value of the SCIENTIFIC AMERICAN as an adver-
tising medium cannot be overestimated. Its circulation is many times greater than that of any similar journal
now published. Jt goes into all the States and Territories, and is read in all the principal libraries and reading rooms of the world. A business man wants something
more than to see his advertisement in a printed. news paper. He wants circulation. This he has when he ad-
vertises in the ScIENTIFIC AM ERICAN. And do not let vertises in the SCIENTIFIC Amprican. And do not let
the advertising agent influence you to substitute some the advertising agent influence you to substitute some
other paper for the SCIENTIPIC AnERICAN when seother paper for publications in which you decide it is for
lecting alist of
your interest to advertise. This is frequently dons for the reason that the agent gets a arger commission from the papers having a small circu For rates see top of first column of t
dress MUNN $\& \mathbb{C O}$., Publishe

〇fowertisements.
ORDINARY RATES.
Inside Page, each insertion, - 75 cents a
Hipher rates some clasese of
The above are charges

COLD FORGED PRODUCT.
Fluted Tire Bolt rumanem

tiffer and stronger than a common bolt. The fluted shank prevents the bolt from
in the rim and tire. COLD $\quad\left\{\begin{array}{l}\text { MACHINE SCREWS } \\ \text { STOVE BOLTS }\end{array}\right.$ FORGED $\left\{\begin{array}{l}\text { LOCK GAP SCREWS } \\ \text { SIDE KNOB SCREWS } \\ \text { THREADED WIRES }\end{array}\right.$ american schew company, PROVIDENCE, R. I
LINK-BELT MACHIMERY CO Elevators and Conveyors Bope Transmissions Special Mining Machinery
Special Woodworting Special Woodworking Machin's Gear, Pulley, Sheave
 AUwancor Cor in ins IY

5

 Co., Cincinnati TuE LUUNEENHED.

> Never
> Never
> NEVER

The long spring is never made now

Now

Quick=winding
Waterbury.

> Genuine. Jeweled. Accurate, Handsome.

See it.
All jewelers sell it.
All
styles,
$\$ 4$

LOVELL DIAMOND CYCLES

highest grade. Lowest prices.
FOR LADIES OR GENTLEMEN Pneumatic Tires, \$115, \$100, \$85.
John P. Lovell Arms Co., Manufacturers BOSTON, MASS.

The Sample Tells the Story

A sample of Dixon's pure flake lubricating Graphite, with an interesting and instructive pamphlet showing the experience of practical and scientific men in using this wonderful lubrican
sent free of charge. JOS. DIXON CRUCIBLE CO.

KODAK

FILMS.

Our New Films are giving perfect satisfaction. They are highly sensitive, and repeated tests
show that they retain this sensitiveness as well as glass plates. No other flims are so free from imperfections; none so uniform; none so reliable. Our film doesn't frill.

Eastman Kodak Co., Rochester, N. Y.

The Smith Premier Typewriter

Perfect and Permanent Alignment.
Easiest Running, and Nearly Silent. All type cleaned in Ten Seconds wisiest Running, and Nearly Silent.
ith Soining the Hands. we have 20 branch offices in the principal cities tbroughout the United States.

James Smith Woolen Machinery Co. THE HUB FRIGTION GLUTGH.

POWER TRANSMISSION MACHINERY. 411 to 421 Race Street, PHILADELPHIA, PA
NEW DOUBLE LEVER HUB FRICTION CLUTCH. The Best Clutch Pulley in existence for Electric Light Plants and all Machiner requiring great speed. The most simple, effective, durable, and economical Clutch
on the market. Made in sizes to transmit from two up to one thousand h. p. The Hub Friction Clutch is in use in all parts of the United States. More than 12,000 sold

HW.JOHIS' hssestros

 STEAM PACKING Boiler Coverings, Millboard, Roofing,Fuilding Felt, Liquid Paints, Etc.

Scientific Book Catalogue RECENTLY PUBLISHED.
Our new catalogue conta ining over 100 pages, Includ-
ink works on more than tfity different subjects. Will be mailed tree to any address on appplication.
mUNN \& Co., Publishers Scientifc American,

EDDISON INCANDESCENT LAMP
IS THE ONLY INCANDESCENT LAMP LAWFULLY MADE. THE RICHT OF THE EDISON COMPANY TO AN INJUNCTION ACAINST
INFRINCERS HAS BEEN DETERMINED BY THE U. S. CIRCUIT COURT OF INFRINCERS HAS BEEN DETERMINED BY THE U.S. CIRCUIT
APPEALS. COPIES OF DECISIONS SENT ON APPLICATION.
 BRANOHE OFFICIBS:
 Gould Bulinurthg.
15 First Street.

1898 NEW MAIL

Higbest Quality and Handsomest Light Roadster of the Year
Men's and Ladies' pattern, Cushion Tires

 125 MILK ST., BOSTON, MASS.This Company owns the Letters Patent No. 186,787, granted to Alexander Graham Bell, January 30, 1877, the scope of which has been defined by the Supreme Court of the United States in the following terms "The patent itself is for the mechan ical structure of an electric telephone to be used to produce the electrical action on which the first patent rests. The third claim is for the use in such instrument of a diaphragm, made of a plate of iron or steel, or other material capable of in ductive action; the fifth, of a permanent magnet constructed as described, with a coil upon the end or ends nearest the plate; the sixth, of a sounding box as described; the seventh, of a speaking or hearing tube as described for conveying the sounds; and the eighth, of a perma nent magnet and plate combined. The claim is not for these several things in and of themselves, but for an electric tel ephone in the con them things or any of them are used."

This Company also owns Letters Patent No. 463,569 , granted to Emile Ber Telegraph and Telephone: and conbined Teltegraph and Telephone; and controls Letters Patent No. 474,231, granted to Speaking Tileran, which mental inventions and embrace all form men mon of mion bon telephones.

A Great Field for Manufacturers and Factories. Portland is its great industrial center. Her perfect water power unequaled anywhere, has every facility of location for Mills and Factories. Is situated on tide water at the terminal connecting point of Railroad and Sea and River navigation.
Full information furnished free by the Oregon State Board of Immigration,

Portland, Oregon.
PATENT JACKET KETTLES
Plain or Porcelain Lined.
Tested to 100 1b. pressure. Send for Lists.
SAR
electro vapor engine. gas or asodiLIE for fuel.
NO BOILER. NO FIICE. NO DANGER NO ENGINEER.

THOMAS KANE \& CO. Chicaco, ill.

