recently patented inventions.

 Engineering.Rotary Engine.-Alexis F. Gillet, Kearney, Neb. This engine is preferably constructed wit two steam chambers, with pistons arranged to operate
alternately, and the abutment or slide valve is formed aiternately, and the abutment or elide valve is formed
with two apertures, and operated for variable move ments by the piston, the valve alteratelely connecting the main chamber with the steam inlet to drive the piston and the valve pocket to cusbion the valve. It has a solid
base portion and channel way connected therewith, providing for a sufficient steam abutment to hold the valve against the piston. The engine is constructed of few parts, and the piston travel and abutment movemen
are regular, the usual jarring and thumping being
RoAd WAGON.-Clarence Gillett, Gloversville, N. Y. This invention relates to traction
engines propelled by steam, compresed air, electricty, etce, providing a simple and durable road wagon, adapted to carry passengers or freight, and to be propelled at a a
high rate of speed and easily steered asdesired. The high rate of speded and easily steered asdesired. The
boiler is preferably of the Shipman style, to utilize oil as a fuel for generating steam, and thee wheels are so
mounted that they will readily pass over any obstruction mo the road.
Furnace to Treat Ores.-Charles J. Fauvel, London, England. This is a furnace for the treatment of refractory ores containing precious and
other metalks, and is one in which the oxidizing of the $i m$ purities is effected by a current of hot air entirely out of contact with the furnace gases, so that the ore will be delivered in what is known as a " sweet" condition., The
furmace is so constructed that the oxidizing current is furnace is so constructed that the oxidizing current is separately heated, and the passages are so arranged that
neither the ore nor the oxidizing current can at any he fuel, while the flues for the latter are designed to se cure its utilization to the utmost extent. The fornace i also applicable for utilizing the silver in the ore by adding the chlorinating medium.

Rallway Appliances.

Car Coupling.-George W. Mahan, Cold Spring Earbor, N. Y. This is an automatic coup er of strong, simple, and durable construction, which embodies the principle of the old-fashioned link and pin will hold the link in position to enter an opposing coupling. The device may be operated to uncouple from either the top or the sides of the car, so that the brate
man need not go between the cars to uncouple them.
Railway Block Signal.-Frank B. Burt, New York City. This invention provides a simple mechanism for the expeditious and positive operation of set in the block while the train is in the block, but when the train ieaves the block, in setting the signal of the down or concealed. The mechanism of the system is or by the engine, and at each block it is connected with the signal of that block and the signal of the block in advance.
Clamp.-Walter Hewitt Robinson, St. Paul, Minn. This is an improvement on a formerly patented invention of the same inventor, for a clamp
which can be readily applied and manipulated for conveniently removing or replacing the cap and spring in
air-brake cylinders. The constraction of the clamp is air-brake cylinders.
Railroad Construction.-Eliphalet L. Arnold, Georgetown, Texas. This invention provide for building an all-metalic railroad, to be strong, no
very expensive, and which can be rapidly laid. The cros ties are essentially triangular in cross section, are hollow
to be filled with ballasting material, and each has a hori zontal cross brace near the top serving as a support for rail-supporting chairs. The tie has a dovetailed recess to receive the rail-supporting chairs or wedges, by which
the track rails are held firmly on both sides throughout their entire length, so that if a rail should break at any point it would still be held in place, and there is on chance for the rail joints to settle. Thus a perfectly
smooth road may be made.

Mechanical

Loom Let-Off Mechanism. - Teremiah C. Bill, Willimantic, Conn. This is a very sensi lightest pull is exerted upon the warp, friction disks ar o moved that the warp berm is turned a sufficient dis tance to let off the warp required by the working of the
loom. An arm mounted to swing, and controlled from loom. An arm mounted to swing, and controlied from
the warp beam, is connected with a friction disk adapted the warp beam, is connected with a friction disk adapted loom.
Quill Winder.-Corry Jones, Long Island City, N. Y. This winder has a frame to be se
cured to the loom or other machine, and on the frame is journaled a hollow slotted spindle provided with a disk and a fast and loose pulley, a traveler actuated from the novable rod actuated by the rise of the quill has an arm on its lower end in the upward path of which is a pivoted
brake arm, a belt shifter being loosely engaged by the brake arm, a belt shifter being loosely engaged by the
brake arm. The device is very effective and positive in peration, and not liable to get out of order.
Wrench.-Walfrid A. Aberg, New Westminster, Canada. This is a strong and simple
wrench arranged to permit of moving the jaws into any desired angle relative to the handle, so as to turn nuts in close quarters. It has a swinging head having a polygonal head at its axie, an outwardy swinging locking arm
being pivoted to the handle at right angles to the axis of the wrench head, and having a polygonal opening at one end to receive the polygonal head and lock it, there being also means for locking the swinging arm in place.
Tile Machine and Cutter. - John Fernald, Wellington, III. This is a eimple and strongly
onstructed machine for quickly and accurately produc tion of like consistency. The largerpipes or tiles may delivered vertically, while the smaller ones leave the mill
diter in a horizontal position, the pipe or tile being automati-
cally cut off in required lengths from a continuous bar o cally cut off in required lengths from
Concentrator.-Joseph A. Coombes, London, England. An improved hand powerdevice, for conveniently and thoroughly separating gold from gravel and alluvial beds, is afforded by this invention, it being unartz and tailings without the metals from pulverized quartz and tailings without the aid of water, quicksilver, is placed in a hopper, from which it is passed over a series of sieves, and thence into a hopper where it is subjected to a draught̂ caused by an exhaust fan, the arrangement being such that the corrents of air are broken up and loat gold.
Cam for Stamp Mills.-George A. Thompson, Tombstone, Arizona Ter. This is a cam for lifting the stamps, and is made in sections for conveniently fastening it on the shaft or removing it without
disturbing the other cams or parts on the shaft. The disturbing the other cams or parts on the shaft. The cam comprises two interlocking toothed sections, each
provided with a hub portion, a sectional band engaging he hub portions
Timber Mortising Machine. Charles P. Turner, Johnstown, Pa. This machine is pers or in heavy beams aducing nortises in large timvertical or horizontally placed augers or boring tools mas be brought into action as may be desired, the cutters being also capable of removing material between the adjacent bores or apertures made in the timber or beam. The entire machine is po
beams or upon a table
Lathe Center. - William C. Roe, Honolulu, Hawaii. An outer center engaging the work to be turned is mounted to turn on an inner fixed or dead
center, the latter having the usual shank adapted to encenter, the latter having the usual shank adapted to en-
gage the tail stock or the main head stock spindle in case gage the tail stock or the main head stock spindle in case
the device is used as a live center. The device may be the device is used as a live center. The device may be
quickly applied and arranged to be conveniently adjusted quickly applied and arranged to be conveniently adjusted
to bring irregular work into a true position for turning it to bring ir
correctly.
Weight Motor.-John G. Ball, ChesWrille, Ohio. This motor is more especially designed or actuating pumps, operatiug for a certain predeter of a lever connected at one end with the machinery to be driven and at its other end pivoted to a pitman connected with a crank arm attached to a shaft belonging to a train of gear wheels connecte

Agricultural.

Plow. - Chades H. Gerrard, Xenia, re so constructed that shares of different kinds, adapted to be used upon soils of a wide variety of character, may be quickly and conveniently attached to the beam and
hank. The plow is very simple, strong, and inexpensive, and its colter may be easily removed, or it can
without trouble be carried upward out of the way. The without trouble be carried upward out of the way. The
invention compriseslvarious novel features of construcion and combination of parts.
Cultivator.-Bluford T. Scott, Milford, III. This invention provides in one implement a ground with the shovels and then level it by means of the gopher blades. The shovels are kept away from the the roots, and from the manner of connecting the braces or adjusting bars of the blades, the outer end of the blade is always the lowest, so that it can run close to
young plante without injury. The blades are reversible, young plants, without injury. The blades are reversible, and may be adjusted to allow the operator
Planter and Cultivator.-John B. Burke and_John F. Badger, Quitman, Ga. This invenmachine that is easy to adjust and operate, not costly to build, and designed to be very durable. The plow may be of the ordinary construction, with a clevis in front to be connected with the draught chain or doubletree, but the plow can reainly be held at any desired height, or
drawn up out of engagement with the ground during the travel of the machine from one part of the field to the other. In a hopper-shaped seed box secured to the beam of the main frame is journaled a stirrer wheel, but the stirrer is removed and a dropping disk inserted for planting corn, an opening plow being then placed in a
of the seed dropper and a coverer plow at its rear.

Breech-Loading Shot Gun.-Charles Hacker, Parsons, Kansas. This improvement is designed to afford greater simplicity, strength, and durability in the constraction of locks, ejectors, and fore
ends, together with a more perfect balance of the gun itself, and with greater safety in a hammerless gun. Comined with an annular hammer is a stationary hub or ylinder arranged within the hammer, and a coil spring arranged within the cylinder, while the gun barrels have for throwing outthe ejectors, push pins being connected with the spring mechanism and operated upon by the
hammers to put the springs under tension to indeendently throw out the shells.
Axle Lubricator.-John W. Schoaf, McKeesport, Pa. The wheelhub has, according to this ortion, the oil inlet beirg surrounding its central tabular outlet at the other end. which moves next to the contact surface. This outlet is closed by a spring-pressed ball valve, adapted to turn or roll as it abuts against the con-
tact surface, and when not so engaged being held closed by the spring. The invention is likewise applicable

Sash Fastener.-Robert D. Murphy Baltimore, Md. This is an improved article of manuwith roughened exterior and eccentrically pivoted oppositely, projecting twin hooks having a shank pivoted to the disk. The device is very simple, and may be ap-
plied either to the sash or to the casing, holding the sas plied either to the sash or to the casing, holding the sas
in any position in which it may be placed or locking it closed.
Do
Door Check.-James S. Patten, Balti more, Md. This is an inexpensive door check and stop,
with a securing plate attached to the door in the ordinary manner, from which projects an arm on which is eccen rically pivoted an elastic disk. A flattened contact por stop faces at opposite sides of the pive disk, whereb when the contact portion is turned to engage the floor.
Vegetable Cutter.-James S. Pat ten, Baltimore, Md. This device has a main supporting racating slicer haife, movable in the bottom of the holde and a presser or follower which serves to press the vege-
table against a reciprocating cutter platen or frame. The machine is simple and cheap in its construction, easil manipulated, and very effective for the uses designed.
Awning. - Rodolph D. Thornton, Brooklyn, N. Y. The constraction of this awing such that the lower portion, whleh is usually open, may be closed by a screen, thus admiting of the window be-
ing kept open without the possibility of fies entering the ing kept open without the possibility of flies entering the
room. The screen is so made and attached that it may room. The screen is so made and attached that it may
be elevated with the awning, or be brought up close to the sash when occasion may demand. When the awnin closed with a screen held in fixed position.
Display Stand.-William E. Stow Newborn, Ga. This invention provides a special con struction and arrangement of parts of a revolving stand
for exhibiting goode in conneotion with a canopy of netting, which may be raised above or lowered around the goods for their protection. Display wheels, on which central standard, supported upon a suitable base, which is either portable, with casters or rollers, or may be a

Piano Stool.-Charles O. Parsons, Milwaukee, Wis. This is an inexpensive stool, whic is vertically adjustable, but which does away with the orlinary screw, and has a revoluble seat, which may be
fastened at any desired height, so as not to be accident ally changed. In the central bore of the usual pillar is a sleeve, in one side of which is a vertical row of holes, spring-pressed latch pivoted in a hollow shaft extending vertically through the sleeve, the upper end of the latch being connected with a horizontal push rod terminating in a push button in the edge of the seat. The button is
to be pushed in when the seat is to be raised or lowered, the latch entering the nearest hole when pressure on the

Razor.-Carl R. Evertz, Brooklyn, N. Y. This invention provides a razor stock with a de tachable blade, and means for making a quick and secure
connection of the blade with the stock or back piece, and to permit the blade to be removed readily and safely for interchange with similar blades. It is designed to fu so that a dull blade may be removed and replaced by harp one.
Spool Thread Cabinet.-James W. or cover, and may be of any size or shape, and within are cells, preferably arranged in transverse rows or clus ters, in which the spools are arranged in single columns, to be delivered therefrom by pulling a knob, which in
turn operates a releasing device. The invention cover various novel details of construction and combinations of
$\stackrel{\text { parta }}{\text { agon }}$ Box Strap.-Godfrey \mathbf{W} Bauder, Sheldon, Iowa. This invention relates to that
variety of straps used to connect the floor and side pieces variety of straps used to connect the floor and side pieces
of wagon boxes at the corners, and which are also adapted to secure the end boards or gates in place. Its body por gate has parallel ribs forming a groove in which the end
gate may be held, while a flange overlaps the end of the side of the wagon body, and another flange rests on it
top at the corner, the two flanges serving as braces.

Lifting Device.-Willis L. Brown, Lake Geneva, Wis. This device comprises a light frame preferably made of gas pipe, to a cross piece at the upper
end of which is pivoted a lever, the device being readily set up and adjusted, and arranged for conveniently lifting and supporting stoves, safes, and other heavy objects, for
setting or removing them. It may be readily folded up setting or removing them. It may be readilly folded u
Shells for Plated Ware, etc.William McAusland, Taunton, Mass. Oval and oblong
shells for hollow plated ware are, according to this imshells for hollow plated ware are, according to this im. provement, produced of ductile or plastic material by
first making a round, seamless shell, and then expanding frst making a round, seamless shell, and then expanding
it to an oval or oblong by introducing successively sectional former blocks of different size and shape, to be expanded progressively by a tapering plagh. By this method not only metal shells
trall may be shaped, but also those of pasteboard, wood fiber

Grain Scourer.-Archibald P. Camp bell, Partage la Prairie, Canada. This scourer comprise to receive the grain and means for delivering grain int the cylinder and removing it therefrom, while revolu-
ble brushes are held to impinge on opposite sides of the ble brushes are held to impinge on opposite sides of the
cylinder shell. The perforations are slightly larger on cylinder shell. The perforations are slightly larger on
the inner side of the cylinder than on the outside, and the inner side of the cylinder than on the outside, and
the kernels of the grain catch in the perforations and are shed, being thence dropped into discharge spout.
Musical Instrument Attachment. -William Leiner, Milwaukee, Wis. This is a simple device for attachment to harpe, zithers, etc., a sliding and
yieldingly supported bar above the strings of the instruyieldingly supported bar above the strings of the instru
ment carrying dampers adapted to contact with strings
ampers. It may be conveniently operated to change the key, and is arranged to damp all the strings except tho
RUB FLUTE.-Balilla Carpigiani, Riladelphia, Pa. In a suitable base is held a row of
ods of different heights, preferably of wood, each rod rminating in a socket, the sockets being connected together by a silken cord or other brace. Each socket has a removable top section, by changing which the tones of
the instrument are changed. The instrument is played with gloved hands, the gloves being resined and drawy
wist ongitudinally along the rods, the long rods emitting rel-
Music Board.-Harry S. Sharpe, Settle, Washington. A series of connected bars is provided ith notation lines, and betwen the aujacent bars music haracters are adapted to be inserted, each having a rearardly extending lug to hold the character in proper is designed to facilitate the teaching of music, permiting of readily inserting or removing the music characters as desired.
Penholder Design.-Dent L. Lyaick, Quaker Oity, Ohio. This is a combined penholder
and paper cutter, whose lower stem portion is a tube, while the upper portion represents a feather, having one straight marginal edge.
Note.-Copies of any of the above patents will be urnished by Munn \& Co., for 25 cents each. Please
end name of the patentee, title of inventicn, and date of this paper.

NEW BOOKS AND PUBLICATIONS

Theory of Structures and Strength of Materials. By Henry T. Bovey. New York: John Wiley \&
Pp. xv, 817. Price $\$ 7,50$.
The preface states that this work deals with that porion of applied mechanics which has to do with the de-
ign of structures. It therefore will be found to develop onto a very full and exhaustive treatise on the strength of material, truss and girder calculations, and all those matters which are now acquiring such importance in the architectural and engineering worlds, where the use of
iron and steel of haown constants enables exact matheron and steel of known constants enables exact mathematical calculations to be applied to the practical dimen-
sions of the sizes of the members of bridges and buildings f all kinds.
Manuel Theorique, Instrumental et Pratique D'Electrologie Medi-
cale. Par G. Trouve. Paris: Octave Doin, editeur.
788. Price 8 francs.
Gastou Trouve is well known as a constructor of a wide range of electrical apparatus. A great deal of his mate-
ial was invented for use in a medical application of elecricity. The present work is largely devoted to his own different apparatus, but notwithstanding that, his reearches and work have been so complete that it will be
ound a very good treatise on the titular subject. A ibliography is given, and numerous illustrations and tables of data give value to the work
Engine Room Chat. By Robert GrimGine Room Chat. By Robert Grim-
shaw, M.E. New Iork: Practical
Publishing Company. 1893. \quad Pp.
144. Price $\$ 1$.
A very graphic presentment of the engineer's difficulastic vein make this little work excellent reading. The athor is haown as a very spirited writer, and in this The advice he gives is excellent, and it really sous powers. The advice he gives is excellent, and it really seems as if
the presentment of his advices in this humorous form ould make it a more suitable dose than when given in nore serious shape.
Photo-Engraving. A practical treatise by modern photographic methods. by modern photographic methods.
By Carl Schraubstadter, Jr. 8vo. Pp. 132, 60 engravings, cloth. Pub-
lished by the author at St. Louis.
Price $\$ 3$. Price $\$ 3$.
This book will fill a want long felt for a treatise which will enable an amateur or professional photographer to n easy process to work, and really requires practical intruction from a man in the business if the highest class f work is to be attempted. With a book like Mr. hgs after a few weeks' practice. The process of making et plate negatives is well described, and full details of the preparation of the zinc, the etching and finishing are given. Half tone work comes in for a shareof attention, hough the subject is not as fully treated as it might be. The simple and double washout processes, as well as the welled gelatine process, are also described. Altogether of the subject, which is by no means meager. It is a Copy for Photo-Engra ving. By Carl
Schraubstadter, Jr. St. Louis, Mo. Schraubstadter, Jr. St. Louis, Mo.
24 mo Pp. 25 , paper. Price 25 c . A valuable little work giving full information in regard to the paper, pens, and ink which will obtain the best
results in the hands of the photo-engraver. Catalogue of American Localities
of Minerals. By Edward Salisof MiNERALS. By Edward Salis-
bury Dana. New York: John This reprint of a very practical portion of Dana's Minralogy will doubtless be acceptable to many collectors, enabli
Waterdale Researches; or, Fresh LIGHT ON THE DYNAMIC ACTION AND
PONDEROSITY OF MATTER. By
"WD Hall, Ltd. 1892 Pp : Chapman \& The author has addressed a special preface to his
merican readers. The aim of the author, it
the discovery of some result other than the hypothesis of
attraction to account for the gravitation of one body attraction to account for the gravitation of one body
toward another. This will indicate at once that the book is of the inconoclastic type, and shows that the author may be expected, in it, to remoreelessly attack modern scientific conceptions. He seems to have cor-
ered the ground at great length and after the conclusion ered the ground at great length and after the conclusion Domestic Science. A book for use in schools and for general reading.
(Second and revised edition.) By (Second and revised edition.) By
James W. Talmage. Published by
Geore George Q. Cannon \& Sons Co. 1892.
Pp. 389. We have gone through this little work emanating from reessed by the selection of topics and the judicious way in which they are arranged and treated by the author. He seems to have the talent or̀ making a readable and consecutive work from materials which normally are
considered of a somewhat disconnected nature. From considered of a somewhat disconnected nature. From
what we have seen of it we feel strongly inclined to rewhat we have seen of it we feel
commend it to the generall reader
The coal Tar Colors. With especial reference to their injurious qualities
and the restriction of their use: a sanitary and medico-legral investigation. By Theodore Weyl Phila
delphia: P. Blakiston, Son $\&$ Co 1892. Pp. xii, 154. Price $\$ 1.50$.

This interesting work touches upon a subject of grow ing importance. The toxicology of the coal tar colors
has hitherto been rather neglected. The use of such colors not only in testile fabrics, but in food and else where, makes it of unusual importance to understand
what their effects upon the human system are. This what their effects upon the human system are. This
work is done for us in Dr. Lethman's translation of work is done for us in
Weyls excellent treatise.
Electrical Experiments. A manual
of instructive amusement. By G. E.
Bonney. London: Whittaker \& Co.,
Paternoster Square, E. C. Pp. xvi, 202. Price 75 cents.

Much that is old, but for that reason none the less in-
teresting appears in this book. The usual topics of mag. teresting, appears in this book. The usual topics of mag.
netism, induction coil experimente, static electricity and netiBm, induction coil experimenta, static electricity and
electrolysis are given, and the work will doubtless be of considerable interest, to a amateurr. Many of the cuts will berecognized
the subject.
RT Any of the above books may be purchased throngh
this office. Send for new book catalogue just published. MUNN \& Cor., 361 Broadway, New York.

SCIENTIFIC AMERICAN

BUILDING EDITION.

MARCH, 1893, NUMBER.-(No. 89.)

table of contents.

1. Elegant plate in colors, showing an attractive dwell ing at Springeleld, Mass. Floor plans and perspec
tive elevations. Cost tive elevations. Cost $\$ 9,750$ comple
Chesebro, architect, Springfield, Mass.
2. Plate in colors showing the residence of the Hon. John J. Phelan, at Bridgeport, Conn. Two per,
spective views and floor plans. Mr. A. H. Beers, architect, Bridgeport, Conn. An excellent design. Cost 86,000 complete.
3. A dwelling at Springfeld, Mass., erected at a cost of plans. Messrs. Granger \& Morse, architects, Spring field, Mase. A model design.
4 A cottage erected near Brighton, Mase, at a cost of
$\$ 8,800$. Floor plans, perspective view, etc. A. w. Pease, architect.
4. Engravings and floor plans of a residence at Green-
wich, Conn. A beautiful design in the Colonial wich, Conn. A beautiful design in the Croonial
style of architecture. Mr. W. s. Knowles, archi style of architec
tect, New York.
5. A dwelling recently erectedat Brookline Fills, Mass., at a cost of 85,300 complete. A picturesque de
sign. Perspective elevation and floor plans sign. Perspective elevation and floor plans,
Mesers. Shepley, Ruton \& Coo idge, architecte, Boston.
6. Sketch ofa tastefuldesign for a three-family cottage,
7. Plans and elvations of an English cottage of qualn and pleasing design.
8. View of the Fifth A venueTheater, New York. A
splendid example of modern architecture in the splendid example of modern architecture in the
style of the Italian Renaissance. Together with style of the Italian Renaissance. Together with a
portrait and biographical sketch of Francis H . Kim portrait and biographical sketch
ball, architect, New York city.
9. Misscellaneouscontents: Pavingestimates.-World's Fair items.-Painting the World's Fair buildings.
Drawing instrumente for colleges, etc., illustrated. Drawing instrumente for colieges etc., ,1 Ilustrated.-
A tasteful fireplace design, illustrated. - An improved steel spring hinge, illustrated. - Vegetable growth in water mains,-American machinery in London, - A foot radiator valve for hot water radiators, in lustrated.-New tin plate plant.-Animproved fur
nace, illustrated.--Cincinnati nace, illustrated.-Cincinnati woodworking
chinery.-An improved door hanger, illustrated. A big heater company.
The Scientific American Architecta and Builders
Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to abou 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practically, a large and splendia MLGGARINE of AREFTrge-
Ture, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interestivg examples of Modern Architectural Construction and allied subjects.
The Fullness,
The Fullness, Richness, Cheapnes8, and Convenience of this work have won for it the LArogri Circulatron
of any Architectural Pablication in the world. Sold by of any architect.
all newsdealers.

MUNN \& CO., PUBLishers

Wusiness and Persanal.
 tisements must be received at pubbication office as early as
Thursday mornings to appear in the followino week's issu
©. S." metal polish. Indianapoolis. Samples free.
Universal and Centrifual Grinding Machin versal and Centrifugal Grinding Machi
Pedrick \& Ayer. Philadelphia. Pa.
Jessop's steel has been in the market on
ears. Few tool makers not familiar with it.
Steel fingers hold and quicklygrind drilstrue. ".
Drill Grinder. ${ }^{\text {T. Hall }}$ Sis
Broadway, New York. The Improved Hydraule Jacks, Punches, and Tube
xpanders. R. Dudgeon, 24 Columbia St, New York. Stow flexible shaft. Invented and manufactured Sow Mfg. Co., Binghamton, N. Y. See adv., page 174 Serew machines, milling machines, and drill presses.
The Garvin Mach. Co., Laikht and Canal sta, New York. Centrifugal Pumps for paper and pulp miliss. Irrigating
and sand pumping plants. Irvin $\begin{aligned} & \text { an }\end{aligned}$ Wie, Syracuse, N. Y.
Portable engines and boiurs. Yacht engines and
boilers. B . W . Payne $\&$ Sone, Elmira, N. X, and 41 Dey treet, New Pork.
otice on page 180. Homer Durand, starkville, Col.
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum ap.
acid blowers, fllter press pumps, etc.
Split Pulleys at Low prices, and of same strength and Works, Drinker St., Philadelphia, Pa.
Perforated Metals of all kinds and for all purposes, general or special. Address, stating requiren
Harrington \& Eing Perforating Co., Chicago.
To Let-A suite of desirable offlees, adjacest to the Apply to Munn \& Co., 311 Broadway, New York.
Hydrocarbon Burner (Meyer's patent) for burning
crude patroneum under low pressure. See adv. pake
z31 Standard Oil Fuel Burner Co., Fort Plain, N. Y.
Fine Castings in Brase, Bronze, Composition (Gun
Metal), German silver. Unequaled facilities. Jas. J. Mckenna \& Bro., 424 and 423 East 23d St., New York.
 The best can, only $\quad 18$.
 By mail. 8 ; Munn \& Co., publishers, 361 Broadway, N. Y.
Competent persons who desire agencies for a new popular book, of ready sale, with handsome proftr may
apply to Mun $\&$ Co., Scientific American offce, 361 For Sale-Electro-plating dynamos. Three 12 inch Weston for silver or nickel, one 8 inch Weston for sil-
ver, and one American Giant No. 4. Address Crane reed Mifg. Co., Cincinnati, Ohio.
樶 Send for new and complete catalogue of Scientific and other Books for sale by Munn \& Co., 361 Broadway
New York. Freaon application

hints to correspondents.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is

Mince.
price
marked sent for flabeled.
(4757) N. N. writes: I have an artesian well 612 feet deep, 5 inches diameter, and flows 190 gal lons of water a minute. How much power can I get from it, and in what way can I test the pressure of it with a
steam gauge? A. We should know the height that the steam gauge? A. We should know the height that the
fow of water can be utilized for power, as well as the flow of water can be utilized for power, as well as the
quantity. You can reduce the area with a 2 or 3 inch hole in a pipe cap and find the height of the jet. You may also tap the side of the pipe for a gauge and close the top for the total pressure. Can you give the vertical
keight of the stream from the open pipe? With the water that is flowing, if you can get 20 feet fall, you can realize $3 / 4$ of a horse power
(4758) R. V. De B. writes : It is proposed To feed a reservoir from a lake situated on a higher level. continuous fall could be constructed from the lake to the reservoir, the water in the canal running at the rate of say ne foot per second. Would there be any objection to the onstruction of an open canal, 3 feet deep, on account
of the formation of ice in winter or from other causes ? A. The question of climate should decide the matter of an open water ditch. In your climate slow-running water is liable to freeze from 2 to 3 feet thick durng the ecessity for constant fow through the ditch, it will be at considerable risk to depend upon its supply during prolonged cold weather. If the cost is not a bar, we re-
commend cast iron pipe, or if within the range of size, glazed tile pipe is cheap and serviceable where there is
(4759) E. R. F. asks : If the air contalned in acylinder 8 inches long and $11 / \mathrm{a}$ in diameter is compressed into 1 1/ of that space, with the pressure of how many atmospheres would it rest on a square inch of
surface? If the same quantity of compressed air should surface? If the same quantity of compressed air should
suddenly be released and escape from the cylinder suddenly be released and escape from the cylinder
through a tube $1 / 4$ of an inch in diameter, and in its page sage through the tabe encounter a bullet weighing ${ }^{1 / 3}$
ounce, what force in pounds would it exert on the bullet,
and how far and with what force or pentren would such a force drive it (the bullet)? A. The pres sure as stated will be about 150 pounds per square inch,
depending upon absorption of the heat of depending upon absorption of the heat of compression
and leakage. The isothermal pressure $=103$
pounds $=7$ 16 atmospheres. If the air were let into the air min the instant of compression, the pressure upon the bullet would be about 200 pounds per square inch and would eject the bullet witha velocity of about 500 feet persecond
having a range of from 100 to 200 yards according to having a range of from 100 to 200 yards, according to
smoothnees and length of barrel and facility for giving smoothness and length of barrel and facility for giving
free vent of the compressed air to the barrel. The force ree vent of the compressed air to the barrel. The force.
of impact would be that due to about 15 foot pounds.
(4760) W. K M. asks: Has the process tempering aluminum been discovered c et, and is it possible to ase it in the open ait without fear of its tar-
nishing? Also please state the comparative weight and nishing? Also please tate the comparative weight and
tensile etrength of steel, copper, and aluminum. A. The process of tempering aluminum has not been discovered except by alloying with other metals. It does not reading square Inch tensile strength, weight 168 pounds per cubic foot; copper, 30,000 to 33,000 pounds per square inch tensile strength, weight 552 pounds per cubic foot; steel weight 490 pounds per cubic foot. See a valuable tratie on "Aluminum: Its Manufacture, Properties, Allogs, and orking," by J. W. Richards, 85 mailed.
(4761) F. W. W. says: I have a few nives of bees which I keep for pleasure. Ever since
first had them, my extracted or strained honey has su gared or crystallized. This takes away its fine ilavor, a ome of the sugar will not melt on being heated to the boiling point of water. I have kept this hones in a warn
room, and have allo tred a cold one without attaining the desired result. The honey is extracted by removing the caps of the cells and whirling the combs in a hone extractor. My nelghbor, who also has a number of hives is troubled in the same manner. The honey was ex-
tracted in July. Do pou know of any way of preventing this crystallizing without detracting from the value o he honey? A. There is a posibility that your bees hav been feeding on sugar, which makees crystalline honey airtthrough it, evaporating part of the moisture. Tr moistening the air of the extracting room with steam while the work is being done. A boiling pan of water may answer the purpose.
(4762) C. G. C. asks: Will there be a gain (if so, how much ? in mixing hot air (furrace gases) water on high lifts to prevent condensation of steam What proportion of hot air would be most useful? A
Hot air mixed with steam in an ejector is of but little or no value, and without pressure decreases its working power, and in any quantity nearly deetroys its lifting power. The power of an ejector to lift and force water in the property of steam to condense and cisappear a water. Air mixed with the steam retains its gaseous th pes the space that would otherwise be occupied by the
water jet. Air alone is of little value in a wate
(4763) W. C. R. asks: How can I count the flaps of a small bird's (sparrow) wings, and how mas I compute the area of a bird's wing which is somewhat
irregular in form? A. You can only approximate the wing rregular in form? A. You can only approximate the wing Atted to a vibrating mechanism with a variable power and registering index. The area may be computed by sec size and shape of the wing.
(4764) Subscriber asks: Can wood car bon be used instead of hattery carbon in an arc light? electric arc by Sir Humphry Davy, but it is not as good The old authorities used to recommend saturating it with mercury to improve its conductivity. 2 . Is there any way of changing heat direct into electricity? A. The nearest approach to the direct conversion of hea
into electricity is found in the thermoellectric battery.
(4765) H. G. asks: What explosive powder when mixed with powdered magnesium will cause a purposes 8 A. Magnesium powder, 6 ounces; potassium
chlorate, 12 ounces; antimony sulphide, 2 ounces; 75 to 150 grains of the powder should be used.
Magnesium 40 per cent.
Permanganate of potassium............. 40
Peroxide of barium............. 20
(4766) A. D. M.-A good cement for cel luloid is made from 1 part shellac dissolved in 1 par
of spirite of camphor, and 3 to 4 parts of 90 per cent of spirits of camphor, and 3 to 4 parts of 90 per cent arolen parts eecurely held together until the solvent has ntirely evaporated.
(4767) G. M. R.--The designs for watch works are made on an enlarged scale, generally ten times the size, which makes the actual dimension expressed with a decimal point one digit to the left. There is no
haphazard work in watch making or in the machinery
(4768) E. R. S. asks : 1. What book is there on friction, suitable for a young student, yet giving
practical calculations such, for instance, as fnding the practical calculations, such, for instance, as Anding the
horse power required to keep an axle or shaft turning a a required speed (the dimensions of the shaft and its weight being known)? A. We recommend Thurston's work on "Friction and Lost Work in Machinery," \$3, mailed. Also our SuPplement, Noo. 572 to 576 , for an
mand ance of the air is not taken into account, does the speed with which an axle or shaft will revolve in Its bearings vary as the horse power applied ? A. Friction varies
with the speed, and relatively decreases in proportion to the increase of work in revolving machinery. 3. What tor to produce a certain how to culations are given in Sloane's "Arithmetic of Ellec
tricity," \$1 by mail. Multiply the desired horse power by 746, divide by the potential difference at your disposal.
This gives you the amperage. Then calculate on the This gives you the amperage. The
(4769) R.-No one has the right to make patented article for his own use without consent of the
(4770) O. M. W. writes : I have built a small electric maccine, windings and pattern after the 8
light dynamo described in the Scievilici American, except size; armature $33 / 4$ inches long, 23-16 inches in diameter; magnet waists oval, 1×2 inches; 4 inches long, magnet coils 18 wire gauge; armature No. 20; 16 commutator bars; each armature coil six turns per layer, two layers deep. As a motor it seems to be a success, but as
dynamo a complete failure; can only get a current of seven-tenths ampere up to 1800 revolutions, above that speed less. What is the trouble? What sized wire and what manner of winding can 1 get the largest amperage as a dynamo, using very soft cast iron magnet or very soft forged iron maguets? Magnets and armature
 should always be as soft as possible. If the iron in your magnet is hard, it accounts for your failure. Withe
No. 18 wire on the field magnet you should use No. 18 wire on the field magnet you should use
your mache as a series wound machine. If you find he resistance is too great with the sire to use the machine as a sbunt wound machine, the resistance of the field magnet 18 not great enough. Probably the winding of the field magnet for a shunt machine hould be of No. 22, or possibly No. 24 wire.
(4771) W. H. D. writes: I want to know about the rexistance necessary for a $1 / 8$ horse power morailway circuit, with amperage bearing as high as 240 . You will do me a kind favor by letting me know through your valuable paper how many ohms resistance it will
take. A. An electrical horse power is 746 watts. A take. A. An electrical borse power is 746 watts. A
watt is an ampere multiplied into a volt. The current. watt is an ampere multiplied into a volt. The current
in amperes equals the electromotive force divided by the resistance. You have an electromotive force of 500 volts; for $1 / 8$ horse power you require 93 watts. You will therefore need about 5 amperes of current, and a consequence your machine will need to have a resistance of 100 ohms. (4772) W. A. S. writes: I have been trying to smelt tin cans, tin clippings, and all kinds of oundries use, and have been unable to get any iron. There is a great quantity of slag, which is very thick and tough, andin a short time fills the tuyere holes and won't let any wind through. We have not used anything for flux. A. You cannot run down wrought iron scrap in a
cupola. It shoul x be piled in masses of 100 pounds more, heated in a reverberatory furnace and welded with a power hammer. The tin scrap may be used in small quantities with cast iron in the cupola.
(4773) C. E. B. asks how big a space he needs for the gas in a gas engine with a cylinder $11 / 2$
inches in diameter and a a troke of $\mathbf{2 / 6}$ inches, also how ig space he requires for the compression of the air. A. A compression gas engine uses about 1 part of gas to 7 or 8 of air. We think you will find it extremely difficult to operate an engine of the size given. The space for the gas and air varies with the system tpon which you propose to run a motor. If you are running it without wash-
ing out the cylinder with air before each explosion, you ing out the cylinder with air before each explosion, you
will need a space twice as large as that required for the combustible mixture. If, however, you wash the cylinder out, the space for gas and air need be only large enough
(4774) M. T. B.-Your proposed improvement in telescopes would have no value, as the urthermore, each reflection and each refraction of the ightabsorbs an appreciable quantity, so that your tele scope would lack in illumination as well as defining
(4775) W. M. C.-(1) First select a clean perfectly fitting cork for each bottle. Then melt your alve and pour it into the bottles from a vessel provided with a spout, taking care in doing so not to allow any of There is nothing dangerous in the use of the neck. (2) recommended to you for the asthma. (3) You will fnd a aluable article on the "Etiology and Cure of Asthma" in Scientific American Suppiement, No. 589. Price cents.
(4776) E. F. S. writes : I was in a store the other day, and saw a clerk take a cotton string about x or eight inches long (common wrapping twine) and tick it to a glass showcase on the inside with a piece of like, but onpoite each othe, from the side the shike, but opposite each other, from the round side of the
shen he rubbed the back of his hand on the utside of the glass, and the strings began to move backward and forward until the one nearest the hand hit the glass and stuck to it; the other end stood out the other way, and became rigid. Some said that it was electricity, nd some magnetism. Please tell us what it was. A. The results which you describe are probably due to frictional (4777) A. A. asks what size wire to wind he four cores of a small shunt wound dynamo, the cores of which are 4 inches by 2 inches by $3 / 8$ inch. I wish to ind these with such wire as will, when wound to about urrent only to pass through the coils. The armature surrent only to pass through the coils. The armature
2 inches by 4 inches, wound with No. 20 wire, with which I expect to get 4 amperes and 50 volts. A. You will need about 1,000 feet of No. 27 wire for your fleld magnet.
(4778) T. B. writes : I have a magnet tat I wish to wind to obtain best results. The size of the cores is 2 inches long and $5-16$ inch in diameter. What Wind each core of your magnet until the thickness of your wire equals the thickness of the core. If you in-
tend to nse the magnet for local work, No. 24 magnet tend to nse the magnet for local work, No.
wire would be the best size for the winding.
(4779) G. A. G. asks: How far will the

