vibrations.

Prince Kropotkin gives an interesting article on electricity as a mode of motion, in a recent number of the Nineteenth Century. It summarizes the results of the latest researches as simply as their nature admits of, and the net result of seemingly conclusive experiof, and the net result of seemingly conclusive experi-
ments is that with vibrations or wave lengths in the ments

0.000,01: to 0000,016 in. long, we have...... .. chemical energy. $0 \cdot 00,016$ to $0.000,030$ ". to $0 \cdot 000,122$." radiant heat electricity.

If these results may be accepted, we have squarely before us the problem: Given, vibrations of any length in the "ether" (whatever that is), to modify their length at will. The problem of the transformation of energy reduces down to that. When some benefactor of mankind has solved that problem, if it ever is solved, a new era indeed in civilization will open. We may then have electricity from heat, light without heat from electricity or any otherform of energy, and divers and sundry other things which we can now only dream of, or perhaps not that. When we consider that pretty much all that is now known of the real nature of electricity, heat and energy is the fruit of the last twenty years (Joule's equivalent and first series of experiments were not announced until 1849), it seems a pretty safe conclusion that science is yet young, and that all which has been yet achieved is but a trifle compared with what is yet to be achieved. Moreover, we know that in the living organism, heat and energy, energy and light, energy and electricity, are transformed into each other by some mysterious process with the greatest ease, and to a large extent according to the will or needs of the organism. It may be that this power is needs of the organism. It may be that this power is
one of the properties of living "protoplasm," and that one of the properties of living "protoplasm," and will never be able to understand it or to imitate it until he has learned the secret of life itself; but all the recent tendency of science is to indicate that the secret of transforming one form of energy into any other may yet be discovered, and perhaps by very simple means, compared with which our steam engine will seem but a "relic of barbarism."
The fact that electricity, like heat, light, and radiant chemical energy, is a manifestation of energy, has long been known, but up to the last four or five years scientists have been uncertain as to the manner years scientists have been uncertain as to the manner
in which energy existed in the electric current. The in which energy existed in the electric current. The
old idea of an electric fluid, which is still prevalent outside of scientific circles, served to mislead investigators. At present, however, the researches of such scientists as Hertz, Lodge, Crookes, Sir William Thomson and Tesla seem to have established the fact that electricity, like heat and light, is merely a vibration in the socalled "ether" which is believed to permeate all space. It is notable that all the original theories as to what we now call forms of energy were materialistic. The Newtonian (corpuscular) theory of light, which was the generally accepted one for half a century, was that light was an effect produced by an incessant fire of infinitesimal but material cannon balls thrown off in all directions from the light-giving body. Heat was a material something stored in the pores of the visible body. Electricity was a "fluid." All these assumed material substances have been shown to be non-existent, and not necessary to explain the phenomena. But there still remains one grave difficulty with the later theories. The notion of a material ether itself is almost as contrary to what we know of the nature of other matter as the corpuscular theory of light, and almost as much a mere evolution of the scientific inner consciousness, to explain what is otherwise inexplica-
ble. We have not a particle of direct evidence to prove that there is a substance with properties such as we assign to this ether. We have only to eliminate the notion of a material ether, as we have eliminated the notion of material light particles, and we shall be down to hard pan! "I believe because it is impossi ble," the old monk declared. The modern scientific man, possibly, would do well to reverse this logic and declare: I disbelieve because it is so very convenient a theory, with nothing but its convenience to support it.-Engineering News.
(New NIetallic and Rubber Wire Mat. A new style of woven wire mat, to which is attached a soft rubber cleaner, with edges and top roughened to fit every shape in the sides or edges of boots and shoes, has recently been patented and put upon the market by Messrs. Emerson \& Midgley, of Beaver Falls, Pa. Another description of mat or rug coming from the same firm is made of variously colored galvanized wire and has a thin rubber strip held on its edges by polished metal loops, the construction being such that there is no point upon which the most delicate trail of a lady's garment is liable to catch. The mats lie loosely on the floor, without fastening, so that they can be readily lifted, rolled up, and washed or shaken, and are furnished lettered as desired, three inch brass letters being used for the purpose. A mat oí Guis kind is now in use at the entrance of the Scientific American
office. They are manufactured by the Trenton Iron Company.
polychrome projections by means of uncolored PHOTOGRAPHS
For the last two years there has been much talk in the United States on the subject of a remarkable application of photography to the reproduction of natural colors-an invention attributed to Mr. Ives, of Philadelphia.
In reality, Mr. Ives, who is a very ingenious scientist and a fortunate investigator, has, aside from a few variants, merely put in practice a process published in France in 1869 by Mr. Louis Ducos du Hauron and Mr.
C. Cros. C. Cros.

These two inventors, without any connection exist ing between them (Mr. Cros living in Paris and Mr. Du Hauron in Agen), conceived the same idea at about the same time. It consisted in the use of photography in the decomposing of the essential colors of any polychrome object whatever. The method published by each of them is nearly the same, and leads to the ob taining of three negatives of the same object, prototypes that are identical with each other as regards lines and dimensions, but different as regards the manner in which the various colors are reproduced.
This result, obtained by means of photography, is when he is executing the various monolithographer subject upon surng the various mono colors, the superposition of which at the moment of printing, are to give a polychrome nearly like the original. The work of selection due to photography may be so nearly complete that three negatives, the positive impression of which will be done with the three colors, yellow, red, and blue, may suffice for the ob taining of a most satisfactory polychrome image.
As a proof of the exactitude of the method devised various methods of recognizing the value of their pho tographic analysis of the colors of an object. Among the number of the synthetic processes that they have described there is one to which it is well to call more especial attention, because it consists in the use of a projection, upon a screen, of a combination of three positive pictures, each illuminated through a medium of a different color. The recomposition of the true colors is to be effected upon the screen.
It is useless to dwell upon the error committed by the two inventors when they say that the colored
media should be yellow, red, and blue. They recogmedia should be yellow, red, and blue. They recog nized this error later on, and in March, 1879, Mr. Cros who, moreover, had come to an agreement concerning
t with Mr. Du Hauron, distinctly directed the use of violet, green, and red screens.
We desire to well establish this question of priority in favor of our two fellow countrymen, not only because there seems to be a disposition on the other side of the Atlantic to consider Mr. Ives as the inventor of the process that we are about to describe, but also because the experiments relative to this process, now being tried in France, are of a nature to cause its adoption with a view to substituting, in cases where the thing will be possible, polychrome for colorless projections, which are evidently less attractive.
There is reason to hope that many lecturers will soon have recourse to these kinds of projections of a truly fascinating effect, and we must then know who were the inventors of this so curious an application of photography, which is perhaps destined to render many services, as yet unforeseen, to science and the fine arts.
This act of justice accomplished, we shall try to ex plain, as clearly as possible, the principles that serve as
a basis to these photographic projections, in order that the bringing of them into play may be more easily understood.
In the first place, it is necessary to produce the three negatives of which it has just been a question. Upon the good quality of these will depend the success of the final synthesis. They should, as we have said, be identical with each other as regards dimensions, but differ as to the rendering of the distinct colors of the original.
An example will make the result that it is a question we have to analyze understood. Let us suppose that composed of three colors, yellow, red, and blue. We shall have to obtain a first negative containing the yellows and the combinations thereof, a second contain ing the reds and their combinations, and, finally, a third negative corresponding to the blues and their combinations. It is evident that if this result can be obtained, we shall have effected a decomposition such that the mixture of the radiations corresponding to each of these three colors, and assorted by the positives and in the desired proportions, will necessarily re
Owing to the property that certain coloring sub tances possess of modifying the nature of films sensi tive to light, it is possible to use sensitized plates adapted to the printing of blue and violet radiations to the exclusion of green, yellow,łand red, or of yellow and green radiations to the exclusion of blue and red, or
finally, of yellow and red to the exclusion of blue finally, of yellow and red to the exclusion of blue.
The three prototypes of the same object will have to
upon the sensitized film most susceptible of receiving the impression of the blue radiations. A plate called "ordinary" is the one most suitable, since such plates, as well known, are not very sensitive to green, yellow, and red radiations. The second negative will be taken upon a sensitized film capable of receiving the yellow and green radiations, but not the red. These kinds of and green radiations, but not the red. These kinds of sensitized film a dye that possesses the property of absensitized film a dye that possesses
sorbing the yellow and green rays.
At the same time there should be interposed between the plate and the objective a translucent yellow screen for the purpose of retarding the action of the blue rays.
\qquad plate treated like the preceding, but with a dye that gives it sensitiveness to the red rays as well as to the yellow. As for the blue, they must have no action upon this plate, such action being prevented by means of an orange-yellow screen.
As soon as a few experiments on the analysis or decomposition of colors have been made in this way, which is absolute only as regards the result to be obtained, but which is susceptible of modifications as regards the means to be employed, we shall have sufficiently mastered the process to succeed every time. After the negatives have been obtained, two methods of employing them are at our disposal. They may be used for pigmentary impressions of polychrome images analogous to those of chromolithography, and in this case it will be necessary to superpose the three monochromes, yellow, blue, and red, furnished by each nega tive corresponding to each of these three colors.
We have not to occupy ourselves at this moment with such application, as interesting as it is. The other application, which forms the main object of this article, relates to polychrome projections. It is well to remark, only, that when it is a question of projections, the colored media are not the same as in the case of pigmentary impressions, although the negatives are the same. For such impressions it would be absolutely impossible For such impressions it would be absolutely impossible
to attain the object if we employed ternaryyellow, red, to attain the object if we employed ternaryyellow, red, and blue, while the use of the same ternary in the re-
composition of the colors by means of radiations would give improbable effects of color. Such recomposition can be effected only by the aid of the three primary colors indicated by Young and Helmholtz, viz., violet, green, and red.
We remark, in fact, that if we mix these three radiations by projecting them separately upon the same point of a white screen, we obtain pure white-a result that is not produced with the mixture of the blue, yellow, and red radiations made under the same conditions.
Now it is found that the color of each of the media to be employed is precisely the complementary of the color adapted to the pigmentary impression. Thus the negative which would furnish the pigmentary yellow will give, in view of the projection, a diapositive that it will be necessary to cause violet radiations to traverse -violet being the complementary color of yellow.
The negative of the pigmentary red is that which produces the diapositive to be illuminated in green the latter being the complementary of red.
Finally, the negative of the pigmentary blue is that which, for the projection, will give the diapositive of orange yellow, the complementary of blue. Thanksto these preliminary explanations, the facts that are to follow and that we are going to explain will be better understood.

The putting in practice of the recomposition of colors requires the use of a lantern in three parts, or, at least, of a special apparatus constituting a single lantern provided with three projection objectives. To simplify things, let us be content for the time being with the ordinary three-bodied apparatus constructed by Mr. Moltine, which has been used by us for our own experi ments. This apparatus is represented in perspective and in action in Fig. 1, and the arrangement of it is shown by the diagram in Fig. 2. Three distinct lumin ous sources, F, F, F, illuminate the lanterns, 1, 2, and 3. Such illumination may be furnished by an oxyhydrogen light or by electricity, or else by kerosene lamps or illuminating gas with Auer burners. The three black diapositives are placed at D, D, D, and behind each of them is located the colored medium corresponding to the analytical value of the diapositive appropri ate to its special radiations. Behind D, therefore, is placed a violet glass, behind D No. 2 a green glass, and behind D No. 3 an orange yellow one
The projections of the three uncolored (black) mono chromes, D, D, D, are exactly blended into a single image perfectly registered upon the screen, $I, I^{\prime}, I^{\prime \prime}$, on which the three objectives, $o, o^{\prime}, o^{\prime \prime}$, project the image. Each of these three radiations, as shown in the diagram, reaches all the parts of the composite image pro jected; and from the combinations with each other of these three sorts of radiations, violet. green, and red, result all the possible colors that can be obtained with the seven colors of the spectrum. We have a proof of this, moreover, when we witness the truly wonderfu spectacle of the immediate recomposition upon the screen of the infiniteshades of colorof the original, and
this synthesis is indeed one of the most curious experiments in optics that can be made for demonstrating the relations that exist between the colors called primary and the unlimited variety of the various tones that they are capable of producing on combining with each other. It will be understood that, since the violet, green, and orange-yellow radiations produce white through their admixture, white will be produced in the composite image in colors at every point where the parts of such image correspond to points of the negatives likewise traversed by the three sorts of radiations. On the contrary, where the diapositives present spaces likewise opaque, black will be produced upon the screen, and, for all the intermediate values, going from white to black, we shall have combinations in variable proportions according to the respective opacities of the diapositives, and, consequently, colors or shades varying by reason of such proportions.
If the green and red radiations are absolutely arrested in two symmetrically corresponding points, the blue radiations alone traversing the diapositive of such radiations, the screen will receive the blue color all by itself. If the green radiations are alone two symmetrical points, there will be a resultant of a more or less reddish or of a more or less bluish violet upon the screen, according as the dominant resultant is found in the greater translucency of the diapositive of the red or of the blue radiations, and so on ad infinitum.
At first sight, it may seem difficult to reach the desired result when we reflect that we are in presence of twelve variables which it is necessary to bring into a state of perfect accordance in order that the composite image sought shall effect the exact reproduction of a given polychrome object. These twelve variables are the three negatives, the three diapositives, the three colored media, and the three sources of light. If a single one of these twelve unities be modified, there may result therefrom a modification of the polychrome projected, to the detriment of the accuracy of the rendering. This is true, but we must not get scared in the presence of such a difficulty, for it is easily surmounted.

The obtaining of the three negatives, in suitable conditions, can be quite regularly effected. As for the diapositives, they are easily printed upon plates sensitized withgelatino-chloride of silver, and, with a little familiarity with the method, one may know when to stop at the most apposite point. One is always free, moreover, after a trial, to make the necessary correction if it is indicated by an inexact result.
The colored media should present, in the first place, the essential condition of furnishing pure white through the mixture of their three radiations. After a few tentatives, we shall quickly find those that best lead to the effect sought, and thereafter it will be useless to modify the three colors adopted. They will then pass to the state of constant.
As for the illumination, it is not indispensable that they shall be absolutely identical in the three lanterns. There is even a certain advantage in being able to modify the intensity according as it is desired to bring out a dominant in the three radiations. With gas or the oxyhydrogen light, it is merely a question of cocks, and the operator can thus regulate the effect of the projection at will by graduating the intensity of the luminous sources corresponding to each of the diapositives.

To tell the truth, these twelve variables are reduced to three, say to the prototypes, of the value upon which depends all the rest, nothing being easier, if one or more of the diapositives are too strong or too weak, than to make others of the desired intensity.
Upon the whole, the three diapositives represent the colors collectively of any polychrome object whatever, provided that they be projected, as has just been said, by means of three objectives, and traversed by the three distinct radiations that have been indicated.

This process of synthesis offers the great advantage of permitting of obtaining the representation of the colors of nature and of works of art without the intervention of the brush, and without the interpretation, however able it be, of any translator whatever. Our first tentatives in this direction, susceptible of leading to numerous applications of great interest, permit us to believe that it is possible to reach perfection in the rendering of colors. The images thus projected are fugitive, it is true, yet we can succeed in fixing them in a

Fig. 3.
 LANTERN.
less striking but also less exact manner, through pig mentary impression by means of the same negatives. In that way, the method of the photographic decomposition of colors, combined with certain easily em-

Fig. 2.-DIAGRAM OF THE APPARATUS.
ployed correctives, leads to results that are remarkable and much superior to anything that can be obtained thus by the use of the ordinary processes of chromolithography or chromotypography.
The first publicexperiments in Franceon this method

Fig. 6.-DIAGRAM SHOWING THE COLORS OF THE FLOWERS REPRESENTED IN THE FIGURES.
of recomposing colors by way of projection took place at the Conservatoire National des Arts et Metiers in our lecture of February 7, 1892. Since then they have been repeated, with completer elements, at the session

Fig. 4.

Fig. 3.-Monochrome designed for giving red, in the state of diapositive; monochrome of blue for the printing of pigmentary colore Fig. 4.-Diapositive that gives green radiations; monochrome of red for the printing of pigmentary colors. Fig. 5.-Diapositive that gives blue radiations; monochrome of yellow for printiog with pigmentary colors.

Fig. 5.
of the French Society of Photography of the 4th of March, and before the Photo. Club, of Paris, on the 9 th of March
The three engravings (Figs. 3, 4, and 5) represent, in its three states, one of the subjects projected, the diagram of which in Fig. 6 indicates the colors. These three images are a reproduc tion of the same bouquet of artificial flower under the special conditions detailed above. If we compare with each other the corn poppie at the top and at the left, we find that they nearly resemble one another in Figs. 4 and 5 where they are rendered by a color almost black, while they are white in Fig. 3. The yellow flower situated beneath and to the right of the bouquet is of a dark shade in Fig. 5, and, on the contrary, nearly white in Figs. 3 and 4 The yellow centers of the daisies are black in Fig. 5, and of a light tint in Fig. 4, and stil ighter in Fig. 3
Two of the daisies were purposely colored with ultramarine. In the last two images 4 and 5 , these are nearly white, like the white daisy, while in the first (3), from which the action of the blue rays was excluded, they have a vigor com parable to that of the green of the leaves.
It seems to us useless to carry the comparison farther it suffices to show the dissimilitude that exists between these three diapositives, as regards the rendering of the colors, although identical in their lines and dimensions. It will be remarked that the white lilac is every where found reproduced with an equal value, the white having acted in the same manner upon the three sensi tized films, possessing solely different properties as re gards the simple colors.
The favorable reception accorded by the numerous spectators present at these experiments is a sure guar antee of the future in store in France for the use of this method of polychrome projection. It has been almost unknown there up to the present, although its inventors are Frenchmen. The proof of a possible per fect realization has now been given, and there i nothing more to do but construct apparatusadapted to this special object-cameras and lanterns designed for obtaining negatives and the projection of theirdiaposi tives. We know that skillful constructors have already taken the work in hand.
What as splendid application for our intelligent and artistic amateurs is that which is to permit them to bring back from their excursions photographic images that it will be only necessary for them to project in a composite state upon a screen in order to show thei friends or others the places visited, and cause them to admire not only the picturesque character but also the beautiful colors thereof.-La Nature.

Analysis of Iron

In a paper read before the Chemical Society, Messrs. A. E. Barrow and Thomas Turner gave results of analy ses of best bar and sheet iron and common bar and sheet iron. They attempted to estimate the slag by combus tion in chlorine, a method already employed by one of them for cast iron (C. S. Trans. 45, 263), but they found that the iron was attacked by the chlorine, the action taking place quite sharply at a scarcely visible red heat. A considerable number of iron ores and slags were examined, and it was found that action takes place in the sense of the equation $3 \mathrm{FeO}=\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{Fe}$, the iron being removed by volatilization as ferric chloride. This action was unexpected, and so far as the authors ar aware, has not been observed before. Deville has, how ever, shown that when ferrous oxide is heated in hydro gen chloride, it yields magnetic oxide of iron and fer ous chloride. They then dissolved the iron in cold solu tion of sodium copper chloride. The authors conclude that for practical purposes the weight of slag in best and common iron may be taken as identical, and that on reheating and rolling each loses about the same weigh of slag. The additional loss noticed on reheating impure iron is due chiefly to the elimination of phos phorus, probably in the form of ferrous phosphate.

Length of Street Railway

Among the longest cables made by the Washburn \& Moen Manufacturing Compa ny were one manufactured fo the Denver Tramway Com pany of Denver which wa 32,145 feet in length, weighing 86,867 pounds ; one manufac tured for the Portland Cabl Railway Company, which was 33,000 feet in length weighing 76,350 pounds; and another manufactured for the Metropolitan Street Railway Company, of Kansas City 32,300 feet in length, and weighing 95,200 pounds.

Conscience in Work.
The policy of right doing cannot be doubted. Every intelligent man and woman must see that in nearly every instance it pays richly and fully for whatever labor or self-sacrifice it may involve, and in the few cases where they cannot see this result most of them have sufficient faith in the law to trust it. Yet, if this be the only motive in action, it cannot be called right doing in the best sense. That which is done solely from the hope of gain or advantage cannot be of the highest type.
The habit of doing what we have to do as well, as thoroughly and as speedily as possible, without immediate reference to its probable or possible effects upon ourselves, is one which would of itself secure at once the best success for ourselves and the greatest good of the community. It would settle many vexed questions and solve many knotty problems. Instead of this, the common course is to consider closely the comparative
benefit that is likely to accrue to us in return. There are all degrees of this calculation, from the strictly just to the grossly selfish. One man tries to estimate the true worth of his labor and performs it accordingly, another gives as little work and secures as large returns as possible, and between these there is every shade. But in all such reckonings there is one impor tant element left out. No one can count up the value of the labor which is both generous and conscientious. Even its money value can never be calculated
The youth who enters business determined to do al that comes to his hands as well and as quickly as he can, who is anxious to learn and anxious to please, who never measures his labor by his wages, but freely gives all the work and the best work in his power, is vastly more valuable than the one who is always bearing in mind the small pay he is receiving and fearing that he should give too much in return. So the mechanic or the clerk who, beyond his stated salary, chanic or the clerk who, beyond his stated salary,
beyond even his obligations to his employer or the de-
mands which public opinion could make upon him, exerts himself to make his work as perfect as he can, and delights in its thoroughness and excellence, apart from any private benefit it can render him, has a value which can never be computed. It matters not what the work be, whether it be done with the spade of the laborer, the pen of the clerk, the brush of the artist, or the voice of the statesman. Such people are sought far and wide, there are places always open to them and their services are always at a premium. Talents and skill tell for much, but conscience in work tells for more. He whose integrity is unquestionable, who can be trusted far and wide, who will work equally wel alone as when every eye is upon him, and will do his best at all times, is an invaluable member of society And he cannot do this simply from the motive of self interest. It is the result of something more than in telligence and foresight, it is conscience, vitalizing every detail of labor, and raising it to its highest pitch of ex-cellence.-Condensed from a lengthy editorial in the Confectioners' Journal.

An Observatory for Mont Blanc.

A second attempt is to be made to build an observa tory at the top of Mont Blanc. As the workmen who tunneled last year through the snow just below the summit did not come upon rock, M. Janssen has de cided that the building shall be erected on the frozen snow. A wooden cabin was put up, as an experiment, at the end of last summer, and in January and early in the spring it was found that no movement had oc
curred. According to the Lucerne correspondent of the curred. According to the Lucerne correspondent of the
Times, the observatory is to be a wooden building 8 meters long and 4 meters wide, and consisting of two floors, each with two rooms. The lower floor, which is to be embedded in the snow, will be placed at the disposition of climbers and guides, and the upper floor reserved for the purposes of the observatory.
The roof, which is to be almost flat, will be furnished
with a balustrade, running round it, together with a cupola for observations. The whole building will rest upon six powerful screw jacks, so that the equilibrium may be restored if there be any displacement of the snow foundations. The building is now being made in Paris, and will shortly be brought in sections to Chamounix. The transport of the building from Chamounix to the summit of Mont Blanc and its erection there have been intrusted to the charge of two capable guides-Frederick Payot and Jules Bossonay.

Cornell University had, in 1891-92, a larger number of students in her technical departments than any of the nine technical colleges of Germany, with the single exception of Berlin (Charlottenburg). Sibley
College, in its courses in mechanical engineering alone, has a larger number of students than the total in any German technical college except Berlin, Munich and Carlsruhe. The following are the figures: Berlin. 1,756; Cornell, 1,090; Munich, 642; Carlsruhe, 586 Sibley, 525; Hanover, 514; Stuttgart, 363; Darmstadt 334 ; Dresden, 251 ; Brunswick, 237; Aachen, 110.
When it is considered that the German colleges are he wards of the state, and are fully supported by their buardians, while Cornell University and its technical colleges are the wards of New York State, and left to be supported by private liberality, the contrast is something remarkably creditable to the latter, and not at all to the State so greatly benefited.

New Pacific

A new steamship, the Peru, for the Pacific Mail Steamship Company, was launched on the 11th from the yards of the Union Iron Works at San Francisco. The Peru is a steel steamer, 350 feet long, with triple expansion engines of 2,800 horse power, and is expected expansion engines of 2800 horse power,
to attain a speed of 15 knots per hour.

RECENTLY PATENTED INVENTIONS.

Railway Appliances.

Car Coupling. - Robert S. Russell, Brownsville, Tenn. This is an improvement in tha clase of devices known as "twin-jaw" couplers, a
coupling jaw of novel form being pivoted within each drawhead, the jaw having a horizontal hook at its for-
ward end and a shoulder on the lower face of its ward end and a shoulder on the lower face of it weighted rear end, while a rock shaft jonrnaled be neath the drawhead carries an arm adapted to contact
with the jaw and the shoulder. The beveled forward ends of the courling jaws pass each other as the car come together, their hooks becoming automatically en gaped, means being provided for locking the parts in coupled or nncoupled position. This coupling is inex-
pensive and always safe, and the device is readily pensive and always safe, and the
operated from the side of the car.
Mail Bag Catcher.-James W. Hor on, Madison, Ind. Catching and holding arms, nor mally pendent, are secured to a main or supporting bar
hung in bearings npon the outer faces of the car door poste, these arms being swung out into operative or horizontal position by a lever arm. The catcher
arms are adapted to be readily reversed to operate in either direction of movement of the car the positively grasping the bag, while the holding devices
yield to its inertia to overcome the shock. The de. reome the slock. The de

Baggage Stamp or Check.-Thomas M. Cunningbam, Nashville, Tenn. This invention con-
sists of a railroad ticket having separate and independent stamps or checks secured to it indicating the amount collected by the initial road on the ronte for the baggage of the passenger, with other particulars,
auch as the excess in value and excess weight of the aggage. The improvement has for its object the baggage. The improvement has for its object the
more certain division pro rata of charges for excess of baggage on connecting railroads using coupon ticket
although it is likewise applicable to local tickets.

Mechanical.
Grinding Wheel Attachment. John H. Goetsche, San Francisco, Cal. Emery and other grinding wheels are, by this improvement, pro-
vided with a casing formed with an annular recess to retann the oil, the inner wall of the casing resting on the face of the wheel and being held in place by a the face, or The arrangement is such that all the lubri-
washer.
cant passing out of the bearing is readily gathered by cant passing out of the bearing is readily gathered by
the casingand retained therein, from which it can be readily removed by a sponge or other means, the work being protected from the oil or other lubricant or-
dinarily liable to be scattered over the surface of the wheel.
Claw Bar. - James W. Gray, Brooklyn, N. Y. An implement especially adapted for speedy and convenient adjustment to any size of spikehead, is afforded by this invention. The jaw is curved on its ander side to rock, and its forward end is curved downward and inward to form a beak, in the rear of phichted a movement. of the clamping jaws may be utilized as a fulcrum for the bar in drawing the spike, the implement being also light, durable, and inexpensive.

Agricultural.

Plow.- Henry M. McCafferty, Montose, Col. A combination sulky plow and roller has
been devised by this inventor, an implement designed to thoroughly plow the soil and roll it nicely at the same time, the roller forming one of the main wheels
of the machine. The frame is supported by an or
dinary wheel at the landside, and the dinary wheel at the landside, and the land roller is
hinged centrally between its ends at its forward side to he opposite side of the frame. so that it will have a designed to afford especial advantages from the fact that the soil rolls better and the clods break up mor easily just at the time they are turned up by the plow ffectually covered up that they rot more quickly.
Fowl Crate.-Friedrich W. Ewert, Wood Lawn, Ill. A transverse partition divides this crate into upper and lower compart ments, and trans-
verse and longitudinal bars in each upper and lower division are made to form single compartments, one for each fowl, there being a door on the front end of rods, guide rods held on the bar sliding in bearings on the crate. The crates are more especially designed for shipping fowls to a distance without injury, perfect
ventilation being afforded, and the construction being ventilation being aff
simple and durable.
Egg Carrying Package.-Robert G. Dale and Walter S. Weightman, Durango, Col. The outer body of this package or case is made of paste-
board or thick paper bent or folded to form two tubur lar sections lying side by side, with their inner walls dividing them but left free to open, inner thin paper
or flexible strips being looped to form a series of or flexible strips being looped to form a series of
separate egg chambers in each tubular section. The separate egg chambers in each tubular section. The
improvement is more especially designed to facilitate and is also applicahle to egmal packages containing any number of such divided

Cheese Vat.-Leopold Meyer, Ahnapee, Wis. This is an improvement upon vate having a
water tank and heater, the milk being heated in a removable vat suspended upon the water tank. The milk vat has a sliding and detachable conuection with the water tank, and a longitudinal discharge pipe exend of the pipe entering an aperture in one end of the water tank when the vat is secured to the tank, the
latter having a heating pocket in its bottom. tom of the sheet metal milk vat is strengthened, and a simple and convenient means provided for drawing off the whey from the curds, the tank and vat being easily

Muzzle for Horses and Stock. Marcus S. Moremen, Switzerland, Fla. This is a simple and practical device, attachable to the head of
the animal to prevent injury being done to other cattle the animal to prevent injury being done to other cattle
or to trees and shrubbery, while allowing freedom to or to trees and shrubbery, while allowing freedom to
graze. Theskeleton muzzle is secured upon the jowls of the beast, and its open bottom is normally closed by from the latter engaging the ground to swing the plate npward
owers its head.
Powder Duster.-John P. Wright, Thomaston, Texas. This is an inexpensive device easily operated by the driver to distribute poison upon plants. A bed or platform carries uprights supporting a hand shaft with crank handle, this shaft being connected by a belt and pulley with a distributer shaft on the outer ends of which are poison-distributing cylinders, which may be held at different heights, as desired, for dusting the plants. The distribater shaft is
operated by the turning of the crank handle by the driver, and not by the moving part of the machine, so that the powder may be applied oniy where needed and none of it will be wasted.

Miscellaneous.

Toy.-William H. Gregg, New York City. The evolutions of a body of soldiery can be imitated and different positions of a company of infantry
may be accurately represented by this novel and amusmay be accurately represented by this novel and amusmg toy, instruction in the order of marching bodies of base board, a series of figures is supported on trans verse strips secured pivotal!y at both euds on parallel bare, and thus adapted for changing the position of the igures by ranks.
Puzzle.-Antenor Assorati and Arturo Cuya, New York City. A puzzle in egg form. simuating the mythical egg of Columbus, is provided by
anis invention, the egg being so constructed that when this invention, the egg being so constructed that when
handled in a certain manner it may be made to stand handled in a certain manner it may be made to stand
apon its end. Although the toy is inexpensive, the interior mechanism is so arranged that it requires con-

Design for the Ornamentation of Sheet Metal.-Leopold Kahn, New. York City. The strips of ribbon-like and lace-like metal, the later figares timulating different varieties of lace, and having preferahly scalloped edges overlapping the ribbon-like Design for a Shoe Shaper Plate. Joseph W. Skinner, La Crosse, Wis. The edge lines of which are turned up at right angle, one upturned end being bent
Pressure Regulating Valve.-Wal rid Gnetafsson, Br vides a valve of simple, durable, and inexpensive construction, with which, no matter what the pressure may be upon the inlet, the pressure at the outlet may
be diminished as desired. The invention also provides be diminishedas desired. The invention also provides a means whereby the regulating mechanism of the
valve may be manipulated in a convenient and expeditious manner, the improvement embracing various novel details of construction and combinations of

Feed Pipe for Vacuum Pans. Henry Basanta. Ponce, Porto Rico. The feed pipe is orations and-shaped, provided with a series of perof the vacuum pan. One end or the pipe is closed and the other registers with a short pipe leading to a cham.
ber into which discharges the supply pipe, valved ber into which discharges the supply pipe, valved
steam and chemical supply pipes being also connected with this chamber, the valves in the latter pipes being feed pipe cause a uniform discharge of the sirup under an equally distributed pressure, any crystals in the sirup not being liable to break, and facilitating the Troduction of well-grained sugar in the boiling. Transfer Paper.-William Schwartz, New York City. This invention relates to an improvement in the paper and in a composition for coating it, providing at a low cost a paper by means of whica
number of copies of a mannscript or design may quickly and conveniently taken on single sheets or the leaves of books. The coating is composed of glycerine, carpenter's glue, agar-agar, and other components, in specified proportions, and is applied while
hot. The compound never thoroughly dries, but always retains its absorbent qualities, and with the paper thus treated a distinct and
made of the matter to be copied.
Harness. - Thomas J. Magruder, Marion, Ohio. This is a strap-ataching device for harted for connecting the inner and outer belly-bands, or for conpecting any two straps croseing one another

The device has side bars with upwardly curved extremities from which tongnes extend inwardly, a
bridge bar connecting the side bars, the bridge bar having studs and a central aperture.
Sack Holder. - James C. Bratney, Sparta, Ill. This is a device for holding any kind of justable to suit and se eanty filed, and is readily adThe holder has a funnel top, with depending neck to enter the sack, and on opposite sides of the funnel are downwardly-depending sockets to receive supporting legs. The funnel has projections or teeth and hooks to engage the sack, which may be fastened in place by one motion of the hand, and thus held without injury, the hooks not extending through the fabric, but sim-
ply forcing it into aligning perforations. Embroideriva - Hermant
Embroidering.-Hermann Gehnrich, New York City. Thie invention relates to a fabricholding frame for embroidering machines, and es-
pecially adapted for use with the Heilmann or Swiss machines. The frame may be secured to the machine in any well known manner, is of simple and inexpensive construction, occupies but little epace, and the
fabric can be readily and securely attached to it and stretched without injury. It is provided with an au-tomatically-working lock, so that when the fabric is
Show Case. - James C. Loughry, Greensburg, Pa. This case is especially adapted to exhibit cigars and permit them to be easily reached. It has a vertically-sliding glazed front, operated in ways
by chains or cords extended over guide pulleys to the rear of the case and there weighted for operation by the salesman, there being a shield or mirror in front of the upper ends of the ways. The salesman pulls on
the chain to raise the glass front when a customer deelect a cigar.
Combination Lock. - William H. Thompson. Xinnipeg, Canada. Tbis lock has a rotary bolt with a locking notch in which rests a tumbler on a spring bar, at right angles to and operating on which is a grooved pull-shaft, in the grooves of which play
one or more adjustable slides, The lock can be one or more adjustable slides. The lock can be
opened only by one knowing the proper combination, and is adapted for use on cupboard doors, drawers, valiese, and iu connection with the ordinary bolts of safe locks.
Stovepipe Fastening. - John H. Johnston, Little Rock, Ark. Metal loops are, accord-
ing to this invention, riveted to the pipe sections on ing to this invention, riveted to the pipe sections on
the inside near their ends, a separate connecting strap the inside near their ends, a separate connecting strap
or tie being bent around the loops and connecting the opposite pipe sections, thus forming a firm and secure nion of the eections to prevent them from becoming or uneightly ciffect.
Furniture Construction. - Frank M. Haiman and Andrew L. Eaton, of Ottumwa, Iowa. ing the legs to tables, stands, desks, and similar articles, temporarily for shipment. A diagonal right ard left screw bolt is made to connect the rails in the rear of their spaced ends, the leg being clamped between the rail ends beyond the screw, which serves to con
Fish Hook.-William H. Hunter, Farnhamville. Lowa. A bowl and two books are combined in this improvement, the shank of one hook being
fixed in the bowl while the ehank of the other hook engages a pin or lug on the howl to hold the two hooks gages a pin or lug on the howl to hold the two hooks
in a closed position. While trolling the hooks are thus held closed to prevent them from getting caught in stantly when the fish takes the bait.

