tereoscopic Projection With the Mavic Laptern.
In Mr. Anderton's system, the two pictures are proected by two optical systems onto the same screen by polarized light, the light of one optical system being polarized at right angles to that of the other optical system. The superimposed images are viewed by a pair of analyzers also set at right angles to each other, so that each eye shall receive its proper image. A correspondent of the Optician has seen a trial projection according to this system, the experiment having been made at the premises of Messrs. Field \& Co., of Suffolk Street, Birmingham, where Mr. Anderton is manager. The correspondent in question says: "I was shown into a darkened room, in which was a double lanteru, appareutly an ordinary make, so far as form was concerned. On the other side of the room was a screen 12 feet by 10 feet, covered with a frosted white metallic surface, being apparently a large number of small sheets of the ordinary tin foil pasted together, and as a consequence it had a number of reflecting surfaces of diferent gradations, which were more diversified than pleasing. This can, however, be remedied easily enough by the manufacture of proper screens now that the invention is protected. On !taking a seat I was handed a simple-looking apparatus, something like an opera glass with a handle, but only about $11 / 4$ inches each way, and very light. I looked at the pictures when thrown on the screen through this glass. The first picture thrown on, and occupying the whole screen, was the interior of Ledburgh Abbey. Viewed without the eye-glasses it presented the appearance of an ordinary lantern picture having some of the details slightly blurred. Some alterations were evidently in progress, and a long ladder could be seen lying on the floor with its end toward the spectators. I then looked through the eye-glass, and the whole scene was instantly changed. The architectural details of the building stood out in bold relief. The male figure in the middle distance started into apparent life, and the vista of the aisle stretched out into magnificent perspective, while each rung of the ladde was in a stereoscopic relief. The next picture was a splendid colored tiger. This and other natural history subjects were taken from instantaneous photographs of the animals in the Zoological Gardens, and the results were almost startling in their realism. The next picture, that of a group of elands, showed in a very marked manner the impossibility of superposing two dissimilar pictures so as to register accurately. A juvenile eland in the background had so abnormally large a number of legs as to qualify him for a very high position in a museum as a monstrosity. On look ing through the eye-glass, however, the extra legs disappeared, and the whole group stood out stereo scopically in a most life-like manner."-Photographic Work.
n Aerolite Falls in the Great Desert of Sahara
Mons. Stanislas Meunier has just contributed to the literature of the Academie des Sciences some interest ing particulars of a ferric aerolite, which has bee acquired by the Paris Museum, and which recently fell into the middle of the most extensive l..rren tract on the surface of the globe, to wit, the Sahara Desert The exact contact point, says Iron, was a spot situated in latitude 28.57° north and longitude 0.49° west, in contiguity to the pits of Hassa-Jekna, on the caravan road from El Golea to Gourara. A mouadhi of the Chamba tribe, having established his camp in the local ity, had departed on a hunting excursion with his men. In his absence, the women, who were seated outsid the tents, became suddenly cognizant of a tremendou rushing noise. The next instant they saw, at a distance of some 500 yards, a dark body dash to the ground, the force of the impact causing the sand to belch into the air, with an effect almost like that of the outrush ing waters of an Icelandic geyser. The Moorish Nim rods, who had also been attracted by the sound of the falling meteorite, shortly afterward returned, and proceeded to investigate the cause of the phenomenon.
Guided by the wild gesticulations of the females they hurried to the passage which the aerolite had bored for itself in the earth, and they saw the strange body at a depth of about a yard. Their first impulse was to bring the meteorite to the surface, but their initiatory efforts in this direction received a rude and unexpected check. The quondam quarrymen who essayed to raise the intruder quickly and unanimously dropped their burden and ran howling with pain to the tents. The celestial visitor, still very hot from the friction engendered in its terrific flight through the atmosphere, had severely scorched their fingers. On the following day the aerolite had cooled sufficiently to permit of easy withdrawal from its arenacious bed It was, after all, but a comparatively small piece of meteoric iron, of pyramidal shape, and remarkable for ts rounding contour, which contrasted strongly with the fragmentary and angular character of the majority of similar bodies. A section sawn, polished, and etched, showed a very clean Widmanstatten figure. The density measured at 14° was 7.67 . Analysis gave: Iron, 91.32 ; nickel, 5.88 ; cobalt, 0.81 ; copper, trace ;
sulphur, trace; the remainder, insoluble, 1.04. This composition, Mons. Meunier says, accords with the physical traits of the lithological series of meteors, and the Hassa-Jekna iron may therefore be classed with the rare aerolitic type which the French mineralogist distinguished in 1870 by the appellation of schwetzite.

PTYCHORAPHIS AUGUSTA,

This is an elegant little stove palm, which has been introduced to Kew this year from the Nicobar Islands. It is as graceful as Cocos Weddeliana or Geonoma gracilis, and it grows as freely under cultivation as either of these popular palms. Nurserymen and others interested in palms would, I believe, find it worth while to introduce this Ptychoraphis in quantity, and the following information may serve to put them on the scent.
Kurz, writing in the Journal of Botany in 1875, of some plants of the Nicobar Islands, says of this palm ' One of the most conspicuous features of the Nicobarese vegetation is Areca Augusta. It pushes it head above the highest forest trees, and forms, so to say, a palm forest above the true forest, rendering thus the aspect of the landscape more Brazilian than Indian. It is frequent all over the so-called northern group, while it becomes scarce in the southern group.' He also states that it seeds abundantly, each tree yielding about a maund of fruits yearly. It forms a slender tree 80 to 100 feet high, the smooth annulated trunk only a foot in diameter. The leaves ultimately become 8 to 12 feet long, the pinnæ 2 to 3 feet, narrow linear, acuminate, bright green. The fruits and seeds, of which figures are given in the accompanying pic ture, are elliptical, oblong, red when ripe, a groove

ptychoraphis avgusta.

similar to that of the date stone, running along one side of the seed, the albumen of which is ruminated as in a nutrueg. A quantity of the seeds have recently een distributed from Kew
The genus Ptychoraphis was created by Beccari and comprises only three species, all Malayan. It is allied to Ptychosperma and Pinanga.
A second species of Ptychoraphis, viz., P. singa porensis, also called Ptychosperma, is also in cultiva tion at Kew, and the third one is the plant which has ately been distributed as Rhopaloblaste hexandra. Palms appear to have been exceptionally unfort nate in regard to nomenclature. Horticulturists will no doubt, regret that Kurz's simple name for the plant here figured, viz., Areca Augusta, proved a wrong shot. What are termed "crack-jaw" names by the laity are abundant among palm names. The unoffending little brother of the plant here figured has been well (or ill) treated in this respect by the botanists. One called it Ptychosperma singaporensis, another followed with Rhopaloblaste, and now we are to call it Ptychoraphis. Would plant sponsors be offended if cultivators appealed to them for simpler names? The new generic names are much more "crackjaw," as a rule, than the old.-W. W., in the Gardeners' Chronicle.

Remarkable Railway Facilities

In addition to many lines of street cars drawn by horses, the city of New York is supplied with a steam street system known as the elevated railways. They onsist of large iron bridges which occupy several of for steam cara and streets of the city. The need
mense numbers of people who use the elevated roads in New York. The ordinary daily movement amount to nearly half a million passengers, but on the day of the great parade in honor of Columbus, October 12 last, the number of people carried was $1,075,537$, and the number of trains employed for their transportation was 11,688 .
This is an extraordinary showing, and is indicative of high ability in the management. These elevated railways are under one management, the Manhattan Elevated Railway Company, and embrace the follow ing lines:

Cheap Engineers and Expensive Lawyers.

We frequently receive very decided expressions of opinion from those whose experience makes them the best judges against the old-fashioned, short-sighted penny-wise and pound-foolish policy of employing the cheapest possible service in engaging professional en gineers, while, when it comes to lawyers' fees and presidents' and managers' salaries, large sums are paid without hesitation. Any one who will take the trouble to find out how much time must be spent and what the amount and nature of the studies are to become a good engineer, and then compare this with that required to become a good lawyer, cannot fail to notice how much greater the former is. Moreover, in the enhow much greater the former is. Moreover, in the en-
gineering profession one must continue to study and gineering profession one must continue to study and
keep abreast with the rapid progress made in engikeep abreast with the rapid progress made in engi-
neering, while in the lawyer's profession the term "progress" hardly exists. Of the four professions, medical, theological, law and engineering, the latter is certainly the one in which one's reputation depends entirely on ability, that is, the one which requires the most conscientious work in order to gain and keep good reputation. When an engineer is ignorant, and makes mistakes in building a bridge, machine, or a mining plant, for instance, which thereby breaks down, there is no question where the fault lies and whose it was, and, what is worse, the lives of innocent victims are often at stake. Of all professional men therefore, the engineer must work, study and practice in the most thorough and conscientious manner. He should, therefore, be selected with the greatest possible care, and receive the most liberal remuneration. The man who will take the greatest care in engaging a physician, regardless of cost, will go to his factory and engage cheap and incompetent professional engi neers, and practically intrust the success of his inanu factured products or constructions to their care, and then wonder why other manufacturers who pay fo able talent are more successful. Some companies pride themselves, and with right, on the professional engineering talent which they employ and can retain by paying properly for it, but there still appears to be many who stick to the short-sighted policy of under paying the one in whom the success of their products to a great extent lies.-The Electrical World.

Removing the odor from sulphured Goods.
How can tae bad odor be removed from sulphured goods? is a question frequently asked, and various remedies are proposed. The general course of procedure is reeling in cold water, or a treatment in the washing machine. The following suggestion, however, differs somewhat from the general drift. The question is how to remove the smell from sulphured flan nels.
In reply it is said that occasionally in textile publications is the washing with soda recommended for the purpose of removing the disagreeable smell from goods which have been exposed to the sulphur chamber. Many seem to think that they are dealing with carbonized goods, and they must themselves have had very little experience with sulphured white goods; otherwise they would not have recommended so dangerous a remedy to those who avowedly have had no experience at all in this line. Nothing is more erroneous than to suppose that, because carbonized goods are neutralized with soda, this process might also be successfully used with sulphured white goods. It should be remembered that washing with soda always makes the wool fiber yellow. It would consequently entirely counteract the effect of the sulphuring process. This fact is also the principal reason why fabric intended to be sulphured must not be carbonized, if a handsome, pure white is desired. For such goods choose wool as nearly free from burrs and as white as possible. If there are any who think that the odor of sulphur cannot be removed effectively with clear water alone, let them wash the fabric with good, entirely neutral tallow curd soap before rinsing, or else let it pass through a properly prepared chalk bath. Any one will be able after a little practice to manufacture white sulphured fabric that will, when nished, not have the least smell of sulphur about it. -Industrial Record.

Etectriety in ohemical Iuduntries. Most of the numerous and varions applications of electricity are of such a mature that ensineers and the reading public soon become familiar with them ; but this is not always the case with new developments in clectro-chemistry, as chemical processes, when not secret, are, as a rule, of less interest and of little importanes to the publie, says The Electrical World, except in so far as they ressilt in the cheapening of creat and important progress which is being made in this लeld. The great cheapening in the price of pure aluminum and of the aluminum aloys, for instance, is largely due to electric processes. Flectric bleaching is mueh more common than is generally supposed. Electris, processes for extracting metals from ores are becoming of wore importance every day, although comparatively little appears about it in current electrical literature. A cable dispateh just received from England announces the discovery of a new electric process for obtaining caustic soda, chlorine, and other commereial chemieals from salt water. It is stated to have beer pronounced a great success by prominent chemists and to cost but half as much as the present methods. The dispateh gives no other details, and until it is verified and accompanied by further details little need be said about it here. That such proeesses are possible, however, is well known to all educated electricians, as they may be performed in any laboratory : it remained only to bridge the gap, which often is very wide, between the laboratory experiment and a cheap and practical chemi al process. If these difit culties have been overcome, as the dispatch leads one to believe, and if such a saving is really effected, the result will doubtless be not only of importance to the manufacturing chemist, but also to other industries in which such important chemicals as caustie soda and chloriue are used. The oceans are practically inexhaustible mines of these products, which are and always will be free to the publie ; this "raw material can rever be tased by any artificial protective tariff, and monopolies and trusts for raising the price of thi raw material are forever beyond the control of politicians and legislation. A better source of supply could not be desired. It remains only for ingenuity and enterprise to develop processes for converting this free raw material into commercial products, which, if thi report from England is reliable, appears to havo been accomplished.

The Cotton Industry of the United States.
Census Bulletin No. 237 presents a preliminary report on the manufacture of cotton in the United States, pre pared by Mr. Edward Stanwood, special agent, under the direction of Mr. Frank R. Williams, special agent in charge of statistics relating to all,branches of manu factures.

The growth of the cotton manufacturing industry of the United States has been constant. One of the mos gratifying features of the situation is the great exten sion of this industry in the South, where a marked ad dition is shown in the number of cotton mills estab lished and suceessfully operated. The magnitude of this movement is demonstrated by the fact that the consumption of raw cotton in the Southern States in 1890 exeeded that of 1880 by $1655,308,889$ pounds, while in New England, the chief seat of this mamufactures the excess of consumption of 1890 over that of 1880 was only $173,317,834$ pounds. Nevertheless, the development of eotton manufacture throughout the country, meas ured by any test, was harge and healthy. Inasmuch a the manufacture of eotton is one of the prineipal in dustries to which the factory system is applied, its con dition throws much light upon the industrial situa tion.

The tables herewith given do not include the return of special mills employed in working raw cotton, waste, or yarn into hose, webbing, tapes, mixed groods, or fab rics which are not classed as specifie mamufactures of cotton.

The general mots attending the increase are shown futhe following emparative statement

So far as thesc figures can be taken as a full state neent of the financial results of the manufacture of cot tun, it appears that of every dollar received for goons
made and sold, $43 \cdot 81$ cents represent the cost of cotton consumed in the manufacture, 13.88 cents the cost of other materials, 6 .36 cents the amourt of miscellancous experises, and 2593 cents the cost of labor, including the amount paid to officers and elerks. The sum of 10.02 cents remains as residue to cover the depreciation of plant (a large item in cotton mills), as well as the visible profits of the manufacture.
The increase in the number of spindles reported is 3,434, 688 ,
per cent.
The number of spindles reported in idle mills i 166,143 ; the number of cotton spindles in woolen mill proper, not as yet exactly ascertained, is about 196,000 The total number of spindles, active and idle, is there fore about 14,400,000.
The numerical and proportionate inerease in the number of spindles, as reported in these tables, by geographical divisions, is as follows

Geographical Divisions.	Spindes.	Increaze.
	Sumber.	Per cent.
Vew Fupland states	2,104.068	24.37
Nidde states	${ }_{1}$	
Western states.................	\%6, 090	88.33

The paramount fact concerning the progress of cot on manufacturing between 1880 and 1890 is the pro digious grow th of the industry in the south. In each of the States of North Carolina, South Carolina, and Georgia the increase is almost exactly a quarter of million spindles, which is a larger number by far than hat which indicates the inerease in any other State xcept Massachusetts.
The commereial estimate of the erop of 1889-1890 was 313,724 bales, of which $2,342,338$ bales are supposed to have been consumed by spimers in the United States averaging 49 pounds to the balc.

Slymary of goods manlyactlized- 1890.

The totul amount of piece goods reported is mor haw $8,000,000,000$ square yards, almost enough to cove an area of 1,000 square miles, and more than enough to encircle the earth at the equator sixty-eight times The importance which the manufacture of sewing cot on has assumed is one of the striking facts developed in the above table. Substantially, the whole supply of spool thread is now both spun and finished in the United States.
As to the geographical distribution of the production of the several classes of goods, it will be seen that nearly six-sevenths of the print cloths and a much larger pro portion of the finest goods are woven in New England. The mamufactures of the Middles. States run largely to ewing cotton, yarns, and duck, and almost all the up olstery goods are produced in theses States. The mills f the South are chiefly devoted to the production yarns and sheetings.

Bee Keeping th Utah.
 L. Townaiend. ©TAH.

When the pioneers settled in Utah in July, 1847, the valleys were a part of the great dry sage brush desert oxtending from the Rookies on the east to the Sierras on the west. By the pioneer's industry, the desert soon begran "to blossonn as the rose," and as the immi yration continued, every tract of land that could be irrigated from the mountain streams was made a place of habitation, overy cabin having its vegetable garden, with a variety of old-fashioned garden flowers to bor black bees were busily humming at the entrance of a bee gum wade from a section of a hollow tree, or storing their honey in the old twisted straw rope hive, for at that early day movable frames and patent hives were still a dreanl1 of the future. The sweet clover (Melilothe what, that came as a weed in ourgrain fields, fouud a congenial soil and climate, and took possession of the banks of the irrigating ditches and waste places,
naking a bee pasturage that produced the very finest
quality of honey, and by the roadsides sprang up an abundance of the Rocky Mountain bee plant (Cleom integrifolial. Alfalfa or lucern, the plant that hats done nome for agriculture than any other in the West was then extensively planted over large areas, and be came the chief bee pasturage in Utah. With the growth of alfalfa the bee industry also started with renewed interest. The two or three cuttings prolonged the honey season Improvements in beekeepiner that were adopted in the Eastern States were promptly added here, the more enterprising small farmers int porting the movable frame box hives and honey ex tractors. Utah honey was praised by all who tasted it, the flavor being delicious and quality unsurpassed. The demand for it extended until it is now a stapl artiele of export, carloads of it being shipped to Owa ha, Denver, and Chiearo. The black bees are now re placed with Italian, or Holy Land acolonies, as the latter are more docile and better gatherers of honey Nearly all hives are of the Awerican pattern, with frames about $113 / 8$ by $14, s^{5}$ inehes, very few other pat terns being used. Every apiary has an extracting house, containing a honey extractor and tank for hold ing the honey, eomb foundation machine, beriler for melting wax formaking foundation, machine for fast ening foundation in sections, utersils for handingr bees and mechanies' tools for making hives, frames and see tions.
Every apiary has some form of the improved sun wax extractor, all of them home made, and many ingeniously construeted. One of these, instead of being sta tionary, is pivoted on an upright post so that it cun face the sun from morning until sonset, thus being nore effective in prolonging the hours of sumshine upon he melting wax. In our bright sumshine and scareit f cloudy weather these sun wax extractors are provin an excellent utensil for melting wax cappings and honey, and separating both from beebread
At present, we have three classes of apiaries, tho containing about thirty to fifty hives owned by smal farmers who keep bees as one of their profitable indus tries ; those having a hundred or more stands belong ing to several parties and kept on shares by a suceessfu beckeper; and those having from 200 to 000 hives k ept by an apiarist, who gives his entire attention to the industry of producing and exporting hones. The ayerage yield is sixty pounds of extracted honey from ach hive. One apiarist last year procured, from fifty two colonies, an averatre of eighty-three pounds of extracted honey, and another, situated in a bette pastures, extracted 30,000 pounds from 250 stands, and besides, procured t,000 pounds of section comb honey rom 240 of these stands. One donble hive of eislatern frames yielded 195 pounds of extracted honey, and another hive filled 140 one-pound seetions with coulb honey. During the bouey season the couths are extracted about every eight days, but much deperd on the condition of the atmosphere, $a d r y$, hot wind decreasing, or stopping, the yield. A stumd of good bees now brings three dollars in the lowal market, the pricevarying with the strength of the colony. Hxtracterd honey sells at six cents a pound, the priee always be ing less than sugar and more or lese governed by that taple. Much of our fruit for home consumption preserved with honey by those who produce it, bui the prearves and canned fruit prove wore liuble t ementation than whem put up with murg effects follow the eating of Utah honey, indipestion rom its use and honey colic or cramp being unknown here. It proves a valuable food, and is too cheap to be onger classed as a luxury. When extracted honey i canned, or stored in ressels, it candies, or becomes hard and white, and is generally exported in this oondition, but it only requires melting to resume the liquid state.
Lerislation, in favor of beekeepers, was enacted by the Utah legislature last winter, empowering the connty courts to appoint bere inspectors and district the counties for the suppression of foul brood, which is found in those stands kept by curtesess farmers with but few hives, and thence oceasionally is tarried into the apiaries. The connty tas assessor is required to ermu merate the hives kopt by exach person, and the county tax collector receives five cent. for each hive in addition to the usual taxes. lirom this fund the bee inspectors are paid thres dollars a day. They are required to examine every apiary and cleanse each hive found to antain foul brood by burning the diseased eombs and burning ont the inside of the box, and must make the rounds of their district at letast onee a year. lipon complaint by any beekeeper aspainst another, the inspector must examine the suspected colonits. Ameriwh Agrichlturist.

Lord Chifr Justice Jala was perhaps the first udqe to call attention to inebriety as a cause of erime, requiring speecial study and attention. In 1870 he is reported as saying:
'If the murders and manglaughters, the burglaries nd robberies, the riots and tumults, and other enormities comulitted during the last twenty years, were divided into five parts, four of them would be found to have been the issue and product of drinking."

