

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCLENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, OCTOBER 22, 1892.

tHE TACONY IRON AND METAL COMPANY's WORKg, TACONY, PA.-THE GREAT ELECTRICAL PLANT FOR PLATING IRON COLUMNS WITH ALUMINUM.-[See p. 261.]

Srientitir Ammerian.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. \quad A. E. BEACH

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico.
One copy, six months, for the U.S., Canada or Mexic One copp,one year,to any foreigncountry belonging to Postal Union. 150 Remit by postal or express money order, or by bank draft or check. The Scientific American Supplemen

Building Edition.
The Architects And Builders Edition of The Scientific Ameri-

MUNN \& CO., Publishers, $\begin{aligned} & \text { 3ifi Broadway, New York }\end{aligned}$

NEW YORK, SATURDAY, OCTOBER 22, 1892.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 877.
For the Week Ending October 22, 1892. Price 10 cents. For sale by all newsdealers.

1. BIOGRAPHY.- Professor Max Muller.-The life of the famous

 port to the ce

v. GEOGRAPHY-The Dahomey Expedition.- Recent French ex- pedition to Dabomey, the land of the Amazons. -2 illustrations..

 grophicienstations..

tion of biogz of tie british treatment of subjective physics.

ELECTRIC LIGHT AND VEGETABLE GROWTH Prof. L. H. Bailey has recently published (Bulletin No. 42, Cornell University Agricultural Experimen Station) a second report on the effects of electric light upon the growth of plants. The first report (Bulletin No. 30), issued last year, gave details of numerous ex periments, which are confirmed by the present report The results are, briefly, as follows
An arc lamp, 10 ampere, 45 volt, 2,000 nominal candle power Westinghouse alternating current, shaded by a clear glass globe, was hung outside of and in the valley between two greenhouses, about six feet above the nearest glass. It seldom burned after 11 P . M., and on moonlight nights not at all. It exercised a decidedly beneficial effect upon the growth of let tuce, causing the lighted plants to be ready for market from a week to ten days before those grown outside the influence of the lamp. Advantage of this fact has already been taken by a grower near Boston, who finds a gain of five days in a crop by the use of who finds a gain of five days in a crop by the use of
the light. Of other plants experimented on, Prof. Bailey says that endive was injured; radishes were benefited, but not enough to pay for the light; spin ach grew from 5 to 15 per cent larger in the light than in the dark; cauliflower seemed to grow better in the dark; violets began to bloom in three weeks after being set out in light, while it was five weeks be fore those in the dark flowered. The daisy (Bellis perennis) bloomed earlier, but did not make as good, stocky plants as those in the dark.
An experiment with spinach seed was of interest as showing that characters of parent plants are not trans mitted to the seed. For example, seed from a slender light-grown plant and from a low, dark-grown plant, together with commercial seed, were planted together in the lighted house. The offspring of the low, dark grown plant gave the best results, while the commer cial seed came next. But in the dark house the best results came from the offspring of the slender, light grown parent, that from the dark-grown being second and the commercial third. Thus the slender habit of the light-grown plant was not transmitted when grown in the dark, and the low-growing habit of the dark grown parent was not improved upon the second year, being surpassed by the offspring of slender, light-grown plant.
Upon the whole, Prof. Bailey concludes that the intervention of a pane or two of glass modifies materially the effects of the light, preventing injury, which results at times from the influence of a naked light that as a rule plants are earlier under the light, and that the light can be used to advantage in the forcing of plants.
Further experiments are in contemplation during the coming winter and spring.

Drinking Water and Other Things in San

A large proportion of the buildings in this city (San Francisco) and in some of the towns and villages, also many suburban and farm houses, have the main water supply run into tanks set at a sufficient height to supply the water for use. After a time the water in such tanks becomes covered with a green scum, while de cayed organic matter settles at the bottom ready to enter the house supply pipes and be drawn off for household purposes. It needs no argument to show the beneficial result of cleansing these tanks at least once a week. There is a convenience for the cleansing of boilers in the kitchens of many of our residences, viz., a sediment outlet at the lower part of the pipe under the boilers. The sediment should be drawn off every morning through the faucet. Sometimes thi faucet is provided with a waste pipe to a hopper out side the house.
One source of danger is to be found in the cities and towns on this coast where the roofs are used by the Chinese for drying clothes and other purposes only known to themselves and to persons having busines which gives them knowledge of this state of affairs. The main roofs are nearly flat and in most case covered with tin or asphaltum; at a short distance above this there is a floor of boards placed upon light framework which serves as a cover for the roof. The ispace between the roof and boards is, in many cases reeking with moist filth, which under proper authority could be cleaned up and taken away.
The bake shops may be looked after: the bread, cake and pie pans are in some cases greased with old and rancid fats which permeate the product and may become generative of pestilence.

We have ordinances sufficient, provided the surveillance was more efficient, to abate one of the worst evils extant. The streets are carefully swept and cleaned up during the night time; in the morning the stores or shops are opened and wept out upon the sidewalks and into the streets, so that by noon the
streets contain large deposits of dirt and dust to be streets contain large deposits of dirt and dust to be raised and wafted about by the winds.

While the question of the transfer of dirt into the street is considered, it may be well to mention that in most, if not all, the rooming houses fronting on the streets, the inmates of the front rooms use the streets
for the deposit of debris from their rooms, and about midnight the pedestrian will every little while hea and see a package from some window thrown into the street. In some localities, if the person occupying the first story objects to such methods of scavenging for the upper stories, the landlord straightway raises the rent, as the rottenness of the rooms above pays mor than the business places below.
There should be an inspection of fruit and vege tables set out for sale in our markets. Decayed and decaying edibles are a prolific source of propagation of infectious diseases. At many of the street corner may be seen peddlers dealing out partially decayed fruit.
The excretions of the dog or cat are considered poisonous, and the animal will try to cover it with earth when the surroundings will admit of it. The dog of the built-up districts will not soil its own home, and we have never seen any good reason why it should be allowed to soil the neighbors' doorways or premises, and we fail to understand why it should be permitted o soil the fruit and vegetables for sale in the shop and on the sidewalks of our greengrocers. This is an evil that should be the subject for a crusade by the people and officials. There should be an ordinance passed that no fruit or vegetables should be deposited less than two feet from the floor or sidewalk where subject to this danger.-Cal. Architect.

n an Apparent Relation of Electromotive Force

 to Gravity.by dr. g. gore, f.r.s
In a research on "A General Relation of Electro motive Force to Equivalent Volume and Molecular Velocity of Substances " (Proc. Birm. Phil. Soc., 1892, vol. viii., pp. 63-138; "Electrical Review," vol. xxx., pp $693,722,755,786$) I have demonstrated, by means of a large number and variety of experimental measure ments, that the dilution of the liquid of a voltaic cel by means of water or alcohol, the solution of either the positive metal or the negative one by means of mercury, the dilution of either of these amalgams by means of mercury, or the dilution of one solid meta by means of another in an alloy, is universally at tended by an increase of mean electromotive force of the diluted and diluting substances beyond the calculated amount, and therefore of the actual electro motive force of the diluted one (that of the diluent motive force of the diluted one (that of the diluent
being very little affected), provided that no chemical union of the diluted and diluting substances occurs. If, however, chemical union does occur, this gain of electromotive force is diminished, or converted into a loss which is larger in proportion as the union is more intimate.
In these experiments, by the act of solution or dilution, the molecules of the active or diluted substance are separated farther apart by those of the neutral or diluting one, and acquire greater freedom of motion while those of the diluent approach only slightly nearer together and do not perceptibly affect the re sult.
It is generally admitted that the particles of all bodies are in an incessant state of motion, that this motion is the vis viva or energy contained in the sub stance, and that the laws of motion apply equally to the smallest as to the largest bodies. If now we re gard each molecule of the active substance as vibrat ing like a pendulum, its movements must obey the aw of falling bodies, and the larger the degree of free dom of motion the greater the arc of vibration, the larger the fall, and the greater the velocity of motion. And as in the above mentioned experiments the volta electromotive force of substances generally has been proved to vary directly as the degree of molecular free dom, it must also, according to this view, be directly related to, and dependent upon, the velocity of mole cular motion and the law of gravity in the above man-ner.-Philosophical Magazine.

The Great Light for the Fair.

At the World's Fair grounds a test of the search light which is to illuminate Jackson Park was lately nade. The electric light is perched on the high tower of the Transportation Building. The light is the largest and strongest in the world. It was made by Schuckert \& Co., of Nuremberg, Germany, and it ha been brought to this country by Prof. Tischendoerfer a mechanical and electrical expert. The light is what is known as a four foot reflector, that is, the great magnifying glass through which the rays are thrown to such a distance is four feet in diameter. The direct power of the light is 150,000 candles, without any glass whatever. With the big glass, however, the power is magnified to $160,000,000$ candle power. The carbons used in the radiator are 12 inches long and $1 \frac{1}{4}$ inches in diameter. They are fastened inside the lamp merely with two upright pieces of steel. The lamp itself is operated on a sort of carriage something after the manner of a Maxim gun. It can be turned in any direction and can be tilted so that the rays will ascend vertically. When the full power of the light was turned on, the city of Chicago could be viewed.

Birds That Eat Acorn

Dr. Morris Gibbs writes to Science from Kalamazoo, Michigan, that in that State there are to his know these, the passenger pigeon and morning dove swallow the acorn entire, with its shell intact, only removing the cup or rough outside covering. The white-bellied nut hatch occasionally hoards the acorns away, and only draws on its store after some months, and when the firm shelly covering readily gives way to its sharp, prying bill. The other three are the well known blue jay, common crow blackbird, and red-headed wood pecker. So far as he has been able to learn, these birds, except in rare instances, do not pick the acorns from the tree, but have to content themselves with the fallen fruit. The red head, deigning to descend to the ground, seizes an acorn, and flying with it in its bill to a spot where there is a small cavity in the dead portion of a trunk, or to a crevice in the bark, immediately begins to hammer it with its sharp-pointed bill. In a couple of strokes, it has removed the outer shell or cup, and at once attacks the still green-colored shell which directly surrounds the meat. The inside, or shell proper, quickly gives way, usually nearly in halves, and the woodpecker enjoys the kernel. The woodpeckers are as nearly strict insect feed any swifts and swallows, yet here is an instance of a varied diet. However, the red head is quickly satisfied in the acorn line, and soon begins circling the trunk, or more often limbs, for his legitimate food. The black bird confines himself to the ground in his efforts for acorn meats. Walking up sedately to an acorn, and making no effort to seize or confine it, it strikes savagely and almost aimlessly. Its bill frequently glances, and the splintered shell dances about, until a last a huge piece of the kernel is dragged out, after which the bird leaves for other quarters or begins on another acorn. The jay swoops down with flaunting blue wings, and, seizing the largest acorn on the ground, flies to the nearest convenient limb or to the
decayed ridge-board of an adjacent building. There decayed ridge-board of an adjacent building. There, firmly pressing the nut between his big, black feet, he hammers away with a vengeance, and quickly tears off nearly half of the shell, after which he proceeds to pick out the meat in small bits. The cup is often left nearly perfect, the jay never making an effort to secure the nut entire, which he could easily do. Walking under the oaks, one can readily tell whether the woodpeckers, blackbirds, or jays have been at work among the acorns, by the appearance of the mutilated shell re mains lying about.

storax.

The literature of the aromatic gums and resins is teeming with scientific and historical interest, as so many of them are spoken of in the works of the famous they have been probably articles of commerce formany hundreds of years. As far as can be shown, however, the botanical source of the products we now use, and indeed, their physical appearance as well, is not always identical with that of the drugs of the ancients and in the case of storax this is so.
Our liquid preparation was probably not known before the sixth or seventh century, when it was spoken of by two Greek physicians, Paulus 巴quieta and
Aetius; they also mentioned storax in the solid form, Aetius; they also mentioned storax in the solid form,
and the earlier writings of Dioscorides, in the first century, and Pliny and others of later date, show that solid storax, and not liquid storax, was known in their time. The solid storax of the ancients was a product of the tree Styrax officinale, Linn., and resembled benzoin in appearance, occurring generally in tears, more or less agglutinated together, which exuded from the trunk either spontaneously or after incision. There are but few samples of this now in existence, even in the museums, but it was probably an article of commerce in comparatively recent years, as shown by the writings of eminent pharmacologists of the last century and by its presence in a few collection

It has, however, been growing graduall
It has, however, been growing gradually scarcer, and when mentioned in market reports of that time, it was classed as amygdaloid, an exceptionally fine
kind, and quoted at a very much higher rate than kind, and quoted at a very much higher rate than
liquid storax. IIt is noteworthy that the ancient method of packing it was in reeds (calami), a practice which gave to it the name Styrax calamites, a name which, though now applied to a commercial article, denotes a very different product, viz., a kind of saw dust-like, sweet-smelling compound, totally unlike the
amygdaloid storax known of old. The price of it, amygdaloid storax known of old. The price of it, according to Pliny, was about 17 denari per pound, corresponding to 16 shillings of English money, and hence its high value and the paucity of the supply rendered it particularly liable to adulteration. Dioscorides and Pliny mentioned that it was sophisticated with the powder of the wood of the tree, honey, dregs of orris,
resin of cedar and other gums, and occasionally with resin of cedar and other gums, and occasionally with of taste alone for the detection of these fraudulent additions.

The tree, Styrax officinale, from which this fine storax was obtained was grown in various parts of the South of Europe, such as Italy, Provence, South France, and also in Asia Minor and Syria. The districts which are especially mentioned by the old writers as the habitat of the tree are Cilicia, Pamphylia and Pisidia, in the southeast of AsiajMinor Casius and Emanus in Turkey, and Sidon, Crete and Cyprus. Though there is now no supply of the gum,
it must not be thought that the tree is extinct, for it is it must not be thought that the tree is extinct, for it is
undoubtedly well known in many of these districts, though only as a common wild shrub, much degener ated from the original type, which from all accounts seems to have resembled a quince with handsome blossoms.
In the writings of Dr. Landerer, in 1839, some interesting facts about storax are mentioned, though a few of the details of his communications on the subject were refuted by later writers. It seems to be a fact, howerer, that the tree yielded a most agreeable vanilla like odor at the time of flowering, and that storax tree were considered of such high value that they were presented to brides as a dowry.
Turning from this storax, which is of historical importance only, to those varieties which are of commer cial note in this present day, we are attracted by only two, the preparation official in the British Pharmacopœia, liquid storax, and that which is frequently met with, storax calamites, a sort of odoriferous sawdust Another variety, black storax, a sort of resinous cake used for incense, is occasionally found in Continental warehouses, but it cannot be said to be of any 'great commercial importance, except in the peculiar distric where it is manufactured.
Liquid storax is official in the British Pharmacopœia, and being used in a number of perfumes, etc., merits the greater part of our attention, and it is with in creasing interest one turns to the various opinions expressed as to its origin by writers of a few centuries ago. Some, indeed, considered it altogether an artifi cial product, while others traced its botanical source
to Styrax officinal, an erroneous idea, and others again to different species of Liquidambar: L. antinquiana, L. styraciflua and L. orientale, the latter of these, however, being now known to be the true one. This was first determined probably by Kinos, in 1841, and corroborated by Koste in 1855 and Danbury in 1857.

The tree Liquidambar orientale grows in a number of districts in the Levant, where it forms forests of a very dense nature, though not all particularly extensive. The localities in which it chiefly occurs are those of Sighala, near Mellasso, Moughla, Giova, and Ulla, in the Gulf of Giova, and Isgengak and Marmorizza, opposite Rhodes. The tree itself is handsome and umbrageous, somewhat resembling a plane
tree in appearance, averaging from 30 to 40 feet in height, though occasionally reaching an elevation of 60 feet in open and well-watered places, and sometimes being as small as 20 feet in a crowded forest.
The handsome appearance of the tree is marred by the process of stripping the bark to obtain the resin and though, perhaps, a convenient method of extract ing it, it seems likely to lead to the extinction of the species, and is much to be deplored. All authorities agree that when collecting the outer bark is first re moved, and that the inner bark is then scraped off and the contents removed by means of hot water, though the details given by them differ slightly. Thus Campbell says that the inner bark is boiled in water over a brisk fire, upon which the resinous part comes to the surface and is skimmed off, the residual bark being put into hair sacks and pressed. Maltass
states that the inner bark, when collected, is packed nto hair bags and pressed under a wooden lever, the exuding resin being collected.
The contents of the bag are then treated with hot water, and they are then pressed again. McCraith's and he says that the collectors, a tribe of Yuruks, scrape the tree with a triangular iron scraper, placing the resin and the bits of bark in a leather pouch These are then boiled in a copper vessel, the liquid resin being run into barrels and the residual bark inclosed in horse hair bags and subjected to pressure whereby more resin is obtained. Whichever the pro cess be, however, the products are the same, the
opaque, semi-fluid viscid resin known as liquid storax, opaque, semi-fluid viscid resin known as liquid storax atis, which formerly was common in European phar macy, but is now rarely used. Liquid storax, as it occurs in the market, is generally more or less adulterated with ashes, sand and other substances, and hence it is that the British Pharmacopœia directs that it shall be purified by solution in spirit, filtration and evaporation. These impurities can also be distin guished by the microscope, as well as by extracting the genuine storax with spirit.
Styrax calamites of commerce, a very degenerate name is product known to the ancients under that name, is so extremely variable in its nature that its ficbe manufactured in several places-'Irieste, Venice
and Marseilles, and others. The better varieties of it are made by mixing Cortex Thymiamatis with liquid storax in the proportion of two to three. The bark is first coarsely powdered, and then mixed with the liquid preparation, when it first forms a sticky, clammy mass, which gives off in a few weeks a mass of tiny silky crystals, giving the appearance of moldiness. Inferior qualities of Styrax calamites are made with common sawdust, or even red earth, instead of the proper bark.
The other variety mentioned, black storax, is made by Greek monks, of the island of Symi chiefly, and is a mixture of olibanum with liquid storax, appearing as dark, resinous cakes that are used for fumigatory purposes and for incense in the Greek churches and mosques. It can be generally obtained in Continental warehouses, but is not found as a rule in English markets.-Pharm. Record.

Color Blindness.

In a recently published report issued by the Marine Department of the British Board of Trade some curious and valuable information is given with regard to the proportion of color blindness in the mercantile marine of that country. The number of candidates who presented themselves for examination for certificates as masters and mates during the previous year was 4,688 of whom 31 were rejected because of their inability to distinguish colors. Of this number 21 insisted that red was green, and others asserted that red was some othe color than either red or green, usually drab. Candi dates to the number of 205 mistook drab for green, 64 mistook drab for pink, and others asserted that it wa white or yellow or red. As for pink, 106 persons said it was green, 32 that it was drab, 17 that it was red, and 34 that it was something else. With regard to green, 32 averred that it was white, 42 that it was pink, 33 that it was drab, and 28 that it was red. It appears, however, as before stated, that only 31 were entirely disqualified, as their inability to distinguish colors was so great that it would probably lead to disaster on the high seas, while in the majority of instances the defect was a particular one, and consisted rather in the ina bility to distinguish one or two colors than in the ina bility to distinguish all colors, save black and white. At the same time the figures show how common colo blindness is. No exhaustive experiments have ever been carried out with the view of ascertaining the proportion of sufferers from the defect, but it has been as serted on good authority that one individual in thirty is partially and one individual in fifty is wholly unable to distinguish between colors. The defect is believed to be more common among men than among women, one writer on the subject holding that superior colo perception on the part of the female has been transmit ed and intensified. Another adds: "If the condition s an inherited one, then possibly evolutionists may be able to explain the female superiority in this respect by reference to far-back ages when selection of their partners was, theoretically, a marked duty and priviege of the weaker sex." It may be remarked that savges of both sexes seem to be more favorably endowed than civilized man in regard to the color sense. Their fine perception of color is manifest in their war paint heir crowns of brilliant flowers and still more bril liant birds' feathers, their brightly stained skins and parti-colored dresses, all in marked contrast to the nore civilized dwellers in the temperate zones.
Color blindness is an important question, not as bearing on navigation alone, but upon every kind of employment in which the security of life and property depends upon accuracy in distinguishing signals. Deective eyesight has been responsible for many seriou accidents, and ability to distinguish at least the primary colors ought to be an indispensable condition or those intrusted with the direction of vessels and employed in the traffic on railways.-N. Y. Press.

Essential olls as Bactericides.

M. Omeltschenko has made experiments which con firm the views previously put forward that the vapors of essential oils exercise a bactericidalaction. By using specially contrived culture flasks and passing through them air impregnated with the vapors to be studied, he was able also to establish the quantity necessary per iter of air. Thus the bacillus of typhus was killed by air containing the vapor from oil of cinnamon, 0.0005 gramme per liter, or oil of valerian, 0.0082 gramme per iter, in forty-five minutes. The bacillus of tuberculosis required to be exposed for twenty-three hours to air containing 0.018 gramme per liter of oil of cinnamon before fatal effects were produced. Oil of lavender, 0.0078 gramme per liter, effected the same result in twelve hours, and oil of eucalyptus, 0.0252 gramme per liter, in the same length of time. The degree of saturation must be maintained, or, after the first effects of the vapors pass off, though the growth of the germs is prevented, their vitality is not destroyed. The oils are classified according to their strength as germicides, thus-cinnamon, fennel, lavender, cloves, thyme, mint, anise, eucalyptus, turpentine, lemon and rose, the last two being very weak in disinfecting power.-Bact. World.

an IMPROVED OIL CAN

In the construction of the oil can shown in the illusration a saving of oil is designed to be effected, while the convenience of the user is promoted, as none of the oil put in the can need be wasted, and, when the can contains but a small quantity, the oil may be readily ejected, and conveniently directed to the place requirejected, and conveniently directed to the place requir-
ed. The can is formed with two of its sides slightly

MARANVILLE'S OIL CAN.

bulged outwardly, and to these bulging portions are secured the handles, which may be of wire, the arrangement being such that by compressing the handles the pressing in of the bulged sides forces the oil out through the spout. On the interior of the can, and rigidly attached to its bottom, is a tubular conductor, as shown in the small view, one side being open part way up, and at the mouth of the conductor is a female screw cap in which is a hole registering with a hole in the conductor, forming a vent when the can is filled, on the removal of the spout. The handles serve a double purpose, to hold the can and to compress its sides to discharge the oil through the nozzle.
Further information relative to this improvement may be obtained of the patentee, Mr. F. Maranville, Clinton, Ohio.

A DEVICE TO CLOSE ELEVATOR SHAFTS
The rapidity with which fires are likely to be communicated from floor to floor of a burning building through open elevator shafts has suggested the improvement shown in the accompanying illustration, providing means for readily closing the shaft at each floor during the time the elevator is not running. It forms the subject of a patent recently issued to Mr . N. J. Blagen, of Portland, Oregon. On the top of the usual carriage or cage are hinged supports on which rest a series of platforms adapted to close the shaft openings at the different floors, the platforms having in their side edges pins adapted to engage corresponding recesses in the floors. The pins on the several platforms are arranged at different points, so that each platform will be engaged only at one particular floor.

blagen's elevator shaft closing device.
During the time the elevator is running, the platforms are supported upon a carriage at the top of the shaft this carriage sliding under the lowermost platform when the car is at the top, and thus supporting all the platforms free from the car. A rope connected with this carriage passes over a pulley and extends down within convenient reach of the operator in the car, when the latter is at the top of the shaft. Previous to stopping the elevator for the night the car is run to
its uppermost position, with the hinged platform supports on its top extended, the supports then lifting the series of platforms, and supporting them over the carriage, when the latter is, by means of the rope, drawn to one side of the shaft opening, as shown in the illustration. The platforms, resting on the supports on the top of the car, are carried down with it as it starts, the uppermost platform being first engaged by its pins and stopping at the uppermost floor, and the others being in succession deposited at their respective floors as the car moves downward, until the shaft openings are all closed. When the elevator is started the next day, the car in its first ascent picks up the several platforms, and carries them on its hinged supports above the level of the carriage at one side of the shaft at the top, when the operator, by means of the rope, moves the carriage outward under the platforms, the latter being then supported by the carriage, and the hinged supports being folded upon the top of the elevator car supports being folded
during the day's run.

An Inland Coast waterway.

The proposal to establish an inland waterway be tween the Atlantic coast cities is once more under consideration. In its amplest form such a route would extend from Massachusetts Bay to Texas, making use of sounds and bayous as well as of existing canals as far as possible. This form of the enterprise contemplates the cutting of three new canals, through Cape Cod, Maryland, and the Florida peninsula; and as its expense would mount into the hundred millions, it is not likely to find favor at present. A modified plan would begin at New York and end at Charleston. As described by Capt. McCorkle, of the coast and geodetic
survey, the line, passing through Raritan Bay and the survey, the line, passing through Raritan Bay and the
Raritan River to New Brunswick, and thence through the existing canal to Bordentown, would proceed down the Delaware to Dela ware City, thence through the canal to Chesapeake Bay, and so on to Norfolk. There it would take the Southern River and the Albemarle and Chesapeake Canal, North Landing River, Currituck Sound, and the North River to Albemarle and Pamlico Sounds, and so on to Moorehead City. A moderate amount of dredging and cutting would open a series of inlets to Cape Fear River, and from this latter point Charleston would be gained in the same manner, although at this final part of the route there might have to be a resort to the open sea unless at very large expense
Whatever the merits of this inland waterway on it commercial side, the proposition that the government should construct it on account of its advantages for coast defense can hardly be maintained. For the latter purpose the object apparently would be to transfer the war ships that happen to be in one port to the defense of another where the enemy had concentrated his fleet. The only vessels worth much consideration in such a case are armor-clads and torpedo boats. The former could not pass through the canals already described without a deepening and enlarging of them that would be enormously expensive; and the same is true of other waterways forming a part of the proposed route. It would doubtless be far cheaper to construc and lay up in ordinary monitors or other coast defense vessels for each principal port. Besides, vessels of that character ought to be able to put out to sea to the relief of a threatened port, and fight the enemy if encountered on the way.
As to torpedo boats, while such an inland waterway would undoubtedly be favorable to their concentration at a threatened port, a still better and more expeditious plan is to transfer them by railroad. Every port that runs the slightest risk of attack by a hostile fleet is now connected with its neighbors by rail. The French years ago successfully experimented in the transfer of torpedo boats overland, and with suitable trucks the operation could be performed with great facility. Certainly it would be useless to resort to the expense of an inland waterway for the simple purpose of trans ferring light draught vessels of this class in time of war.

Wholly different, of course, are the commercial considerations involved in the proposed inland waterway. That it would stimulate local trade may be conceded. It might also have some value in allowing such trade to go on when the coast was infested by an enemy's cruisers. But it is hardly to be supposed that a coast like ours could long be blockaded, while railways would still be available for the transfer of freight which in times of peace goes by water as a cheaper form of transportation.
The conclusion must be that the commercial value of such a waterway is alone worth the attention of Congress. The primary source of defense for the At A complete system for this purpose is now in course of development. In a few cases, like those of Portland, Boston, and New York, it is desirable, either from the openness of the roadstead or for other reasons, to sup plement the fixed by floating defenses, including float ing batteries, monitors, and torpedo boats. But these lastshould be provided as permanently belonging to the port. Certainly such a provision could be
made more economically than by constructing an in terior waterway for transferring battle ships for har bor defense from one port to another. All this, how ever, bears only on a single part of the subject, and leaves untouched the question of the value of the prop

NEW PRINCIPLE VENTILATING WATER CLOSET.
The improvement shown in the accompanying illus trations is designed to promote health and comfort to a degree not hitherto attained in efforts at sanitary plumbing. This ventilating siphon closet is comparatively noiseless, and swift in action, the dis agreeable odors being positively carried away by the action of the closet. The construction is simple, and there are but few working parts liable to get out of order. The improve-
ment comprises an inclosed water supply tank set back of the bowl and extending up but five feet from the floor. The bowl is formed with two traps, the lower one being much the deepest. The traps do not act on the principle of siphonage, as in other closets, but serve to facilitate the ventilation and afford double security against the return of foul air. The bowl is also arranged with ball valves fixed in the back - the opening, D , as shown in the sectional view, allowing air to pass up into the tank, and the valve, E , permitting air from the tank to flow down through the air
 opening formed on he side of the bowl, and connected with the soil pipe below the traps
By pressing the knob for a flush of water and for ven tilation, the lowering of water in the tank causes a suction from the air space between the two traps drawing the water and excrement from
 the upper trap-with a continuous flow of air over the face of the bowl-and while the water and excrement fal into the waste pipe below, the foul air is drawn up through the valve into the upper part of the tank, as repre sented by the arrow at D. Then as the tank auto matically refills, the water pressure forces the foul air down, lifts the ball, E , and passes down into the soil pipe below the lower trap, as represented by the arrow in opening \mathbf{D} valve. This improvement was patented August 30, 1892, and further information relative thereto may be obtained of Mr . Smith E. Hughes, 7 Queen Street Queen Street, Philadelphia.

Bacterial Disease
of Sugar Beet.
Prof. Arthur and Miss Gordon have discovered a
 previously unre-

THE "QUEEN" WATER CLOSET. corded plant disase in which bac
teria play a prominent part. It occurs in the sugar beet and a result of it is a considerable diminution in the amount of sugar produced, the loss in some instance being as much as 50 per cent. The disease does not break down the tissues of the beet, nor does it cause the death of the plant, in which no external marks indicate abnormal conditions until the leaves approach maturity. These organs then become puffed out between the veins in little blister-like areas, giv ng the appearance of Savoy cabbage leaves. Cross sections of the root show that the fibers forming the concentric rings are more prominent than usual, be sides being darker in color, though in less conspicuous cases they may be merely yellowish. The bacteria occur most abundantly in the loose cellular tissues, in the cell sap, and in or attached to the protoplasm. The disease appears to be capable of transmission, but urther experiments are necessary to prove whether it be actually so.-Agric. Science.

THE INVENTION OF THE INCANDESCENT ELECTRIC LAMP AWARDED TO EDISON.
In the case of the Edison Electric Light Co. against the United States Lighting Co., which has been pending for about five years, a decision was reached October 4, by the United States Court of Appeals, awarding the incandescent lamp to Edison.
It is unnecessary for us to go into all the details of Edison's case. The main issue is based upon the second claim of Edison's patent, No. 223,898, dated January 27, 1880. According to the interpretation of the court, Edison's second claim is as follows: "The combination of carbon, filamentary or thread-like in size and properly carbonized, used as an illuminant in an incandes cent electric lamp, with a receiver made entirely of glass, and conductors passing through the glass, and from which receiver the air is exhausted to such an extent that disintegration of the carbon, due to the air-washing action of surrounding gases, or to any other causes, is so far reduced as to leave the carbon practically stable."

Although the present case does not involve the means or the method of the distribution of the current, the lamp constructed according to this paraphrased claim is the principal factor in a distribution system. Without such a system commercial success could not be attained in incandescent lighting.
Fig. 1 represents Edison's incandescent lamp ; and Figs. 2 and 3 are lamps made by defendants, Fig. 2 representing the " M " lamp devised by Maxim, and Fig. 3 the zigzag lamp invented by Weston. To all appearance these lamps are practically like Edison's shown in Fig. 1, except as to the form of the carbon filament. There are, however, differences in construction which a close examination of the lamps themselves will reveal. In defendants' lamps, the carbon filaments are secured to the burners by means of clamps instead of being fastened by means of carbon, and the form of the interior portion of the base of the lamp differs also.

We are indebted to Mr. R. N. Dyer, of counsel for complainant, for very concise information regarding the prior art of incandescent lighting, which we have

Fig. 7.-LANE-FOX LAMPS.
With globes arranged to be opened when desired
condensed. According to this statement of the art, King patented in England, in 1845, two forms of incandescent electric lamps (see Fig. 4), one having a burner made from platinum foil placed under a glass cover without excluding the air, the other having burner composed of a thin plate or pencil of carbon

Fio, 1,-EDISON LAMP,
inclosed in a Torricellian vacuum. Roberts in 1852, in an English patent, proposed to cement the neck of a glass globe into a metallic cup and provide it with a tube or stop-cock for exhaust. Lodyguine, Konn, Kosloff and Khotinsky between 1872 and 1877 proposed various ingenious devices for perfecting the joint between the metal and glass, and provided

Fig. 8.-ADAM'S LAMP.
Spiral carbon rod inclosed in a globe from which the air has been exhausted.
amps with several short carbon pencils which were automatically brought into circuit successively as the pencils were consumed (Fig. 5). Bouliguine in 1876 or 877 proposed the employment of a long carbon pencil, a short section only of which was in the circuit at any one time and formed the burner. Sawyer and Mann proposed in 1878 to make the bottom plate of

glass instead of metal and charged the lamp with nitrogen.
Mr. Schwendler, a noted English electrical engineer, ing statement: "Unless we shall be fortunate enough to discover a conductor of electricity with a much higher melting point than platinum, and which at the same time does not combine at high temperature with oxygen, we can scarcely expect that the principle of incandescence will be made use of for practical illumination."
This was the condition of the art when Edison took up the subject in 1878. Beginning with platinum, Edison discovered that the melting point of this metal can be raised by subjecting it to the intense heat of the electric current while the inclosing chamber is undergoing the process of exhaustion. He inclosed his platinum burner in a highly exhausted glass chamber, platinum burner in a highly exhausted glass chamber,
similar to the chambers which had been previously used similar to the chambers which had been previously used
by Crooke in his radiometer, made of an entire piece of glass, with all joints closed by the fusion of the glass upon itself. He also provided a thermal regulator to prevent the destruction of such a lamp; but with all precaution it proved not to be durable. After other experiments with platinum, Edison substituted for the platinum a short burner of carbon in filamentary or thread-like form. This substitution marked an epoch in the art, and was the step which converted failure into success.
In addition it was found that this construction required no thermal regulator, and could be so cheaply made that the lamp could be thrown away when the burner was finally destroyed.

Aside from producing a durable electric lamp, it was necessary to find out how to subdivide the electric light so as to get small lights for domestic use.
Mr. Edison in this country, and Mr. Lane-Fox in Europe, independently reached and announced the conclusion that the subdivision of the electric light could be accomplished, provided the radiating surface of the burner of the lamp was reduced in extent, and the electrical resistance of the burner increased. The concrete theoretical solution of the problem, as stated by both Edison and Lane-Fox, was a burner having a high resistance and a small radiating surface, or, more accurately stated, a burner having a high ratio more accurately stated, a burner
of resistance to radiating surface.
Lane-Fox did not produce any practically useful form of incandescent electric lamp embodying this principle, while Edison embodied that principle first in his platinum lamp, and later on in his carbon lamp by the employment in that lamp of a carbon burner having a filamentary or thread-like cross section.
After the production of a durable lamp and the dis covery of a correct principle for getting a small light with the same economy as a large light, the great obstacle in the way of a commercial introduction of incandescent lighting was the large size and cost of proper conductors necessary to carry the current to the lamps. The filament of carbon, due to the in creased resistance relative to its radiating surface which it afforded, also made a revolutionary advance in the direction of lessening the size and cheapening the cost of such conductors.

We add engravings of the lamps illustrating the prior art.

Decoction of Vaccinium Vitis-idæa in Rheumatism.
In 1887, Dr. Sanine proposed the use of the cowberry plant, vaccinium vitis-idaa for rheumatism. Follow ing this, Dr. Herman administered the decoction with good success to three patients, one being an old man who was suffering for three and one half years with muscular articular rheumatism.
Dr. Smirnoff (Wratch, through Bull. de Therapeut.,

Fig. 6.-SAWYER \& MANN LAMP.
Fig. 6.-SAW
E, incaudescent rod inclosed in an atmosphere of nitrogen.
1892, p. 470) used a decoction of the whole plant in the proportion of $30-60 \mathrm{gm}$. to 500 c . c. water. The decoction is dark in color, not clear, has a bitter taste and neutral reaction. Nine patients were treated; with seven a cure was effected, with two no effect whatever was produced. The treatment lasted from three weeks to three months.-Am. Jour. \bar{F} inarm.

Figs. 2 and 3.-MAXIM AND WESTON LAMPS.

Sorrespondence.

IThe Black Wolf-The Horse with Tube. To the Editor of the Scientific American : In your issue of Sept. 17 is an article on the American black wolf. Last winter a farmer of this place found what he supposed a large black dog in his flock of sheep, but on killing it old hunters, or some one else, called it a black wolf. It was wild, is a sure fact.
Your article from the New York Times on "A Horse with a Tube in his Neck," leads me to think that it may be interesting to you to know of a trotting horse that has been treated in the same way, and successfully. A Mr. Olmsted. of Coudersport, Potter County, Pa., has the horse, and I have seen him on the track, and, to all appearances, he trotted as well as if he
breathed in the natural way.
C. E. H.

The Trolley System in Boston.

To the Editor of the Scientific American:
In your issue of October 1 appeared an article entitled "Electric Cars in Boston," signed "J. V. M." Some of the statements made in this article concerning the danger of the overhead system are so entirely at variance with the facts that, appreciating the fairness and impartiality of your journal, I have thought it advisable to write you concerning the same, believing that you will give my letter the same publicity that you did that of "J. V. M."
The fire which " J. V. M." refers to is, doubtless, that which started on Thanksgiving Day, 1889. I have written to the fire marshal in Boston concerning this fire, and beg to quote you his exact reply :
'Boston, October 6, 1892.
'Gentlemen : Yours of the 3d inst., inclosing a let ter from the General Electric Co., in relation to fires caused by trolley wires, together with your request for a report on the same, is at hand.
"I have noted the statement in the clipping which you inclosed from the Scientific American, to the effect that 'horses and men have been killed and injured by falling trolley wires, and one of the worst fires in Boston, where three or four million dollars' worth of property and several lives were lost, was set by an elec tric wire which was supposed to have come in contact with the trolley system.'
"As to the injuries inflicted upon men and horses by falling trolley wires, I am, of course, unable to give you any information, but the statement that one of the city's worst fires, presumably the Thanksgiving Day fire of 1889 , is supposed to have been caused by trolley wires is entirely erroneous. On the contrary, the result of a most thorough investigation made at that time convinced me beyond doubt that no possible blame could be attached to trolley wires.

Reference to pages 17 and 18 of the special report made at the time of that fire will show more fully why I exempted the trolley wire as a possible cause.
"As to the cause of the ThanksgivingDay fire, I would respectfully refer you to pages 21 and 22 of the special re port before referred to, from which you will see that I at tributed the cause of the fire to the overcharging of the fifth circuit wire of the Electric Time Company, by reason of its being in contact with a highly charged wire, or by contact with a foreign wire, which, in turn, was in contact with such highly charged wire. With the exception of the contactreferred to on pages 17 and 18, no wires were found to be in contact with trolley wires in other parts of the city, while electric light wires, messenger wires, telephone wires, and time com-
panies' wires were found in several places burned off and lying across one another. I have no doubt but from one of these contacts the fire was started.
"So far a \sim I have been able to determine, we have never had a fire loss caused by trolley wires since the introduction of the system in this city.
"While there is very much less danger from the trolley system than from electric light wires, their voltage being only about one-fourth or one-fifth as great, I still suppose it would be possible for a fire to be caused by trolley wires under certain conditions.
"I can only say that, under the system of inspection that the railway company has adopted, their wires have so far done no damage.
"On pages 59 of the fourth annual report, 70 of the fifth annual report, and 65 of the sixth annual report, which I send herewith, will be found instances where trolley wires have shown a tendency to start fire, and these were the result of accidental injury to the insu lations. Very truly yours,
"Chas. W. Whitcom, Fire Marshal.
"To the Board of Fire Commissioners, Boston."
From this you will see that the fire marshal not only denies positively that the fire in question was started by a trolley wire but he states that, so far as his know ledge goes, no fire in Boston has ever been started by trolley wire.

Should you desire to see the special report of the fire marshal on the Thanksgiving Day fire, I shall be very glad to send you a copy of the same.

As to danger to life and limb from the trolley system,
statistics in Boston (which has the most extensive trolley system in the world) show that the accidents which have occurred depend largely upon the individual characteristics of the man in charge of the car, for, as a matter of fact, a man has much more complete control of an electric car than of a horse car. The record shows that during the last year 14 people were killed by street railway cars in Boston- 10 by horse cars, and 4 by electric cars; not one of the latter, however, was killed by the trolley wire or by the current itself. Contrast this record with the record of fatal injuries in New York City, taken for one week, and which was published in the New York Recorder of September 16, 1892, showing 4 deaths in this city by horse cars.
Consider, also, that travel on Washington and Tremont Streets, Boston, the principal business streets of the city, is so congested that there is at all times of the day a continuous line of cars moving in both directions and the comparison is still more striking, showing con clusively that the average horse car is far more deadly than "the trolley." Very truly yours, Wm. J. Clark,
General Agent, Railway Department,
General Electric Company
New York, October 8, 1892.

The Liverpool Overhead Rallway.
by james henry greathead.
The railway is composed almost entirely of wrought ron. The line, now approaching completion, traverses the whole length of the famous Liverpool docks, a distance of about six miles. The extensions north and south, authorized last session, extend beyond the docks and away from the river, in order to give better access between the residential neighborhood reached by them, the docks, and the heart of the city. With the exception of a short length where the line passes under the Lancashire and Yorkshire Railway coal sidings, the ailway is, as its name indicates, overhead, and for the most part just over the lines of the original Dock Railway, which is upon the surface. The latter railway serves for the distribution of goods by horse traction, and has been used also by passenger omnibuses, with
specially constructed wheels to enable them to leave specially constructed wheels to enable them to leaved
the track when necessary. These vehicles will leave the rails altogether upon the completion of the Overhead Railway, which will afford a means of transit at least three times as rapid, when the Dock Railway will be available exclusively for goods.
The Overhead Railway consists generally of plate iron girders supported upon channel iron columns, and carrying an iron flooring, upon which the permanent way is laid direct, without the usual intervening ballast. The normal spans are 50 feet, but there are some of 100 feet, with bowstring girders, and others of special construction for opening and affording a passage to
the docks for exceptionally bulky goods, such as marine the docks for exceptionally bulky goods, such as marine
boilers, etc. ; thus there is a tilting bridge near the boilers, etc.; thus there is a tilting bridge near the
Sandown Dock, and a swing bridge of novel construc tion, and worked hydraulically, crossing the entrance to the Stanley Dock. This is the only dock entrance crossed by the railway, the other docks being on the river side of it. The columns are grouted into cast-iron ockets, bedded in and bolted to masses of concrete orming the foundation. With the exception of some half-dozen spans, the line has been constructed with out the use of scaffolding, and with very little inter ference with the traffic either of the docks or of the streets. This important end was attained by adopting a construction which admitted of each span and its flooring being put together at one end, and transported as a whole over the already completed portion of the railway.
A depot was established at the north end of the rail way, where the flooring was constructed and riveted together and to the main girders. The whole span was then raised by jacks; a steam bogy with wheels running upon the two rails nearest the main girder (and thus having a gauge of 16 feet) was run under the span, which, being lowered upon the trolley, wa
carried by it at such a level as to clear the main girder to the southern end of the structure. Arrived at this point, the span was slung upon a movable gantry, and by it deposited upon the columns prepared to receive it In this manner span after span was added, as many as ten being placed in a week, representing a length of 500 feet of railway
The decking is of arched plates, finishing to 2 feet 6 inches wide and 15 inches deep, made water-tight by asphalt placed in the V-channel between the arches. This form of flooring (known as Hobson's arch plate system), first used on this railway, is being extensively used elsewhere. It is, for its weight, of great strength and stiffness, and is readily made water-tight. The flooring is made of ordinary iron plates and tees. The plates are 46 inches wide by ${ }_{15}^{5}$ inch thick, and vary in length from 22 feet to 27 feet. The tees are $41 /$ inches $\times 31 / 2$ inches $\times{ }_{16}^{7}$ inch section, and are of lengths orresponding to the plates.
In order to ascertain the exact strength of the floor,
ome actual sections were tested to destruction, and
the deflections at each increase of load were carefully Test.-(a) Three fectowing results :
Test.-(a) Three sections of floor measuring 7 feet 6 inches in width.
(b) Span 22 feet, ends resting upon supports.
(c) Load distributed over four points corresponding with the positions of the rails.

Test Load.	Deflection at Center. Inches.
30.	nil
35. 1/4
40. ${ }_{18}^{78}$
50.	
60.	... 3/4
70	. ${ }^{1818}$
80.	... 11/8
90.	
100.	
110.	. 2 (limit).

The floor plates ultimately collapsed by the total rupture of the T-irons at 163 tons, and with a deflection of 10 in . It is hoped that members may be able to see the actual construction of the decking at the north end. A short description may, therefore, the north end. A short description may, therefore,
be of interest. The flat plates are delivered sheared be of interest. The flat plates are delivered sheared
to exact length and width. Six of them at a time are heated in a long oven (to a cherry-red heat), whence they are separately hauled out endways into a hydraulic press, which bends them to the required shape. After cooling upon a grid or frame where they are tightly held to prevent change of form, they are taken to a multiple drilling machine, which drills the requisite rivet holes (about two hundred) in two operations and in fifteen minutes. After the end angle irons, for attachment to the main girders, are dded, the decking is completed by riveting mechani cally the covered plates to the T-irons forming the lower member. These combined operations are per formed at the rate of forty to forty-five plates per day There are to be fifteen stations. They are built upon ron girders and columns, the platforms being about 115 feet in length by 12 feet wide, and 3 feet above rail level. Access to the platforms is gained from the street level by four staircases at the more important tations, and on each platform a waiting shed is provided with pay offices and turnstiles. An extensive carriage shed is erected near the Hornby Docks, with five lines of way running through at the same rail leve as the main structure of the railway, and underneath on the ground floor, is the repairing shop, to be equipped with the necessary tools. The railway is to be worked by electricity, generated at a station, for which twelve of the arches, forming the viaduct which carries the coal sidings of the Lancashire and Yorkshire Railway, have been appropriated, near the Bramley Moore Dock, and about the middle of the ine. At this station are three engines, each capable of working up to 400 I.H.P., and each driving a separate Elwell-Parker dynamo. The electricity will be carried north and south along the railway by a steel conductor placed on porcelain insulators, supported upon cros timbers between the rails of each line. Hinged col lectors of cast iron, sliding upon this conductor, will make the connection between the motors upon the train and the dynamos at the generating station. The motors are not placed (as on the City and South London Railway) upon a separate locomotive, but are carried by the passenger carriages themselves.
A train will consist of two carriages, each to seat fifty-six passengers, and provided with a motor at one end. The carriages will be so coupled as to give a motor at each end of the train, and the motors will be so connected together as to be controlled from either end by the driver, who will always travel at the front end, changing ends upon arrival at a terminus, and carrying with him a key, without which the motors cannot be operated. All thecarriages will be exactly alike, and will contain compartments for two classes of passengers, with through communication from end to end of the train under the control of the guard. A train loaded with passengers will weigh about forty tons. The trains will be lighted by electricity, and are fitted with the Westinghouse brake, deriving compressed air from a reservoir on the train, the reservoir being charged after each journey. This system of working the brakes has been found to answer well on the City and South London Railway. The generating station will contain at first six boilers of the Lancasbire type, each 30 ft . long by 8 ft . diameter, with a working pressure of 120 lb. and stoked mechanically. The engines are horizontal compound condensing, by Messrs. John Musgrave \& Sons, Bolton. It is intended to commence running with a five minutes' service of trains, but the generating plant is designed to be capable of working a three minutes' service, and the journey from end to end of the railway (inclusive of stoppages) is to be performed in half an hour. There are thirteen stations upon the dock portion of the line, and a novel feature on the railway will be a system (Timmis') of automatic signals at all the intermediate stations, in place of the ordinary signaling arrangements. These signals will be electrically worked by the trains themselves, and considerable saving in the working expenses will re-
sult. The permanent way, it will also be noticed, is
of a novel construction. Longitudinal sleepers, rest- brushes and plenty of water. It then receives its first ing directly upon and keyed to the arched decking, support the rails and the electric conductor. As already stated, there is no ballast between the permanent way and the structure, and the working charges in connection with the maintenance and repair of the permanent way should be exceptionally light. The total cost of the railway, including equipment, will be about $£ 85,000$ per mile
Mr. J. W. Willans is the contractor for the works, and the Electric Construction Corporation, Limited (Wolverhampton), are providing the electrical equipment and the carriages. The engineers, Sir Douglas Fox and the author, have been represented on the work by Mr. Francis Fox and Mr. S. B. Cottrell, and Mr. F. Hudleston has had charge of the work (for Mr. Willans), and to him is due the credit for the design of the tilting and swing bridges referred to. It is intend ed to open the line for traffic very shortly.
aluminum electro-plating in architecture.
The tower that surmounts the magnificent pile of buildings that compose the new City Hall of Philadelphia will be 547 feet $31 / 2$ inches high when completed. A part of this height is stone and the remainder will be cast iron with wrought iron bracing.
The late Mr. MacArthur, the architect of the public buildings, fully appreciated the difficulty and expense involved in keeping the iron work painted and free from rust. It was estimated that it would cost $\$ 10,000$ per annum. He proposed to make the outer skin of aluminum. But the high cost of that metal prevented its use, and the clock story, which is the beginning of the iron work, was cast in iron, and to preserve it from rusting it was intended to dip the different pieces in boiling linseed oil. When, on the death of Mr. MacArthur, Mr. John Ord succeeded him as architect, he (Mr. Ord) suggested the iron work should be electroplated with aluminum to keep it from rusting, and after fully considering the matter it was determined to first plate the iron with a thick coat of copper, which, by experience, wasknown would protectiron, and then put a finishing coat of aluminum over the copper so as to make it harmonize with the rest of the tower, and prevent the copper from turning green and becoming unsightly.
In the fall of 1891 at the works of the Tacony Iron and Metal Company, Tacony, Pa., who have the contract for the iron work of the tower, the construction of a building 120 feet long by 60 feet wide was begun under the supervision of Mr. Francis Schumann, the president of the company, and was finished early in 1892. Mr. J. D. Darling, of New York, had been appointed manager of the new plating works, and it was determined to use his process for plating with aluminum. By April the huge tanks had been put in place the electrical installation completed iand the different solutions to be used in plating made and run into the tanks, and the largest electro-plating plant in the worl was ready to begin on the largest work ever under taken.
The size of the largest castings determined the size of the tanks. These were the columns and pilasters that surround the clock story. They are 26 feet long by 3 in diameter at the lower end. Therefore, the tanks were made 28 feet long by 4 feet wide, by 5 feet deep, and hold about 3,800 gallons when filled to the proper height. (The tank that holds the aluminum solution was made 8 feet deep for special work and holds 7,000 gallons.) They rest in cement pits in two and when the solutions were runin, water was admitted into the pits at the same time. The object of this was into the pits at the same time. The object of this was
twofold-the water on the outside of the tank keeps it twofold-the water on the outside of the tank keeps it
from leaking and also balances the hydrostatic pressure of the liquid within and prevents bulging. Ove the center of each row of tanks are I beams properly supported from the girders, and continuing for 30 feet outside of the building, on which run trolleys with differential hoisting blocks attached. To the two ends of the column or pilaster, spiders with a central projesting trunnion are fitted, by means of set screws, and wruaght iron slings with a bearing on one end are hooked to the tackle and the end containing the brass bearing is passed over the trunnion. The column when
hoisted is thus free to turn on its axis. The operation hoisted is thus free to turn on its axis. The operation
of plating a column is as follows : The column is placed on a truck resting on a narrow gauge track, of which there are two running into the plating shop. It is then run under the projecting I beam, and, the slings being adjusted, it is hoisted clear of the truck. By means of a windlass fastened to the side of the building and ropes running over guide pulleys, it is then pulled ropes running over guide pulleys, it is then pulled
along the I beam over the first tank, which is of iron along the I beam over the first tank, which is of iron
and contains a strong solution of caustic soda heated by a steam coil; it is lowered in and boiled for severa hours until all the grease and oil is dissolved off. It is then raised and, after thorough washing with water from a hose, is pulled over and lowered into the sec ond tank and pickled with dilute sulphuric acid until all the rust and scale are dissolved and loosened.
It is then taken to the extreme end of the building
coat of copper in the third tank, which contains a
cyanide plating solution. When the metal is coated with copper it is removed from the bath, and any holes are soldered, the copper giving a good ground for the solder to adhere to. From there it is transferred to the second row of tanks and, after having ferred to the second row of tanks and, a fter having
been coated with paraffine wax inside, is lowered into been coated with parafine wax inside, is lowered into
the fourth tank, which contains an ordinary acid copthe fourth tank, which contains an ordinary acid copof copper (about 16 ounces to the square foot of surface), then, after having the paraffine boiled off, it enters the fifth or aluminum tank, and, after receiving a heavy deposit of aluminum, 2 to 3 ounces to the square foot, is washed with pure water in the sixth tank and run out of the building and placed on a truck on the other track ready for removal. There are also two smaller tanks shown to the left in the illustration for plating small work. The total amount of surface to be plated will be about 100,000 square feet. The plating current is furnished by four dynamos, the largest of their kind ever built in the country for purely electro-plating purposes, through copper conductors
6 inches wide by $1 / 2$ inch thick, which run underground 6 inches wide by $1 / 2$ inch thick, which run underground there with resin run in while melted. The dynamo shown to the left feeds the alkaline copper tank and develops 1,000 amperes at a pressure of 6 volts. The middle one develops 2,000 amperes at 8 volts and fur nishes current for the aluminum tanks. The two to the right are coupled together and develop 4,000 mperes at $21 / 2$ volts, which feeds the acid copper tanks.
The columns and other pieces are brought into the electriccircuit by wires passed around them like slings, and attached at the ends to a conducting brass ba over the tanks.
In the cyanide tank a current density of 3 ampere to the square foot is employed; in the acid tank 10 amperes, and in the aluminum tank 8 amperes.
As it is often asserted that aluminum cannot be deposited from an aqueous solution, the following infor mation furnished by Mr. Darling may prove of inter est: Although aluminum is generally credited with indestructible qualities, and high resistance to cor rosion, it has but few qualities that would make it ad vantageous as an electro-deposit upon other metals for while, in a massive state, it resists atmospheric action and retains a certain brightness for a long time, when it is deposited electrically from an aqueous solution, which deposit is of necessity of a more or less porous nature, it soon tarnishes and assumes a dull bluish white color when exposed to the direct action of the elements. But for a protective coat, say for cop per, for which purpose it is used on the tower, it answers very well, as the slight superficial oxidation that takes place protects the metal underneath from further attack, and the neutral color that it assu
harmonizes well with the stone work of the tower.

For interior decorative work which is not exposed to the weather and can be protected by a coat of lacquer some very beautiful and lasting effects can be produced by its use, as it can be finished with a fine "mat" or "satin finish" which is as white as that of silver This finish may be produced directly in the bath. It Aluminy polished.
Aluminum is, no doubt, more difficult to deposit than any other of the common metals. This is because of the high voltage necessary to decompose aqueous aluminum solutions, and its tendency to redissolve after being deposited. We have not got the therma data required to calculate the potential difference o electro-motive force necessary to decompose the dif erent aqueous solutions of aluminum, but reasoning by analogy, it must be several volts in each case and as water requires only a minimum electro-motive
force of 1.5 volts to decompose it, it would seem at first glance that a compound which requires over two volts forits decomposition in aqueous solution would involve the decomposition of the water, and, therefore, would be impossible. But in reality this is not so, as may be seen in the case of caustic soda, which requires ove wo volts. Yet sodium may be obtained by its elec rolysis if mercury be present to absorb it and protec it from the water
The fact is that when two substances are present re quiring different $\mathrm{E} . \mathrm{M} . \mathrm{F}$. to decompose them, if the E. M. F. is high enough to decompose the higher compound, the current is divided between them in some ratio decomposing them both, and I find that by using a solution of aluminum that has but a slight dissolving effect on aluminum, with a density of current of 8 amperes to the square foot, with sufficiently high voltage ($61 / 2$ to 7), aluminum can be deposited on the cathode at the rate of one gramme per hour pe square foot, in a reguline state, and with higher cur-
rents it can be deposited much quicker, but will be in rents it can be deposited much quicker, but
a pulverulent state, which does not adhere.

Mr. Samuel W. Fairchild, of New York City, ha been appointed one of the commissioners to represen the State of New York at the World's Columbian Ex of the New York College of Pharmacy.

The Bot Fly of Human Beings

Apropos of our editorial review of Prof. Blanchard's summary of the Oestridæ which burrow beneath the skin of man, we may mention an interesting communi cation which we have just received from Mr. David Logan, now connected with the Gypsy Moth Commission, of Massachusetts. Mr. Logan writes us that he has been familiar with the species having this disagreeable habit, first in Honduras on the Rio Tinto but more abundantly on the Rio Magdalena, nea Mompos and upon the River Sinu, thirty leagues south of Carthagena, in the United States of Colombia. In his nineteen years' experience in tropical forests he estimates that he has had at least a hundred of these parasites in different parts of his body, and at one time had eighteen of the maggots squeezed out of his back. He had been for weeks in the woods hunting mahogany, and there were neither cattle nor people anywhere around. It was, in fact, in a perfect wilder ness. He is in doubt as to whether the eggs are laid on the skin or upon the bushes and come off upon the clothing of people passing. Naked Indians, he states had not one-tenth as many as whites who wore shirts.

Mr. Logan further states that the natives believe that the grubs are produced by a species of yellow mosquito, and have named the larva gusano de mos quito. The back and shoulders of human beings ap pear to be specially subject to attack, although the gusano sometimes shows itself in other places, and Mr Logan was once attacked in the upper lip. The firs vidence of the presence of the grubs in the skin is the appearance of a little swelling resembling a smal boil, not painful, but giving to the victim a feeling o uneasiness. On close observation a minute orifice may be seen in the center of this swelling. When first de tected the larva is usually of about the size of a pin head. It works chiefly at night and not continuously but intermittently. Mr. Logan had never kept specimens in his person for study or experiment, but at one time had one for about six weeks in his shoulder. It was t this stage at least one inch long when contracted and when elongated about an inch and a quarter in length. There were rings around the body apparently covered with minute hairs or spinules, the body being narrowed at the ends and much thicker than the head The common remedy adopted was to place a piece of eaf tobacco over the perforation in the skin, and soon after the maggot could be squeezed out.
As to the deposition of the eggs we have information from other observers that the flies have been seen to viposit on the skin, and it is easily conceived that the young grubs will more easily travel and get pur hase to enter the skin where persons are clothed than therwise. The absence of cattle or people from the ocality on the Sinu is not necessarily an argument in favor of oviposition upon vegetation, since the insects may, and undoubtedly do, breed in wild animals. It is likely that the species concerned is Dermatobia noxialis, commonly known in the Spanish America as Ver macaque.-Insect Life.

In Corea the manufacture of paper is one of the most important industries. Touching this manufac ture and the uses to which the finished product is put the consul-general of the United States at Corea in ecent report says that in addition to its use for writ ing and for books, it is employed in a great diversity of ways. It serves as string, and in the manufacture of lanterns, fans, umbrellas, shoe soles, hats, boxes, and coats. It is also used for covering floors, walls, and ceilings, and stretched on frames supplies win dows and doors. Corean paper is highly prized in China and Japan, and is especially sought for the manufacture of umbrellas. It is made from a bush of the mulberry order (Broussonetia papyrifera), which is indigenous, growing in many parts of the kingdom, but thriving best in the moist, warm climate of the south. It is chiefly grown from cuttings for this es pecial purpose, and the wild and cultivated plants are said to be of equal value. The bark, which alone is used, is generally gathered in the spring, and it is boiled for a long time in water in which a quantity of wood ashes has been mixed, until it becomes a pulp, the mass having been beaten during the whole time of the boiling. Fine bamboo screens are then placed in shallow wooden vats, and a ladleful of the pulp is even of the haver the screen by a dexterouscircula or twice or as often as may be necessary-the more frequen the operation, the finer the paper-and the screen is allowed to drain into the vats until a proper consistency is reached, the drippings being thus saved. They are placed on a hot floor to dry. After the drying has proceeded far enough the paper is again laid on a hot floor and ironed by hand. The long lines in the paper show strands of the bamboo screens, and their nearness, distinctness, or absence indicate the
fineness or otherwise of the paper. They are almost fineness or otherwise of the paper. They are almost
imperceptible in some grades of paper. while in others they are distinct and far apart. The province of Chulla is the chief seat of manufacture.

A NEW AIR SHIP

The principal feature of the means of aerial navigation shown in the picture consists in the method of propulsion employed, the power for this purpose being afforded by discharges of small and readily regulated quantities of a high explosive, of which a very considerable amount can be carried without adding greatly to the weight of the whole apparatus. The balloon por tion of this air ship is of a cigar-shaped model, having a framework of aluminum, covered with oiled silk or othe suitable fabric, or with a thin envelope of aluminum and is of sufficient size to afford, when filled with a light gas, a lifting power corresponding with the weight of the car and the load it is proposed to carry, all of the apparatus and fittings being of the lightest possible construction consistent with the necessary strength. At each side of the body are wings or side planes, to guide the air ship up or down, according to the inclination given them, these vanes turning on a horizontal axis, consisting of an aluminum tube extending through the center of the body. As seen in the broken-away portion of the car shown in the main view, wire ropes or cables from these side vanes extend over pulleys with gear wheel connections within the car, so that the operator, by the movement of a lever, can regulate to a nicety the inclination of the vanes.

The propelling apparatus, in which the main novelty of this invention lies, is supported upon a hinged arm at the rear. It consists, practically, of a horizontally arranged mortar-
like tube, forming the end of the arm, and above this tube, as shown more in detail in the small view is a tubular magazine containing globular or pellet like charges of a high explosive, with the mechan ism for regulating their supply to the discharge tube. The explosions, as they take place in this tube exert a powerful backward pressure upon the air which may be more or less nearly continuous, according to the power to be applied to propulsion and the rate of speed sought to be attained, an air cushion back of the explosive chamber protecting the machine from shock. The rate of discharge may be controlled through a wire extending to within easy reach of the operator within the car, while light wire cables extend from the discharge tube over pulleys to a gear wheel steering apparatus in the car, the arrangement being such that the tube may be readily swung to one side or

BATTEY'S AERIAL SHIP

THE WORLD'S COLUMBIAN EXPOSITION

With the close of the present week the great exposi ion will have been dedicated, with official ceremonie and a great civic parade, followed by a military parade dignitaries being present from all parts of the world and the representation from all parts of our own country being in every way worthy of a nation of nearly seventy million people, the most intelligent and the most prosperous, as a whole, of any people in the world. The enterprise is now, therefore, fully before the world as one which all classes and those of every section are earnestly en deavoring to promote, in the full confidence that the fair, of whose great extent and popularity there areal ready such abundant evi dences, will be one which will do full credit to the whole country
The inaugural exercises proper were arranged to take place in the great Manufactures and Liberal Arts Building, shown in the accompanying illustration, and in which one hundred thousand people could be readily accommo dated. It is the largest ex position building ever con structed, covering nearly thirty-one acres of ground To get it ready in time for the opening exercises wa a vast undertaking, and has required many weeks of high pressure service on the part of the various heads of the construction department, with their army of assistants, but the business was so thoroughly organized that there has been at no time any possi bility of failure. And this is only one of a great num ber of large buildings nearly all of which ar now approaching complethe absence of machinery and the use of aluminum in- \mid tion, whose construction has been carried on so rapidly
stead of iron or steel for the framework and all the working parts, and provided with the maximum of power, due to the nature of the force employed, a speed can be attained excelling even that of bird flight. The car may be gradually reduced in width fore and aft to a sharp vertical edge at each end, offering the least possible resistance to motion, and it is suspended by alumi num wires and cords from the entire length of th body. It is designed also that machines of this typ may be used for carrying freight and for regular passenger service, and their value will be obvious for such purposes as military observations, carrying of mail and dispatches, etc. This new air ship has been pa tented in the United States and the principal European countries by Dr. S. B. Battey, of No. 39 West Twenty seventh Street, New York City.
hat they seem to have almost sprung out of the ground as if by magic. But there will be nothing cheap or unsubstantial in the appearance of the structures which have arisen in such a marvelously short space of time, for their staff coatings will give them the appearance of stonework of great solidity, combining the highest architectural effects with the most artistic representations of the sculptor's art.
The statue for the Administration Building, shown in our view, is but one of a great number of groups of striking beauty and appropriateness with which nearly all the buildings are to be richly embellished. A large number of sculptors has been employed upon this work for several months past, and now, as the designs are being sent forth from the various studios in their completed form, the work gives one a vivid

MANUFACTURES AND LIBERAL ARTS BUILDING, LOOKING NORTH FROM THE SOUTHWEST CORNER
impression of the thoroughness and elaboration of the \mid which has never before left the State Department at plans under which the whole exposition business is Washington, and other historical documents. The being carried on. The Forestry Building has been for chest is ten feet high, three feet six inches broad and a considerable time one vast sculptors' studio, but deep, and is made of steel. The chest will be sent to other buildings are also occupied for this purpose, and
the various structures, as they approach completion, become temporary workshops for an almost inconceivable variety of trades and callings.
Among the buildings whose erection has been Among the builas been decided on at the last hour is a special structure for
the shoe and leather trades. The building is to be 150 by 575 feet and two stories high, costing over $\$ 100,000$, subscriptions for this amount having been obtained from members of the trades which will make their dis-
several army officers it will be taken to the Fair.
A model of St. Peter's, made from the original plans of Michael Angelo, will be exhibited in the Midway Plaisance, in a building 50 by 100 , to be erected by L . De B. Spiridon.
John Phillipson, who is the head of one of the oldest carriage building firms of Newcastle, England, has
consented to loan to the World's Fair his unique col-
rms. of the substance are intimately mixed with $2 \cdot 0$ grms. bichromate of known strength in a nickel crucile capable of holding 20 grms . and heated first for 10 o 15 minutes with the top of the flame just touching he bottom of the crucible, so that the bicarbonate lone is decomposed, and then for 15 minutes with a tronger flame until the whole mass is red hot. Fusion, which does not easily take place when a nickel cruci le is used, must on no account be allowed to occur In order to avoid mechanical loss, the crucible must remain covered throughout the whole operation ; stir ring is not necessary. The mass, which is emptied into a porcelain basin after cooling, is black and porous if

STATUE FOR THE ADMINISTRATION BUILDING-CARL BITTER, SCULPTOR.
play in this special structure. It is expected that this building will be completed in three months.
About twenty-five Japanese workmen in native costume have arrived to erect the building for their country. It is to cost $\$ 60,000$ and will be in itself an exceedingly interesting exhibit. Surrounding the building will be a sample of Japanese gardening upon which an additional $\$ 12,000$ will be expended. The structure will be devoted to the display of art and ethnological exhibits of Japan and after the Fair is to remain in the possession of the park commissioners. The total appropriation of Japan to the Fair is $\$ 630,000$.
A huge chest, which is to be the repository at the World's Columbian Exposition of the priceless documental treasures of the nation, is being made in Rochester, N. Y. It is to sontain the original Declaration of Independence, the draft made by Thomas Jefferson, the Constitution of the United States,
lection of drawings, paintings and models that illus- little heat has been employed, it forms a black, almost trate the development of locomotion on wheels during the last fifty years.
One thousand samples of wheat, corn, flour and oil producing grain from the provinces of Buenos Ayres and Brazil will be exhibited at the Exposition.
The largest and most powerful locomotive ever built, weighing 195,000 pounds, exclusive of the tender, will be on exhibition in the Transportation Building.

TThe Estimation of Sulphur in Burnt Pyrites. by c. lunge.
The author has carefully examined Watson's method (heating with sodium bicarbonate and titration of the alkali not converted into sodium sulphate) and, in conjunction with Schmidt, has succeeded in removing the so that the following modified process gives accurate results and is thoroughly to berelied upon. About 3.2
insoluble cake, as hard as glass. It is then extracted by boiling with water, and, if necessary to obtain a clean filtrate, a concentrated solution of salt carefully neutralized with hydrochloric acid and methyl orange added, after which it is filtered through a filter paper moistened with salt solution, the precipitate being stirred up so as to close the pores of the paper at once; if, notwithstanding this, the filtrate comes through greenish yellow, it must be passed through the paper again. The boiling with water is repeated several times, the residue washed with dilute salt solution and the united filtrates titrated with N-5 hydrochloric acid, the faintest possible coloration of the indicator being used.
The determination of sulphur in burnt pyrites by means of nitric acid is stated by the author not to give such accurate results as has hitherto been supposed.Ztschr: Angew. Chem.

Recent Decisions Relating to Patents.

WANT OF NOVELTY.

Letters patent No. 249,278, issued November 8, 1881, to Albert E. Wallace, cover, in claims 2 and 3, a ball bearing device for vehicles, the balls running in Vshaped grooves, the groove upon the axle being made by two sleeves sliding toward each other, the inner sleeve resting upon the hub of the axle and the outer one connected with the crank, both the crank and the sleeve being threaded with a screw, whereby the sleeve may readily be moved toward or from its fellow, furnishing a means of adjustment to compensate for any wear of the grooves and balls. Held, that the patent is void for want of novelty over the English patent of November 14, 1878, to James Bate, in which the axle groove is formed by two cones, one being adjustable by means of a screw, in substantially the same manner. 1.
Letters patent No. 177,194, issued May 9, 1876, to Oscar Boehme, for an improvement in the manufacture of balls and rosettes of yarn, consisting in the use of a funnel-shaped tube, through which the yarn is drawn, so that it comes out of the small end in a compressed condition, ready to be bound and cut, are void for want of patentable novelty. 2.

in PENNSYLVANIA.

Where one has received a patent for an invention the fact that there was in existence in the Patent Office, at the time the patents were applied for, an abandoned application by another person," together with models, for a patent for substantially the same invention, does not make the patent void for want of novelty, since to invalidate a patent the want of novelty must be such as shows that the invention was known to the public. 3

Letters patent No. 274,048, issued March 18, 1883, to Edwin R. Stilwell, cover a live steam heater or feedwater purifier, connected with the boiler by steam pipes, and having a series of pans vertically arranged above the filter, and a space or chamber above the pans, and water inlet, connected to the steam dome by a pipe, so as to discharge the gases from the top of the purifier directly into the boiler. Held, that the gas discharge pipe was both a novel and useful feature and such an advance over letters patent No. 66,998, issued July 23, 1867, to the same inventor, as well as over all other prior inventions, as to sustain the validity of the patent. 4

Letters patent No. 432,451, to Herman Tappan, for improvement in perfume holders, consisting of a device in the form of a lantern, comprising a bottle or flask to hold the perfume, a base piece, a collar around the neck of the bottle, a cap adapted to fit upon the neck of the flask, and screwed down thereon, and pressing a packing ring down on the cork, and on the upper part of the flask, the collar and the base being connected by curved rods, provided with hooks, adapted to be sprung into suitable openings in the collar and base and serving the double purpose of holding the parts together and forming a cage for the glass flask, in view of the prior state of the art, is void for want of nov elty. 5.
Letters patent No. 289,802, issued December 11, 1883, to Philo D. Beckwith, for improvements in a heating stove designed to con vert a wood-burning stove into a coal burner, and consisting of a flaring ring cast in two sections, which fit into the top of the fire pot, in which the coal basket, cast integral, is suspended, the ring having legs which rest on an annular flange at the base of the fire pot, and having holes in its periphery, into which pintles, cast on the underside of the coal basket pass, so as to hold the ring together, are not void fo want of novelty. 6

INVENTION.

Letters patent No. 197, 289, issued November 20, 1877 to A. L., G. M., and O. E. Peters, are for an anti-friction journal box, with bearings consisting of elongated rollers, whose relative positions, as they revolve round the axle, are maintained by inserting each end into a ring by means of a small bearing. The rollers have beveled ends, and the nut which retains the wheel on the bear ing is beveled to conform therewith, and the bearing or axle at the inner ends of the rollers is made with a beveled shoulder. The second claim covers "the bear ings with the shoulder beveled or notched, combined with the nut, or its equivalent, correspondingly beveled or notched." Held, that this device contained no patentable invention over the Alcott patent of Marchi 29, 1870, which also had elongated rollers with beveled shoulders, combined with a beveled nut or its equiva lent. 7.

Reissued letters patent No. 11,047, granted to the Electrical Accumulator Company, as assignee of Joseph Wilson Swan, December 17, 1889, claiming a perforated plate for secondary batteries, having the perforation extending through the plate, and the active materia packed in the perforations only, cover a patentable in vention. 8.
The fact that, before the date of this invention, Prof. Eaton had packed active material in perforatious ex
the surfaces thereof, and that Mr. Brush had packed it into grooves in the plate withour invention in the idea faces, does not shrely to perforations extending through the plate, since this apparently slight change avoided the difficulties before encountered, and produced an electrode which has, to a great extent, superseded all others, and has become the electrode of commerce. 9 Claim 1 of patent No. 360,036, for method of rolling side-bearing girder rails, consisting in rolling down the metal forming the side tram in rolls provided with passes, in one or more of which that portion of metal forming the offset or head of the rail is subjected to elongating action, and that portion only forming it side tram is subjected to displacing or dummy action, does not involve patentable invention, since it was old to roll girder rails with a dummy action on both the head side and the tram side, and it was old in other forms of rails to turn the whole lateral flow of metal to the tram side, and the changes necessary to accomplish this result in the rolls used for rolling girder rails were obvious to a skilled mechanic. 10.
Letters patent No. 145,029 and No. 341,559, issued to Peter K. Dederick, November 12, 1889, and May 11, 1886, respectively, the latter being upon a divisional application for an improvement in horizontal "con tinuous" baling presses, cover, as the gist of the inven tion, a device consisting of a loose connection, as a chain or rope between the toggle and the horse lever so that the toggle is pulled back and forth across the center line by the vibration of the horse lever. Held, that, in view of the fact the press has gone into exten sive use, the device must be considered to have patent able invention, over the somewhat analogous device shown in patent No. 261,323, issued July 18, 1882, to George Ertel, and which is adapted to an upright press. 11.
Letters patent No. 200,119, issued February 12, 1878, to Ashton, for an improvement in safety valves, in so far as they cover, in claim 1, merely a combination of an under-discharge pop valve, an inner casing, and an outer casing with a suitable outlet, are void for want of invention, in view of the patents to Ashfield (No. 97,472, December 7, 1869), to Prescott (No. 121,659, December 5,1871), to Guels (No. 195,003, September 11, 1877), and English patent No. 891, of August 23, 1872, to Giles. 12.
Letters patent No. 185,576, issued December 19, 1876, to Reuben H. Plass, for an improvement in seats and backs of chairs, and claiming simply the substitution of vulcanized fiber for veneers, coated paper, metal etc., are void for want of invention, as the application of an old material to a new use, as a mere substitute is in no sense an invention or discovery. 13.

1. Pope Mfg. Co. v. Gormully \& Jeffery Mfg. Co., 12 Supreme Court Reporter, 643
2. Rochester Coach Lace Co. v. Schaefer, 50 Federal Reporter, 106.
3. Harrison v. Kennedy, 24 Atlantic Reporter, 66.
4. Stilwell \& Bierce Mfg. Co. v. Brown, 49 Federa Reporter, 738.
5. Tappen v. Bean, 50 Federal Reporter, 103.
6. Lee v. Northwestern Stove Repair Co., 50 Federa Reporter, 202
7. Pope Mfg. Co. v. Gormully \& Jeffery Mfg. Co., 12 Supreme Court Reporter, 637
8. Electrical Accumulator Co. v. N. Y. \& H. R. Ry Co., 50 Federal Reporter, 81.
9. Electrical Accumulator Co. v. N. Y. \& H. R. Ry Co., 50 Federal Reporter, 81.
10. Johnson Co. v. Tidewater Steel Works, 50 Fede ral Reporter, 90.
11. Dederick v. Gardner, 50 Federal Reporter, 96.
12. Ashton Valve Co. v. Coale Muffler and Safety Valve Co., 50 Federal Reporter, 100.
13. Vulcanized Fiber Co. v. Taylor, 49 Federal Re porter, 744 .

Oil and Iron Stains in Cotton Cloth.
Oil stains in cotton cloths are well known difficulties to every bleacher and dyer, and it is the general experience that their complete removal is effected in the oil stains have been caused by animal or vegetable oils and greases, as in this case, under the circum stances obtaining in keirs, the saponification of thes ils completely removes the stains. Not quite so sim ple is the case if the stains are caused by mineral oils. These are incapable of saponification, but as soap so utions (especially those of alkali) dissolve considerable quantities of mineral oils, it is generally assumed that the resin soap employed in the process of keiring emulsifies, and eventually dissolves also these stains. This may be true as long as the stains are fresh, but it does not apply to old stains, which, through long exposure to the air, have undergone oxidation. Cloth containing such mineral oil stains cannot be effectively and conditional to a liberal supply of resin soap, the stains practically disappear, i. e., they can no longe be seen, and, in the process of printing or dyeing such cloth, nothing occurs that would indicate that these
do not occur so often in cloth as oil stains, and may prove a great nuisance occasionally, but, under ordi nary circumstances, their removal is easy enough. If the stains are few and far between, they are treated one by one with a moderately strong solution of oxalic acid, the piece being subsequently washed. If there re too many of these stains in a piece to apply this reatment, padding in a bath of oxalic acid at $5^{\circ} \mathrm{Tw}$ or in bisulphite of soda at $7^{\circ} \mathbf{T w}$. will answer, but, if oil and iron stains appear in the same piece, forming as it were, one single stain, the question of getting and of these combined stains is, in most cases, a matter of ery considerable difficulty, the oxidized oil retaining the iron stain even against concentrated solutions of oxalic acid or strong sulphurous acid; even the most powerful agent for removing iron stains, a solution of tin oxalates in hydrochloric acid, has not the slightest ffect on these compound stains. I may at once say hat I do not know of a case of these stains ever hav ng been found fin gray cloth, or having been produced in the course of the bleaching process, although the single oil or iron stains are common enough at this tage. But the compound stain inevitably form when oil-stained cloth is dyed with an iron mordant The faintest trace of an oil stain left in the cloth can be found out by treating a suspected sample in a bath of ferrous or ferric sulphate, and producing the wellknown iron buff by afterward passing through weak oda carbonate. As a rule, the stain does not show in the buff, but, after stripping the color in any suitable acid bath, a bright iron stain remains wherever the cloth retained the least trace of an oil stain. From his it is clear that, in the majority of cases, thes compound stains will never be noticed, unless the cloth is stripped of its dye. Unfortunately, the latter process is frequently necessary in the case of drab twills, which have, at times, from some unaccountable reason, an awkward tendency to bleach in the folds, or to come up a wrong shade in dyeing. For the pur pose of redyeing such pieces, the color is stripped, and hen the oil stains become visible as bright iron stains. On redyeing these pieces in the manner generally used or this class of goods, by first giving two ends in a mixed bath of fustic, sumac, and annatto, and after ward fixing in a bath of ferrous sulphate, these iron stains do not disappear, but show as ugly olive patches That these stains show only in the second dyeing is easily accounted for, as they now contain twice as much iron as the rest of the piece. It is, therefore, evident that, before redyeing pieces stained in this manner, it is absolutely necessary to first remove thes tains. I have already mentioned the obstinacy with which these stains resist all ordinary agents, and the cause of this, no doubt, is that we have the iron her in the form of an iron soap. Taking this into con sideration, there is no doubt that the iron stain wil only yield if treated with an agent which, at the same time, loosens the oil stain. After a great many experi ments, I found that by padding such pieces in a hot solution of one part of soft soap, one part of glycerine, and three parts of water, taking through squeezing rollers, letting lie for twenty-four hours, then washing he iron stains, together with the oil stains, are com pletely removed. The rationale of the process will be readily understood if we remember the great ease with which oils of every description dissolve in solutions of glycerine and soap, and also the capability of alkaline glycerine solutions to dissolve ferric oxide in large quantities. The price of the process amounts to about s. per 100 pounds of the cloth, and from this the price per piece may easily be calculated, the weight of a piece varying from 26 to about 80 pounds. The whole difficulty about these compound stains would f course, best be dealt with by taking care to remov every trace of oil in the cloth in the keiring process but, as I have already remarked, this is a matter of considerable difficulty in the case of mineral oil stains, although pressure keirs are, as a rule, fairly efficient in this respect. From experiments carried out on a large scale, it appears, however, that this difficulty can be overcome by deliberately increasing the mineral oil stain in the gray cloth by adding a vegetable oill to it Treatment, even in an open keir, is then quite suffi cient to remove every trace of an oil stain.-Weber, in the Jour. Society of Chemical Industry.

A Telephone Fifty Years Ago.

The first telephone in any section of the country is thus described by a citizen of Northampton, Mass. A little more than fifty years ago the employes of the Arms Shoe Manufactory, at South Deerfield, beguiled their leisure hours by kite flying. Kites large and small went up daily, and the strife was to see who could get the largest. The twine which held them was the shoe thread spun and twisted by the ladies of the village One day to the tail of the largest kite was attached a kitten, sewed in a canvas bag, with a netting over the mouth to give it air. When the kite was at its greatest height, some two hundred feet or more, the mewing of the kitten could be distinctly heard by those holding the string. To the clearness of the atmosphere was attributed the hearing of the kitten's voice."

Microscopic Notes.
At the recent Rochester soiree of the American Microscopical Society, the Microscopical Journal says, there were at least a hundred microscopes, and every one of them was besieged by a line of eagerly curious men and women.
In one of the microscopes shown by Professor Griffith was a bouquet of flowers. It was made of the scales of the butterfly, arranged with the most wonderful artistic skill in a space no bigger than a pinhead. Another microscope revealed the Lord's Prayer through a pinhole. The exhibit which attracted the largest share of attention, and which, perhaps, was the most instructive, was a series of nine microscopic objectives interspersed with drawings showing the growth of the starfish the growth of the starfish at all stages. This exhibit was prepared by Professor
Charles Wright Dodge, and it was besieged all the evening by throngs of spectators. You had to "get in line" and gradually work your way along Another exhibition which attracted much at tention was the circulation of blood in the tail of of blood in the tail of a fish, shown by William Drescher. This was ac complished in a most in genious way. A living goldfish was securely fastened in a small vessel con taining just enough water to keep it alive. Its tail was projected over the side of projected over the side of firmly fixed, pressed between two small pieces of glass and firmly fixed under the microscope. The power of the microscope was so high that it resolved the blood, seen through the transparent covering of the fish's tail, into countless little corpuscles, which gave it the appearance of multitudinous grains of sand following each other in and out and round about in endless procession up one aisle and down another, constantly twisting and turning. An extra goldfish lay in a pail of water by the side of the microscope, so that the fish on duty might be relieved should he give signs of failing vitality. Mr. Drescher stated that a fish would ordinarily accommodate the investigator in this way for an hour or an hour and a half. At the other end of the room was exhibited a frog's foot in similar fashion.
Professor Seaman, the secretary of the society, to whose energy much of its vitality is due, exhibited a firefly under his lens. He has made a special study of phosphorescent light in organisms, and says that the number of such insects is much larger than is generally supposed, and that the firefly is by no means alone in his glory.
Professor,Rogers, the microscopic mathematician, ex hibited one twenty-fifth of an inch ruled off into 100 equal parts-a subdivision of the inch into 2,500 equal parts. Professor Rogers does this work with a machine of his own invention, cutting his lines upon gold with a diamond. He uses gold because it is more easily reducible to a finely polished surface.
Professor Claypole exhibited the gizzard of a black beetle and the eye of a crayfish, which were shown by his twin daughters, who are accomplished microscopists.

Sarah F. Whiting exhibited the eye of a beetle in which a little cross marked on the glass beneath it wa reflected 1,000 times. It would be difficult to catch the literally Argus-eyed beetle asleep.

Before the society Professor Rogers read a paper on the "Use of the Microscope in the Workshop." The speaker stated that he had for some years advocated a more extensive use of the microscope in the ordinary operations of mechanical construction. His paper wa an enumeration of the different mechanical operation in which he found the use of the microscope profitable Among those specified were:
First, to divide an index wheel into 1,000 equal parts second, in setting the ways of a large planer horizontal ; third, to ascertain whether a piece of planed work has its surface truly planed before the piece is taken from the planer; fourth, to ascertain whether the planer planed a piece of metal in a straight line; fifth, to plane two surfaces exactly alike ; sixth, to set the line between the centers of a lathe parallel with the ways seventh, to test the turning of a true cylinder eighth, to test the accuracy of the screw of a common lathe.

As an illustration of the last point, the speaker de scribed his test of a precision screw twenty-one feet in length, made by Pratt \& Whitney, of Hartford, for R. Hoe \& Co., printing press manufacturers. This screw, considering its great length, was found to be of exceptional accuracy.
Professor Clark Bell, of New York City, read a paper
on "Blood and Blood Stains." Red corpuscles were first discovered in the human body in 1673. Oval and nucleated corpuscles were found in birds and fishes, reptiles, etc., but not in mammals.

VIBRATORY THERAPEUTICS.

Among all the methods, more or less odd in appear ance, applied to the treatment of nervous diseases, there are few more original than the one that has been employed for some time at the Salpetriere by Professor Charcot; it is the treatment by mechanical vibrations.

There is

you, put you out of order, and shake up your intestines, and after a half minute's experience you would ask for mercy. The invalid, on the contrary, lolls in the chair as you would do on a soft sofa. The more he is shaken the better he feels. After a sitting of a quarter of an hour, he is another man. His limbs are relaxed, the fatigue has disappeared and the following night his sleep is perfect.
Treatment by mechanical vibrations is not limited to this malady alone; it seems to be applicable to quite a large number of nervous troubles, more or less well defined, and the neurasthenia of which offers the completest ensemble. Long before the invention of the vibrating arm chair Dr. Vigouroux conceived the idea of submitting hysterical patients to the vibrations of a huge tuning fork. In this way he cured anæsthesias and muscular stiff joints. Other physicians, Boudet f Paris, and Mortimer Granville, applied vibrat ing rods to the treatment of neuralgias (facial neur algia in particular) and headaches. Granville de vised a small electric hammer, analogous to the ham mer of electric bells, and that was applied to the painful point. Under the influence of the shock, re peated hundreds of time within a short period, th pain ceased.
The method was some time ago singularly im
stooping attitude, and an odd gait, that makes it seem as if the invalid was going to precipitate himself head foremost. It is the trembling palsy, also called Parkinson's disease, a sort of painful nervous disorder that deprives the unfortunate who is afflicted with it of rest and sleep. Mr. Charcot a long time ago learned from some invalids who were troubled with this in firmity that they derived decided relief from long rides on a railroad or in a carriage. The more the vibra tions caused in the compartments by the train running at full speed, and the more the carriage was jolted over an uneven pavement, the more the relie experienced. At the end of a day's journey they fel better and experienced an inexpressible comfort. One of them conceived the idea of having himself wheeled about for hours in one of those heavy carts used for carrying paving stones. Contrary to the experience of all travelers those afflicted with trembling palsy

Fig. 1.-METHOD OF USING THE VIBRATING HELMET
elt fresher and more active on alighting from th cars. The longer the trip lasted, and the worse the ine, the more durable was their improvement.
Such testimony, coming from various sources, wa not lost. It was for Mr. Charcot the starting point of most curious therapeutical application. It was im possible to think of having the invalids carried by rail from Dunkirk to Marseilles, or of making them pass their days in omnibuses. So Mr. Charcot had an arm chair constructed to which a to and fro motion was given by means of an electrical windlass. Thes motions produce a series of very strong trepidations. It is the motion of the sieve for the sifting of industrial materials. There could be nothing more insupportable
proved by Dr. Gillis de la Tourette, a pupil of Mr Charcot. With the aid of Messrs Gautier and Larat tw confreres well versed in electro-therapeutical studies he had an apparatus constructed for the treatment of megrims and nervous headaches; it was the vibrating helmet (Fig. 1). Imagine a helmet of the model of that of old times, and very analogous, as to structure to the conformator of hatters. It is, in fact, formed of steel plates, that permit of its fitting the head perfectly (Fig. 2). Upon this helmet, in lieu of crest, there is a small alternating current motor of peculiar construc tion that makes about 600 revolutions per minut (Fig. 3). At every revolution a uniform vibration i propagated to the metallic plates, and is transmitted to the cranium that they embrace. The cranial walls thus vibrate in their ensemble, and the vibrations are naturally transmitted to the entire cerebral apparatus The sensation is not disagreeable. The number and intensity of the vibrations, moreover, may be varied according to the tolerance of the subject. In a few minutes a sort of general lassitude is experienced, with a tendency to sleep.
The vibrating helmet has already been applied to a large number of neurasthenic invalids, the majority of whom have experienced good results from it. Th process succeeds also against hemicrania, and as thi is quite a common affection for which no surely effica cious remedy is known, the helmet will, in a shor time, be seen to come into vogue.-La Nature.

Tomato Disease

Tomato plants have been troubled with fungi this season, and consumers are complaining of the high price and poor quality of the fruit. In some localities the young plants were destroyed or much weakened by the bacterial disease known as the Southern to mato blight. This has been followed by the old lea enemy, Cladosporium fulvum, which producee ? light brown, almost olive, mould upon the under side of the foliage. Plants with much of this fungus usually bear inferior fruit, and frequently the same enemy appear upon the fruit while it is green and less than hal grown; the blossom end turns brown and decay sets in
The newest enemy, and one of no small importance is an anthracnose, Colletotrichum Lycopersici, which was first observed by Professor Chester, at the Dela ware Experiment Station, last season, and described by him in the T'orrey Bulletin for last December This fungus produces sunken spots in the fruit, which become soft and dark. It quickly destroys the tomato and for this reason and by its peculiar appearance it is usually recognized as different from any other known tomato rot. Several times my attention has been called to the ravages of this parasite by growers who observed that it was a new enemy.
The same fungus is to be found upon the foliage when it causes brown, irregular spots. At this time, when the fruit is well advanced and frosts are expected daily, there is little or nothing to be done, except to see that the vines are finally gathered and burned. There is no question about the contagiousness of the anthracnose. The spores are numerous, and should be destroyed at the close of the season, if not before.Byron D. Halsted, Garden and Forest.

RECENTLY Patented inventions．

Engineering．

Boiler Water Level Recorder． William M．Lewis，New Castle，Col．This improve－ the water levels during the time the boiler is in use float rising and falling with the water in the boiler con－ trols，by intermediate mechanism，a pencil marking on a dial moved by clockwork，while a graduated ind cator hung loosely on the dial indicates the time fo the indicating line marked by the pencil．The owner
of the boiler can，by meane of this device ascertein of the boiler can，by means of this device，ascertai
whether there has been at any time a neqlect to kee up the proper supply of water in the boiler．

Railway：Appliances．

Electric Railway．－William G Murphy，Jr．，Marysville，Cal．Accordiug to this im provement，a conduit arranged below the level of the
track is provided with insulated roller supports，the track is provided with insulated roller supports，the
electric cable resting normally upon the rollers，while a connector from the motor carried by the car project into the condult，and is furnished with grooved roller for engaging the cable and means for bringing the con nector in engagement with the cable or removing erefrom．The connector is formed of two slidin with the cable，one bar raising it and the other depres－ ing it，while a bow spring in the conduit projects into the path of the connect ing through the slot．
Car Brake．－John W．Neumann and John R．Pflanz，Louisville，Ky．This is a bruke to be used upon a separate car or upon cars in trains，to be operated by the driver in one case and to work auto of a train of care．When it is desired to back the ca without applying the brakes，a spacing bar．pivoted to the drawhead and provided with a buffer，is let dowi to hold the cars the requisite distance apart
Rail Joint and Chair．－Joseph H． Campbell，Chicago，ill．This invention provides an inteverral shoe or chair on one end of the track rail，and
an initerral fish－plate on the other end of the rail ，thus akiug fewer wearing joiuts then greater strength for the weight of metal employed． eneculiar construction of the shoe or chair is di gned to give the greatest strength where the mo the vertical or lateral dieplacement of the rail ends．
Car Ventilating Device．－Albert Kinnick，Colton，Cal．This invention covers an im－ same inventor，in which vertically sliding doors cover openings in the ends of the car，in cars used for ship－ ping fruit，etc．，it being possible to close the doors
quickly on a change of weather．The improvement provides means for more securely fastening the door and clamping them tightly over the openings，so
there will be no leakage of air through the cracks．
Car Spittoon．－Edward L．Harris Red，Banks，Mise．According to this invention，the sotioon if ormed of a funnel－shaped tube inserted in or，and having a einging cover conected by a sin die with a double valve adapted to close and open the lowerend of the tube，eo that when the cover is swun
oo oneside the lower end of the tube will be closed，bu when the cover is in place over the tube the lower en f the latter will be open，and its cover swung to o

nechanical．

Saw Set．－Hiram B．Smith，Atlanta ．Ynis is a very simple device to facintate the quic ists of an anvil having beveled or oval edges，in com bination with which is a saw guide and eupport，a han merguide，and a hammer，the latter being a flat bar steel，which is used by placing its flat side againet the oining the rod．In this mauner alternate teeth are hen the saw is reversed and the intermediate teet are set in the opposite direction
Saw Attachment．－－Henry C．Webb， uusiavilie，Ind．This is a simple and cheap apparatio or use with an ordinary cross cut or drag saw，enabling porting post ie driven into the top of the log，and ever is pivoted to one end of the saw and near its free ond to another lever，the latter being pivoted to the oost，on one eide of which is monted a pliey，while

Rod Coupling．－Louis Buese and John Cowling，Republic，Mich．That class of coupling such as is used for drilling or boring，forms the subject of this invention，which provides a coupling which ma be instantly coupled to or uncoupled from the drill rod forming a strong conuection，so that the rod may be easily and safely pulled when necessary，and which may be quickly thrown into or out of gear．A swive plog with a threaded lower end is held to turn in a sup he plug and a collar turning with the uppere turou screw，on which a handwheel is losely journeled astening device connecting the hand wheel and colla

Brick Marking Machine．－John E nnis，Duluth，Minn．This invenise by brick mason， y which bricks can be quickly marked and qauged facilitate their laying，the marking being quick and regular，and indicating the thickness as well as the lentth，a special mark being made when desired for the cutting of a number of short bricks．In combination number of marking rollers，having each a yielding number of marking roilers，having each a yielan position to engage bricks of different tuicknesses．

Cotton Seed Planter．－Alois Lang Macon，Ga．This is an improvement in machnes in which revolving wheels or disis are employed to dis－ harke the seed or fertilizer from the hopper．The ransverse semicircular grooves that serve as pockets receive the seed and carry it down through the slots of
he thopper bottom，in such way that the seed is di harged in a broad and practically continuous stream nstead of intermittently．The machine has a furrow opener，a seed coverer，and a wheel ；behind the furro opener，which operates the seed agitating and dischare． jog mechanism by means of a chain and sprocke

Pruning Implement．－Frank P Kern，Missoula，Mont．Iuexpensive pruning thears for
riuming trees．vines，etc．，are hereby provided． triuming trees．vines，etc．，are hereby provided．
andle slides ou the shank of an upward－curved hook nandie silides ou the shank of an upwara－curved hook againet the hook，and having a dependiuy shank ex ending down at the side of the handle，with means to olding the shear away from the hook to permit the e rance of the limb from above，while there is a connec ion between the sheur shank and the handle．
Draught Equalizer．－Theodor J Miland，White，South Dakota．This is an improvemen Hore espeeially uadpted for use on barvesting machines， enter attachable to the pole so as not to weaken the everal on the other without there being any side draught．A lever carrying pulleys is pivoted to the pole，chains passing over the pulleys carrying whiffle rees，while a bar secured to the lever is connected by ole in the rear and an evener bar being pivoted to the ar and to the lever，the invention also covering othe ovel features．
Lawn Mower．－Horace L．Freeman解位，N．C．This implement has a semicircu－ Ir finger bar with a revolving culter arranged upon
ertical axis，and connected and driven by beve ears from the running wheels behind，a horizontal anter wheel having around its periphery projecting ted knife whes incined for whes，to which sla machine is designed to cut its full width，cutting high as well as low grase，and cutting close to fences，curb toues，etc
djuated．
Knot Tying Mechanism for Har essters，－William H．Gaskill，Wilson，N．Y．This nechanism is especially designed for connection with
rain harvesters，but may be used on baling or bund ing machines to tie the twire binding the hundle of ale．The improvement makes a movable holder un neceseary，and allows the fingers to tie a knot withou any hard strain on the twine．The mechanism may be the twine around u bunde，or to any machine to whic such a needle can be applied．

Miscellaneous．

Elevator．－James W．Brook，Lynch burg，Va．This invention provides a novel construc
tion of elevating and lowering device in the nature an amusement apparatus the cage or car being caused evolve as it descends．The apparatus comprises a tow anged e，with a car，and a spiral o carry passengers and to be revolved as it descen by the action of the shaft．Counterbalance weighte，in the form of elevator cazes，may be used to lift passen gers to the top of the tower，oo descend in the revolving ar，the counterbalancea cafes and their passenge being designed to weigh less than the car．
latter as it descends will lift the elevators．
Coal Lifter．－Albert Roll，South amboy．N．J．A simple apparatuu is afforded by th may be rapidly lifted from a pile and delivered into a conveyer，the coul being raised without materially ame is preferably mounted on a ng the apparatus in porting a shaft on which is a revoluble wheel havi arms to which are pivoted buckets，a roller in the pat of the buckets tipping them to the right position to
scoop up the coal，while another roller tips the bucket empty them．
Coal Pocket Screen．－George A Thompson，Brooklyn，N．Y．This invention provide for agitating the screen of a pocket，thereby doing
more thorough work than can be accomplished by fixed screen，and controlling the delivery of the coal he same time．A vertically swinging inclined fram is hinged at its rear end below the gate of the pocket and having adjusting mechanism for its forward end here beng a vibrating screen within the frame fro which a lever extends to within reach of the operato nhere beagy reach to permit of simultaneous o peration while there is adws conveyer below inclined reversel to the screen and its frame．
Sunshade for Vehicles．－Letitia V． Luce，New Orleans，La．Brackets are attached to the and a frame is held to slide in the brackets apainst the tension of the spricg，while a rack attached to the vehicle has a series of notches or recesses to receive one edge of the frame，gaides supporting side exten sions of the frume cover．The device is light and sin． ple，and capabie oriq is and convenient aduastmen is not recesery it may be folded up purallel with the under side of the canopy or top and be practi－

Window Shade Supporter．－ Stephen T．Stuver，Puyallup，Washington．This de vice is mainly made of stout wire，and is more espe．
cially deeigned for carrying spring roluer window
shades，being readily adjustable to windows and shades
of different sizes and widths，causing the shade to han straight with the window casing．The supporter omposed of a truss frame made in sections slidin one upon the other，there being an upper and low
series of wires，with locking devices to secure the wire in adjusted position，while knobs or sockets at the ends of the wires carry the shade roller and suspension eyes sure the straight hanging of the shade．
Crate．－David J．Rex，Pittsburg，Pa． his is an improvement for use in cratug paper boxe or similar goods，a simple and novel form of corve ner piece formed to receive the side and end slate an he post slats，and is made by casting or by stampin or forging from sheet metal，screw or nail holes being provided if desired，
Design for a Spoon．－Adolph Lud wig，Brooklyu，N．Y．The handle of this spoon has by a representation of a bow knot，and a group of lower figures in imitation of the forget－me－not，the stems of the flowers and the streamers of the bow kno
orming the body of the handle，while in the bowi he spoon are represented a heart，a horseshoe，and

Pump．－William Peterson，Atwater Minn．This is an improvement especially adapted fo
use in tubular wells，having two pistons actuated from single lever reciprocated simultaneously in oppo ite directions，the lever heing actuated by hand by a windwheel or other applied power，and affor gig a continuous stream．
Nnte．－Copies of any of the above patents will send name o
of this paper

NEW BOORS AND PUBLICATIONS

Smithsonian Contributions to Kno

Ledge．Wol．XXVIII．City of Wash
sonian Institution．1892．Pp．x， 446 Twelve colored plates．
This elegant quarto is devoted to the life history American birds，some 145 in number．The te oology of the different species．A very graphic air characterizes the matter．The story of the egg collector watched by Apache Indians while climbing a tree and o a scientific end．The very full space accorded to the subjects and the departure from mere dry details giv reatment and the embodiment of details give it add tional scientific value．Two much cannot be said in commendation of the publisher＇s part particula with respect to the plates．The elegance of thes which are devoted entirely to eggs，places then beyond riticism

The Practical Management of Dy Namos and Morors．By Francis B
Crocker and Schuyler S．Wheeler D．Sc．New York：D．Van Nostrand
Company．1892．Pp．vii，67， 32 Company
This little work is the outcome of a series of article which were published in the Electrical Engineer re field of electrical engineering，and the titles of differ ent chapters disclose the eminently practical nature their instructions．The arrangement of the text ome places is very characteristic and excellent ；wher different troubles are stated，each trouble is followed The Speech of Monkeys．By R． Garner．In two parts．New York 1892．Pp．xiv，217．Price $\$ 1$.
Mr．Garner＇s researches into the epeech of monkeys， in which he utilizes the phonograph，have given him very wide reputation．The present work embodies the considerable matter referring to his views concerning he theory of speech．

Florida，South Carolina，and Cana－ dIAN＇Phosphates．By C．C．Hoyer
Millar．New York：The Scientific Publishing Company．Pp．ix， 223 ．
Price $\$ 2.50$ ．

In the subjects of mineral resources，few thiugs hav occupied greater attention during the last few year
than the natural phosphates of this country．Here than the natural phosphates of this country．Her
where we have but little basic slag，the natural sourc for fertilizing material are of double importance．The title of the work indicates the ground it covers，and the figures as to！price and general statistics and practical details of extraction give the work a peculiarly every day value．
Elements of Qualitative and Quan titative Chemical Analysis．By
G．C．Caldwell，B．S．，Ph．D．Second edition，revised and enlarged．Phila delphia：P．Blak
1892．Pp．viii， 175.
me，Professor Caldwe gives，as far as possible，the general principles of bot qualitative and quantitative analysis．It seems almo so long a subject，hut the work at least will give student，who merely wants to know how chemica work is executed without descending to manipulation，a reasonable idea of what life in the laboratory is．Several peculiarities in the spelling of Tor
The Compass．Volume I．1891－1892． Edited by William Cox．New York：
Keuffel \＆Esser Company．Pp．192．

The Medical and Dental Register
Directory and INTELLIGENCER
OF PenNsylvania，New Jersey，
Delaware．George Keil，editor．
Philadelphia：George Keil． 1892.
Pp．xvi，422．
This work purports to be a directory of physicians throughout the slates named，and gives also a list of ark would be of extreme use in many cases．The office hours of physicians are appended to their names in many cases，as well as their addresses，
nd it really seems to be a remarkably complete pro－

Transformers．Their theory，con struction and application simplified． 1892．Lynn，Mass．：Bubier Publish－ 1892．Lynn，Mass．：
ing Company．Pubier Publish
Pr This work，dedicated by the author to his father，the well known John F．Haskins，appears to be reasonably omplete，and to give excellent practical details as It is illustrated with ditferent views，gives the unde－ writers＇rules as applied in New England，and end with what is rather curiously called a glossary，con taining what are enpposed to be explanations of but rather crade denintions appended theres． An Introduction to Geodetic Sur veying．In three parts．I．The
Figure of the Earth．II．The Prin－
ciples of Least Squares．III．The
Fied Work of Triangulation．By
Mansfield Merriman，Ph．D．New Mansfield Merriman，Ph．D．New
York：John Wiley \＆Sons．
Pp．180．Price $\$ 2$.

Profer Merriman＇s reputation is enough to insure the value of the present work．It treats the earth as ing a very interesting synopsis of the possible forms of the earth or possible formations of parts of the earth Treatises on the use of the principles of least squares
and the field work proper are appended and enhance he value of the book

Any of the above books may be purchased through this office．Send for new book catalogue just pub－
lished．Munn \＆Co．， 361 Broadway，New York．

SCIENTIFIC AMERICAN

bUILDING EDITION

OCTOBER NUMBER．－（NO．84．）

table of contents

1．Elegant plate in colors，showing a handsome resi－ ence at Belle Haven Park，Greenwich，Conn． Floor plans and two perspective elevations．
Messrs．Lamb \＆Rich，architects，New York． late in colors showing an elegant residence at
Montclair，N．J．Perspective view ard floor Montclair，N．J．Perspective view ard floor
plans．Cost $\$ 7,000$ complete．Mr．E．T．Hap－ good，architect，New York．An excellent de
．A house at Montclair，N．J．Two perspective views and floor plans．Cost $\$ 4,750$
Hapgood，architect，New York．
Queen Anne cottage recently erected on Chester
Hill，Mount Vernon，N．Y．，at a cost of $\$ 5,000$ ． Hill，Mount Vernon，N．Y．，at a co
Floor plans，perspective elevation，etc．
5．A house for two families erected on Armory Hill Mr．F．R．Richmond a cost of $\$ 7,000$ complete． Mass．An excellent design．Floor plans and perspective．
6．A model dwelling at Holyoke，Mass．A unique de－ sign．Perspective elevation and floor plans．
small cottage and separate summer kitchen．Per－
隹 spective views and flo
buildings，about $\$ 1,610$ ．
8．The parsouage at Montclair，N．J．，built for the Congregational Church．Cost complete $\$ 15,000$ ． J．C．Cady \＆Co．，architect
tive view and floor plans．
9．A handsome residence at South Orange，N．J．Floor plans and perspective elevation．
cottage at Fanwood，N．．e．，erected at a cost of
$\$ 5,166$ complete．Perspective elezation and Loor $\$ 5,166$
plans．
1．Portal of the church of Moret－s：－－Loing，France， strations of two handsome English country ouses．
Miscellaneous contents ：The cozing age of mar－
ble．－White brick．－How to ble．－White brick．－How to keeF Gut：＊he heat in
summer and to keep it in in the winter．－Eoase moving．－Tempering tools．－Closet door faste二－ ings．－A right－of－way may be built over．－Sttr－ ley plumbs and levels，illustrated．－Safety crace， illustrated．－An improved range and heaser，i－ lustrated．－Railway window sasbes．－A sreest
tunnel．－Iuside sliding blinds，illustrated．－ tunnel．－Iuside sliding blinds，illustrated．－ An improved door hanger，illustrated．
The Scientific American Architects and Builders 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages；forming，practi－ cally，a large and splendid Magazine of architrc－ with fiche adorned with elegant plates in colors and examples of Modern Architectural Construction and allied subjects．
The Fullness，Richnese，Cheapness，and Convenience of any Architectural publication in the world．Sold by of any Architect
all newsdealers．

MUNN \＆CO．，PUBllshers，$\underset{361 \text { Broadway，New York．}}{ }$

Dusiness and Personal.

The charge for Insertion under this head is One Dollar a line

 he charge for Insertion under this head is One Dolar a linefor each insertion; about eight words to a line. Adver-
tisements must be received at publicationo oftce as earlu as tisements must be received at publication office as early as
Thursday morning to appear in the following week's sssue

Complete Machine Shop out fits furnished. Send for
prices and list of new and second hand Machinery. W. prices and list of new and
P. Davis, Rochester, N. Y.
"U. S." metal polish. Indianapolis. Samples free. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. 6 Spindle Turret Drill Presses. A.D. Quint, Hartford,Ct. Best baling presses. Ryther Mfg. Co., Watertown, N.Y
G. D. Hiscox, 361 Broadway G.D. Hiscox, 361 Broadway, N.Y., Consulting Enginee Portable and Stationary Cylinder Boring machines.
Pedrick \& Ayer, Philadelphia, Pa. Pedrick \& Ayer, Philadelphia, Pa For Sale-Gas engine
Stewart, Rock Island, Ill
Tools for sheet metal goods, presses, lathes, dies, etc
Empire Machine and Tool Co., New Brunswick, N. J. Prof. Rogers used Jessop's steel for meter standard
See American Machinist, October 13, page 1, column 3 . The Improved Hydraulic Jacks, Punches, and Tube Spanders. R. Duageon, 4 Columbia S.., New York. Stow flexible shaft. Invented and manufactured by
Stow Mfg. Co., Binghamton, N. Y. See adv., page 254 . Screw machines, miling machines, and drill presses Centrifugal Pumps. Capacity, 100 to 40,000 gals. pe Portable engines and boiters. Yacht engines an boilers. B. W. Payne \& Sons, Elmira, N. Y., and 41 De Guild Gariso
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum ap
acid blowers, fliter press pumps, etc.
For stone quarry engines. J. S. Mundy, Newark, N. J. Split Pulleys at Low prices, and of same strength and
ppearance as Whole Pulleys. Yocom \& Son's Shaftin Works, Drinker St., Philadelphia, Pa.
Perforated Metals of all kinds and for all purposes, Harrington \& King Perforating Co., Chicago.
To Let-A suite of desirable offices, adjacent to the
Scientiflc American offices, to let at moderate terms. pply to Munn \& Co., 361 Broadway, New York. Fine castings in brass, bronze, composition (gun
metall, German silver. Unequaled facilities. Jas. J.
 tricity is "Experimental Science," by Geo. M. Hopkins.
By mail, $\$ 4$; Munn \& Co., publishers, 361 Broad way N. Canning machinery out fits complete, oil burners for Canning machinery out fits complete, oil burners for
soldering, air pumps, can wipers, can testers, labeling
machines. Presses and dies. Buit Mfg. Co, machin
Competent persons who desire agencies for a new aply roadway, New York New York. Free on application.

HIN'IS TO CORRESPONDENTS.
Names and A ddress must accompany all letters,
or no attention will be paid thereto. This is for out
information and no Hererences to former articles or answers should
give date of paper and paye or number of question.
In quiries not answered in reasonable time should
be repeated; correspondents will bear in mind that be repeated; correspondents will bear in mind that
some answers require not a litte research, and,
though we endeavor to reply to all either by letter or in Wh special Written Iniformation on matters of
personal rather than general interest cannot be expected without remuneration
cientitic American sunpplements referred
to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of Minerals ent for examination should be distinctly
marked or labeled.
(4569) Mechanic asks: What is the most approved motor or engine that is run by com-
pressed air ? A. Any motor or engine that is suitable for steam is equally good for compressed air. The for eteam is equally good for compressed air. The (4570) L. J. W. asks how to construct a simple metal thermostat or regulator for a home-made
incubator. A. It is not a simple matter to make a thermostat. However, you can make a thermostatic bar that might answer your purpose by pressing or riveting togett2r steel and brass strips, each about $1-16$ inch
thick, $\not / 2$ inch wide and 15 inches long. For other orms of thermostat consult "Experimental Science" and Supplement, Nos. 420, 848
(4571) A. B. asks : What is the proper place for a blower-under the grates of boiler or in the
smoke stack: A. When the smoke stack has ample smoke stack? A. When the smoke stack has ample capacity but is weak in draught from low height, a
blower connected under the grate is the most economical and satisfactory. A steam jet in the stack is much applied in the ordinary way with an open jet. The Korting multiple nozzle jet blower is a most economical and
nient.
(4572) J. P. G. asks what size wire to ase in winding the fields and armature of the dynamo described in SUPPlement No. 161, and with what size
wire would you make the connections? A. For the leads on your dynamo use No. 16 wire. The proper ferred to. They are respectively No. 16 and No. 18, Am. w. G.
(4573) A. B. C. asks : 1. Has the strength of a tlash of lightning (in volts) ever been calculated?
If so, what is it \& A. The E. M. F. of a bolt of light-
ning has been estimated to be $3,500,000$ volts and the
current to be about $14,000,000$ amperes. color glass for a ruby light for photographic purposes o put red lacquer upon one side and orange lacque n the opposite side. 3. In making a dynamo should the wire of the armature be insulated from the core ? . Yes. 4. Would the field magnet be better if made cast iron or steel? A. The core of a field magnet hould be made of the softest wrought iron. 5. How By any of the methods of measuring resistances. You can use a rheostat, battery and galvanometer and measure it by means of the methods of substitution, or you can measure it by using a Wheatstone bridge. 6 .
How is the loop of bamboo in incandescent lamp car bonized? A. By inclosing it in a form buried in powdered carbonand subjected to a red heat for an hour or so. 7. Is there any good way to renew the carbo nincandescent lamps? If so, how? A: We know of extracted from "L'Année Electrique:" To mend a ruptured filament. Open the bulb at the top, break of the pieces of the old filament,put in some liquid hydro carbon (naphtha), insert new filament, start voltaic arc between one of its ends and one of the terminals. This and term it with a deposit of carbon. Repeat for other end and termina
(4574) E. P. asks how the paste of lith rge and red lead are mixed for a storage battery. A he itharge and 1 tead are mixed
(45'75) B. W. S. says : Is it not true hat an air fan or blower will handle more air if the blades of the fans are thin than if they are thick, and if hick or thin blades when the blower is working against pressure, as with forge fires, but makes considerable difference when used for ventilations only with no presure. In this case there should be as little obstruction 8 possible in the air way. Such a fan should have the or economy or efficiency.
(4576) C. F. W. asks how to make " serpent's eggs." A. The black liquor which results as a useless product when coal oil is purified with sulphuric dark colored resinous matter which swims on the surface is then collected, washed and dried, when it forms yellowish brown mass having about the consistency of sulphur which has been melted and poured into water. When this mass is ignited it undergoes such a will give a snake about 4 feet in length.
(4577) Admirer says: We are contem lating putting in water works for our city. We wish know wh en 12 riles for the soarce of our water fall, will the pressure be too great and will the resis ance of common cast pipe sufficient to hold the water wlthout bursting and what size pipe would be necessary for a town of 2.000 people? A. The questions you ask are too important to be answered in a casual way. Your need the advice of a competent engineer, with a knowledge of the grades, to properly lay out the work.
The pressure will be too great for cast iron pipe and The pressure will be too great for cast iron pipe and for the plumbing. Wrought iron pipe is strong enough
with a differential pressure valve, but a reservoir at a proper height near the town is preferable, with a free flow from the source. You will probably need an 8 inch pipe for the upper section and 6 inch wrought iron pipe the balance of the distance.

TO INVENTORS
An experience of forty years, and the preparatition of
more than one hundred thousand applications for patents at home and abroad, enable us to anderstand the

 Which are Iow, in accordance with the times and our ex-
tensive facilities for conducting the business. Address
MUNN \& CO.,
Way Nife SCIENTIFIC AMERICAN, 661 Broadwas,

INDEX OF INVENTIONS

which Letters Patent of the

 United States were GrantedOctober 11, 1892,

AND EACH BEARING THAT DATE.

 [See note at end of list about copies of these patents.] Advertistng board, P. E. Green...Advertising devide,
Air brake coupling . H . H . Mrmann Alarm. See Burglar alarm. Burglar and $\begin{aligned} & \text { aire }\end{aligned}$
alarm. Fire alarm.

 Battery compound, W. Wrigh
Bean pickere, H. A. Bacon
Bee smoker, G. W.

Beverages, charring portable fountains with car-
Boonted. J. F. Witteemann................ Bin
Bind.
Bit.
Bit. See Bridle bit..................................
Blacking
B. Kight
Bine, coin-operated boot or shoe, N

Se fen stampand matco box.
 $4 . .88,3831$
$\times 8$

 den.
Cable 1
Cable ith
Cabl
Cameras

Carving machine, Layer \& Taylor......
Case. See Banana case. Packing case.
Cash carrier apparatus. J. Schiemer.

Chain biockek.,. R. Mo...........
Chair. See Folding cbair.

Char
Chis
Chucl

Cutter head, rosett Cycle sadale, J. B. Decorticating grain

trade marks

An printed copy of the gpoitcation and drawing on
 Broaimat, New work

York. Other foreign patents may also be obtained.

ACENTS WANTED

BEATTY Planoss Organg, g33 up. Want geont:

ELECTRIC POWER APPARATUS, FOR EVERY VARIETY OF MEOHANIOAL WORK. SAFE, SURE, RELIABLE.

estimates furnished.

THOMSON-HOUSTON MOTOR CO.,

GALIVANIZE

CEAREDAERMOTOR

 AERMOTOR CO.

VOLNEY W. Mason \& cu., Priction PoLLers, CLDTCHES, and ELEVATORS

FOR RENT, WATER POWER, Day

ALUMINUM : ITS USES AND AP

Industrial, Manufacturing,

 and Uncurrent woinder ex fillitiwe,

Steel Mype for Writing Macinines,
ELECTRIC MINING APPARATUS, ELECTRIC MINE LOCOMOTIVES
 ELECTRIC COAL CUTTERS.
gENERAL ELECTRIC COMPANY, MINING DEPARTMENT.
622 atlantic avenue, boston, mass.
173-175 ADAMS STREET, CHICAGO, ILL.

HARRISON CONVEYOR !

Handing Grain, Coal, Sand, Clay, Tar Birk, Cinders, Ores, Seeds, \&C

Foot and Power
Drill Presses, hapers, Band, Circular, and scroll Saws.
Machiniss
Qos SEBASTIIAN LATHE COMPANY,
120 and 122 Culvert Street, CIncinnatl,

8"THE EXPERT" DATING STAMP.

 Patent Foot Power Machinery 8 Complete Outfits.

To Inventors and others.

 SECONDARY BATTERIES, - BY G. H.

QOARTZ FIBERS.-BY PROFF. C. VER-

TO INVENTORS.一 Asesitanceg given in dif

OIL-LImE-ELEETRTMO
 OTMAGIC stemerne
 EXPERT MODEL MAKING Estagished

[XCELSIOR LANTERN, L the headlight of education.
With PATENT ARGAND LAMP, double concentric wick, or with oxy.-hyd. gas jet.
Our MULTIFOOAL PATENT L.ENS makes the picture any desired size.
Send for $\mathrm{Catalog}^{2}$ to J J. W. QUEEN \& CO PHILADELPHIA, PA.

NOW READY!

a NEW AND VALUABLE B00K,

12,000 Receipts. 650 Pages. Price $\$ 5$. This splendid work contains a careful compila-
tion of the most useful Receipts and heplies given in the Notes and Queries of correspondents as published in the Scientific American during the
past fifty years: together with many valuable and
important important additions.
Over Twelve
Thousand selected receipts are here collected; nearly every branch of the use-
ful arts being represented. It tis by far the most fore the public.
The work may be regarded as the product of the studiesand rracticalexperience of the ablest chem-
its and workers in all parts of the world ; the information given being of the higherst value ar-
ranged and condensed in concise form convenient Al ready use. turing industries, will here be found answered.
Instructions for working many different processes in the arts are given.
It it impossible within the limits of a prospectus
to give more than an outline of a few features of so extensive a work. Paper we have nearly 250 re-
Under the head of Po
ceipts, embracing how to make papier maché; how ceipts, embracing how to make papier mache; how
to make paper water proof and fire proof ; how to
make sandpaper, emery paper, tracing paper, transfer paper, carbon paper, parchment paper,
colored paper. razor strop paper, paper for doing
up cutlery, silverware up cutlery, silverware; how to make luminous
paper, photograph papers. ete.
Under the head of Inks wee harly 450 re-
ceipts, including the finest and best writing inks ceipder incluhead of inks we have nearly finest and best writing inks
of all incors, rawing inks, uminous inks, invi-
ole inco rold river ink rome nins whit inss of all colors, drawing inks, ruminous inks, invisi-
bbe inks, gold, siver and bronze inks, white inks;
directions for removal of inks; restoration of faded inks, etc.
Under the head of Alloys over 700 receipts are
given, covering a vast amount of valuable inforgiven, covering a vast amount of
mation.
Of Cements we have sowe 600 receipts, which
include almost every known adhesive preparaticn, include almost every known adhesive preparaticn,
and the modes of use.
How to make Rubber Stamps forms the subject How to make Rubber Stamps forms the subject
of a most valuable practical article. in which the
complete process is described in such clear and excomplete process in described in such clear and exlegrn the art. For Lacquers there are 120 receipts: Electro-Me
tallurgy, lis receips; Brozing, 127 receipts; Pho recenpts. the head of Etching there are 55 receipts,
Under
embracing practical directions for the production of engravings and printing plates of drawings.
Pants. Pigments and Varnishes furish over
800 receipts, and include everything worth knowing on those subjects.
Under the head of Cleansing over 500 receipts are given, the scope being very broad, embracing
the removal of spots and stains from all sorts of objects and materials, bleaching of fabrics,
cleaning funniture clothing, glass, leather, metalas,
and the restoration and preservation of all kinds and the restoration and preservation of ail kinds
of objects and materials.
In Cosmetics and Perfumery some 500 receipts are given.
Those who are engaged in any branch of industry
probably will find in this book much that is of practical value in their respective callings. Thusiness Those who are in search of independent business
of employment, relating to the home manufacture
of sarticles, will find in it hundreds or most or employment, es, will find in it hundreds
of sample articeestions.
excellent suggest
MUNN \& CO., Publishers, SOIENTIFIO AMERIOAN OFFICE

361 Broadway, New Y ork.

HENRY CAREYBAIRD \& CO. Indust rial Publishers, Booksellers, and Importor © $\$ 10$ WaInut St., Philadelphia, Pa., U. S. A.
 POPULAR AND INSTRUCTIVE BOOKS
 FOR ENCINEERS AND FIREMEN.
 By STEPHEN ROPER, Engineer.

 Embracing all branches of Steam Engineering. Theyare the only books of the kind ever published in this country, and are so plain that any engineer or firema can eamil understand them.

EDWARDMEEKS, Publisher, No. 1012 Walnut Street, Philadelphia, Pa.

mechanical

 DRAWING AF HEME
 TRADES UNIONS. THE TENDENCY

The Hy made for seneral use combining health, cleanininess and
 SPDTEEENS PATENT SPBING SCREW THREAD CILIPERS

PAINMAKERS IN THE

WHAT ELECTRICITY IS.-BY W. W

 VANDUZENPAT PUL OILER
 DEAF MESS \& HEAA MOISES CURED TO BUSINESS MEN
The value of the SCIENTIFIC Ambrican as an adver-
tising medium cannot be overestimated. Its circulation is many times greater than that of any similar journal
now published. It goes into all the States and Territorooms of the world. A business man wants something more than to see his advertisement in a printed news-
paper. He wants circulation. This he has when he adhe advertising agent influence lecting a list of publications in which you decide it is fo our interest to advertise. This is frequently done for the papers having a small circulation than is allowed on For rates see top of first column of this page or ad Tress MUNN \& CO., Publishers.

361 Broadway, New York.

DHINSMIORE.

The world's greatest Typewriter", A trial will prove it Highest Standard, Simplicity, Strength, Durability, High Speed, Easy Action, Permanent Alignment, Standard Keyboard and Most Convenient
FOR CATALOGUE AND TESTIMONIALS APPLY TO
DENSMORE TYPEWRITER CO., 202 BROADWAY, NEW YORK.

ELECTRICITY
 ELECTRICAL SUPPLIES STANLEY \& PATTERSON ectrical House Furnishings,

Mechanical Help for Inventors There is nothing like a first-class ma chine shop, organized for and adapted to miscellaneous jobs, to carry out an in-
ventor's ideas and make the most of ventor's ideas and ma
them. Primer to send. hem. Primer to send.

A NEW EDITION OF The Sriantign Amanican Refrarance Bools This attractive little book, of 150 pages, embraces a great variety of information useful for reference in the
house and workshop. It contains the last Census of the U. S. by states and counties, and has the area of square
miles in each state and territory, with tables of the occupations and the number engaged in each kind of busi-
nessj lists of cities having 10.000 inhabitants; all the nessistics beeng compilied from the 1890 census; the
statistion
United States patent laws, with directions how obtain patents secure
and copyrights.

and copyrights. The book co

power of steam engines, and other information useful and varied. The matter crowded between the covers any other source. Price 25 Cents. May be had of newsmen or by mail.

MIEININ de CO. Publishers of Scientific American,
361 Broadway, New Y

aNO SKILLED ENGINGHR: THE SHIPMAN AUTOMATIC STEAM ENGINE. KEROSENE OIL FUEL.
No extra Insura
$1,2,4,6$ and 8 HORSE POWER No extra Insurance. Efficient, Economical, Durable. SHIPMANENGINEGOMPANY, 200 SUMMER STREET, BOSTON MASS.

BOOKS.

MIUIVIN de CO.
Publishers "Scientific American," No. 361 BROADWAY, NEW YORK.

ELECTRO MOTOR. SIMPLE. HOW TO

 Inclusive. State price per volume. Capt. A. de Khotin-
sky, Mariboro, Mass.

 Figures any and all kinds of ex-
amples
aperated by keys amples. operated by kevs.
saves 60 per cent of time
sures ancuracy and rilieves al.
mental strain. Why don't you
 $=2=2=2=$

SCIENTIFIC AMERICAN SUPPLLE-
 INV ESTMENT SECURITIEs,
All classes; industrial, real estate and hith class specu-
lative propertiest correspondene eolicited
J. A. GOODWIN, Negotiator, P. O. Box 2 2538, Boston.
\qquad YOUR NUMUNYPED
 FERTILIZER MACHINERY, Crushers, Mills, Mixers, Digesters, Dryers, et Complete Fertilizer Works designed, erected and started.
C. H. DEMPWOLF \& CO., York, Pa. To Inventore-

Send for circular. FELT \& TARRANT,
52-66 Illini 52-66 Illinois St. Chicago.

Hivis For either Natural Gas or Petrole

PROPOSALS.

CTAREIS

 POWER WRINGESOL LOB HOSIERY AND

CEO. P. CLARK

 DOUBLE END WRENCHES.

The BILLINGS \& SPENCER CO., Hartford, Conn. ALUMINUM. AN INTERESTING DE-

BERIIN BIUE

VITRIFIED BRIGK.

An indestructible product, impervious to water and
acidse, for room linings and flooring. Especially useful
inder NEW YORK BRICK AND PAVING CO., SYRACUSE, N. Y.
 HAVE YOU READ Experimental

Sobience?

1892

Mode

Remington

 TypewriterFor Ease and Convenience of Operation，Simplicity of Design and Durability of Construction，is
UNEQUAエ円。 SEND FOR CATALOGUE．

WYCKOFF，SEAMANS \＆BENEDICT， 327 Broadway，N．Y．
KODAKS
$\$ 6.00$ to $\$ 65.00$ ．
The New Model folding Kodak has glass plate attachment，Barker shutter， sliding front，automatic register，and can be used as a hand or tripod camera．

EASTMAN KODAK CO．
Send for Circulars．Rochester，N．Y．
MECHANICS＇TOOLS．

THE SMITH PREMIER TYPEWRITER

Important limprovements． The Most Aur the Essential Features greatly perfected All type cleaned in 10 seconds without soiling the hands
The Smith Promier Yyoerriter Co，Syracuse，N．Y．，U．S．A．
Send for Cataloque．

FIRE－PROOF．Easily applied by anyone．Send forSamples and Descriptive Prico Llote H．W．JOHNS MANUFACTURING COMPANY，
H．W．Johns＇Asbestos Fire and Water－Proof Sheathing，Building Felt，Bteam Packings， 87 MAIDEN LANE，NEW YORK， JERSEY CITY，CHICAGO，PHILADELPHIG，BOSTON，ATLAMTA，LONDOK，

BUILDERS OF HIGH GRADE BOATS．

 We Build Everything，from a Canoe to a Steam Yacht．
Complete Stock Oars，Sweeps and Boat Trimmings．
We Make all Sizes Pipe Boilers and Engines Cedar Row Boats from $\$ 2.5$ upward．
Vapor and Sieam SEND 10c．FOR COMPLETE CATALOGUE． DAVIS BOAT AND OAR CO．，DETROIT，MICH．，U．S．A．

THE HUB FRICTION CLUTCH，

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 1877，No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephnnes in－ fringes the right secured to this Compan by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for suc unlawful use，and all the consequence thereof，and liable to suit therefor．

OYSTER CULTURE．－A VERY INTER esting deseription of the process of artiflial orster cul
ture as praticed at Arachon，France With 5 illus． MENT，No．H47 Price 10 cents．To be had at this
office and from ail newsdealers．

PATENT JACKET KETTLES

Plain or Porcelain Lined．
Tested to 100 lo．pressure．Send for Lists．
S．Front RROWA Reed
Red Streets，Philadelphia，Pa．

俈NTMENE

OPEN．

F The glorious days of open doors 4 here＇s health and joy all unco F here＇s health and joy all unco fined－s where everything is－as free as freedom－from the heights of exhilarated happiness hecannot
fall－from his Columbia Safety． fall－from his Columbia Safety All about Columbias free on application to
any Columbia agent，or sent by arail for
two two－cent stamp．Pope Mfg．Co．，

CENERAL ELECTRIC COMPANY

3 EDISON and THOMSON－HOUSTON SYSTEMS．

 INCANDESCENT and ARC LICHTINC． TRANSMEETSSIONOFAYSWER．Mininc by electricity．

Eq8 Electro vapor engine．

GAS OR GASOLINE FOR FUEL．

NO BOILER．NO FIICE．NO DANGER． NO ENGINEER．

Engine operated by spark
from small battery． You turn the Switch，

THOMAS KANE \＆CO．， Chicaco，ILL．

ESTAB1／ISHED 1846

The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Y ear，Including Postage．
Weekly-52 Numbers a Year.

This widely circulated and splendidy illustrated paper is published weekly．Every number contains six－ original engravings of new inventions and discoveries， representing Engineering Works．Steam Machinery，
New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity，Telegraphy，Photography，Archi－
tecture，Agriculture，Horticulture，Natural History， tecture，Agriculture，Horticulture，Natural History． etc．Complete list of patents each week．
Terms of Subscription．－One copy of the Scien－ postage prepaid，to any subscriber in the United States， Canada，or Mexico，on receipt of three dollars by the publishers；six months， 81.50 ；three months， 81.00 ．
Clubs．- Special rates for several names，and to Post Masters．Write for particulars．
The safest way to remit is by Postal Order，Draft，or Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed，
seldom goes astray，but is at the sender＇s risk．Address seldom goes astray，but is at the sender＇s risk．Address
all letters and make all orders．drafts，etc．，payable to MUNN \＆CO．， 361 Broadway，New York．
§rientific Gmericat §upplement This is a separate and distinct publication from THE every number containing sixteen large pages full of en－ gravings，many of which are taken from foreign papers
and accompanied with translated descriptions． SCIENTIFIC AMERICAN SUPPLEMENT is published week－ ly．and includes a very wide range of contents．It pre－
sents the most recent papers by eminent writers in all sents the most recent papers by eminent writers in all
the principal departments of Science and the Useful the principal departments of Science and the Useful History，Geography，Archæology．Astronomy Chemis－ try，Electricity，Light，Heat，Mechanical Engineering， Steam and Railway Engineering，Mining，Ship Building，
Marine Engineering，Photography，Technology，Manu－ Marine Engineering，Photography，Technology，Manu－
facturing Industries，Sanitary Engineering，Agriculture Horticulture，Domestic Economy，Biography，Medicine， etc．A vast amount of fresh and valuable information obtainable in no other publication． and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT．
Price for the SUPPLEMENT for the United States and Price for the SUPPLEMENT for the United States and
Canada， 85.00 a year；or one copy of the ScIENTIIIC AM－
 remit by postal order，express money order，or check，

MUNN \＆CO．， 361 Broadway，New York．
Guilding EXdition．
The SCientific American Architects＇and
Builders＇Edition is issued monthly． 82.50° a year． Single copies， 25 cents．Forty large quarto pages，equal large and splendid Magazine of Architecture，richly adorned with elegant plates in colors，and with other fine engravings；illustrating the most interesting examples of modern architectural construction and allied subjects． A special feature lat ant and best plans for private resi－ dences，city and country，including those of very mod－ erate cost as well as the more expensive．Drawings in
perspective and in color are given，together with fall perspective and in color are given，together with full
Plans，Specifleations，Sheets of Details，Estimates，etc． Plans，Specincations，sheeets of Details，Estimates．etc． have won for it the Largest Circulation of any
Architectural publication in the world．Sold by all news Architectural publication in the wo
dealers．$\$ 2.50 \mathrm{a}$ year．Remit to

MUNN \＆CO．，Publishers，
361 Broadway，New York．

PRINTING INKE

