gninutifir Gmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors poblished weekly at

No. 361 BROADWAY, NEW YORK.

- D. MUNN.

E. Beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

Buiding Edition.

Tify afest was to remit is by postal order, express money order
draft or bank check. Make all remitances pasabie to order of MUNN co. Readers are specially requested to notify the
any failure delay, or irregularity in receipt of papers.
NEW YORK, SATURDAY, OCTOBER 8, 1892.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 875.
For the Week Ending October 8, 1892. Price 10 cents. For sale by all newsdealers.

come separated and mismatched or lost, and when set
up ready for use, the furniture should resemble that in
common use to such an extent that the difference common use to such an extent that the difference
would not be readily noticeable.
Any good food product made in a new form and put
up in an attractive shape takes well, and large fortunes
Any good food product made in a new form and put
up in an attractive shape takes well, and large fortunes are being made on this class of inventions. Articles of wearing apparel, especially those used by ladies, if novel and pleasing, go without much urging. Pocket conveniences for ladies or gentlemen are apt to prove profitable; toys are an unending source of profit to the
inventor who strikes a vein of "taking" things, and so we might go on with an endless variety of subjects, great and small, which only await the wideawake in ventor.

JUPITER'S NEW MOON

The discovery of a new secondary planet is an event of no small importance in the world of astronomy The fifth moon of Jupiter came into the ken of the great Lick telescope a few days ago quite as unexpectedly as the two satellites of Mars swam into the field of the Washington telescope in 1877. Neither E. E. Barnard nor Asaph Hall was looking for new or
hitherto unseen worlds when they achieved immortality by a keenness of vision which enabled their practiced eyes and trained intellects to perceive what had escaped a host of other observers in the same field.
The discovery of the new Jovian satellite disturbs that nice geometrical progression which aided students to memorize the number of moons belonging to the solar system. Beginning with the earth and proceeding outwardly the account stood as follows: The earth one, Mars two, Jupiter four, Saturn eight, Uranus four, and Neptune one, total twenty. We might reasonably hope to find another satellite revolving around Neptune, thus perfecting the geometrical sequence, but the harmony of arrangement is utterly destroyed by the intrusion of Barnard's fifth satellite among Jupiter's moons.
Questions at once arise in the mind of the physicist What is the meaning of this little lunar worldfurniture should be connected so that they will not beurniture should be connected so that they will not be-

SUGGESTIONS FOR INVENTORS.

There are at least two classes of inventors which are
widely distinguished from each other in two importan widely distinguished from each other in two important ideas, and are able to make choice of a large number of valuable subjects for invention, and seldom or never seek suggestions. Inventors of the other class are ingenious, able to invent when they see a necessity for it, but have not an exhaustless fountain of eons ideas, and are, therefore, dependent upon what they
can obtain from others in the way of suggestions. For the latter class, who frequently inquire as to what in ventions are needed, or how to go about it to get this valuable information, the following hints are given.
An inventor who bas neither a large fortune nor ex haustless patience can make greater progress by work ing out small, simple inventions than by attempting great things. Here are a few
ventors of this class can work.
Bicycles, although brought to great perfection, seem to us to require sometbing neater and better than the endless chain and sprocket wheel for connecting the crank shaft and drive wheel. Rowboats, especially such as are used by sea-going vessels, ought to be provided with better means of propulsion than the ancient screw propelle substituting man power for steam power. The important part of this invention would lie in the motor to be operated by the men. It should be very simple and so constructed that, although unused and exposed to the weather, it would still be ready for instant use at any time. The same device
would apply to pleasure boats.
In these days apartment houses and flats are exten sively used for dwelling places, and where room is economized to such an extent, furniture should be the delivery of furniture to such places and for con venience in moving, house cleaning, storage, etc., the furniture should all be made so as to knock down and fold up flat or nearly so. The parts of each piece of
entrifugal force of 26,000 miles per hour at the Jovian equator and compare it with the centripetal force of the planet's prodigious attracting mass. The latter reatly preponderates, and if calculations are not at ault, the giant planet has been holding itself firmly ogether for countless ages, and the active little world iscovered by Barnard has been pursuing its rapid journey for a corresponding period of astronomical ons.
We can better appreciate the significance, or per haps we should say the insignificance, of this little moon by comparing it with the other Jovian satellites and our own moon. With the exception of the minute orbs moving around Mars, it is be smallest known satellite of the solar system. But there are many asteroids which rival it in diminutiveness; these, however, are only half as far away as the Jovian system, and are not dimmed by proximity to his overpowering luster Following is a table of Jupiter's moons-the outer four Following is a table of Jupiter's moons-the outer being copied from Young's "General Astronomy."

The second column gives the distance in miles from the center of the planet. As Jupiter has a diameter of 86,000 miles, Barnard's moon is only 70,000 miles from its surface, or less than one-third the distance of our moon from the earth. As our moon is 240,000 miles distant, has a diameter of 2,160 miles, and makes a siderial revolution in 27 days and 8 hours, it will be seen that it approximates the satellite Io in distance from its primary, and Europa in size. But note the great disparity in periods. While Io, a little further away than the moon, darts around Jupiter in 42 hours, our plodding satellite consumes 656 hours, or nearly sixteen times Io's period to accomplish a shorte journey.
This is striking evidence of the overwhelming mass f Jupiter as compared with its retinue of satellites. While it would require but 50 of our moons to equal he bulk of the earth, and 81 to equal its mass, it would equire 316 earths to equal the mass and 1,300 to equal the bulk of Jupiter. These Jovian moons, then, ar forced to move with high centrifugal velocity to over ome the attractive power of the mighty central mass. Comparing these moons with some of the other planets, we find that Calypso has nearly the same diameter as Mercury, and Ganymede would equal the bulk of Mars if its diameter were 650 miles greater. Titan, the sixth moon of Saturn, is the only other satellite which equals Ganymede in size.
Are these Jovian and Saturnian worlds, with nearly half the earth's diameter, inhabited? Probably not. They may have low forms of animal and vegetable life, but the conditions do not seem favorable for the development of intelligent beings. If they have oceans and atmospheres, their vast primaries would produce such enormous tides that scarcely any por tion of the habitable land would escape overflow. Of course we cannot even imagine the Barnard satellite to be the abode of life. A world only 100 miles or so in diameter parts with its heat very rapidly, and we may fairly assume that its surface is as cold as inter stellar space.
But suppose a human being were permitted to step pon the surface of Io, what a magnificent celestial panorama would be unrolled to his gaze! Mighty Jupiter, with an apparent diameter 43 times that of our moon, would cover an area of the starry heavens 0 degrees in diameter. He would hide the entire constellation of Orion at one time. Unlike the unchanging face of our dead moon, which reflects only 17 per cent of the sun's rays, his surface is covered with great masses of brilliant vapor swirling and rolling and heaving in billows of tremendous agitation and re lecting 62 per cent of the sun's rays. And in addition our balls, of lesser light, varying in size, and exhibit ng all the phases from slender crescents to full-orbed globes, would be seen gliding across the heavens in a maze of intricate and rapid motions.

DREDGING THE HONOLULU HARBOR BAR.
A matter of interest to engineers and of great value to commerce is the accomplishment of the work of cutting a channel 200 feet wide and 30 feet deep through the bar at the entrance of the harbor of Hon olulu, Hawaiian Islands.
the harbor is a deep, narrow channel, extending from the shore line out to the deep waters of the open sea-a distance of about 7,000 feet. It is flanked on both sides by extensive mud and sand flats, which are bounded on the seaward side by a line of coral reefs of irregular depth, upon which the surf is continually breaking. The width of the channel directly in front of the city is from 800 to 900 feet, gradually contracting to a width of about 450 feet at its mouth. The bar is situated near the outer end of the channel, is about 1,100 feet in length above the plane of 30 feet depth, and has on its apex a minimum depth of 21 feet at low l from 18 to 39 feet. The average rise of ordinary tides

