
a weekly journal of practical information, art, Sclence, mechanics, CHEMISTRy, and manufactures.
NEW York. SEPTEMBER 24. 1892.

§rinutific Amrrican.

ES'TABLISHED 1845.
MUNN \& CO., Editors and Proprietors. UBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.
 One copp, one e ear. for the U. S. Canada or Mexico
 MUNN \& CO. 361 Broadway, corner of Frauklin Street, New Yor The Scientific American Supplement
is a distinct paper from the SCIENTIFIC AMERICAN, THE SUPPLEMENT
is issued weekive Every number oontains 16 octavo pages, uniformin size

Bulding Editio

THE ARCBITECTS AYD BUILLERE EDITION OF THE SCIENTIFIC AMERICANis a large and splendid illustrated periodical, issued monthME ARI-
taining floor plans, perspective views, and sheets of constructive detais.
pertaining to modern architecture. Each number is iilustrated with

The safest way to remit is by postal order, express money order
to Readers are specially requested to notify the
cailure delas, or irregularity in receipt of papers.

NEW YORK, SATURDAY, SEPTEMBER 24, 1892.

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT NO. 873
For the Week Ending September 24, 1892.
Price 10 cents. For sale by all newsdealer I. A_{f}

 1v.

 Ef fluids with regard to the motion of vessels through water.-
Elaborate experimental apparatus and detailsof methot of use.
-14ilutrations
The Construction of a Sun Diai.

ADVANCE OF POLAR EXPLORATION.

The expedition of Lieut. Peary for the exploration of North Greenland, which left New York June 6 last year, accomplished one of the most successful Arctic trips ever made, and arrived at St. Johns, Newfoundland, on its return, September 11. The surprisingly short time in which the expedition was made, and its small cost, as compared with previous Arctic voyages, are especially notable, for it will be remembered that the explorers consisted only of Lieut. Peary and his wife, and five men, taken out by the Kite, a small and stanch steam vessel, and left, in August last, at a depot established on McCormick Bay, on the west coast of Greenland,* at $77^{\circ} 20^{\prime}$ north latitude.
The plan of Lieut. Peary's expedition was based upon the theory that nearly the whole interior of Greenland is covered with an uninterrupted ice cap, nearly or quite co-extensive with the land, and his idea was that the northern terminus of Greenland is not north of the 85th parallel of latitude. On this ice plateau he proposed to make his journey to the far north, traveling on skiers or Norwegian snow shoes, and dragging sledges, starting on the journey with the northward movement of the sun in the spring. His experience was entirely confirmatory of his previous conjectures During September and a part of October the little party made themselves as comfortable a home as possi ble in preparation for the cold and storms of the long Arctic night, at the beginning of which they had a supply of thirty-one reindeer, several seals and walrus, and hundreds of birds in the larder, with a warm snug house to shelter them. Natives came and set tled near them, and the winter passed rapidly, there being in the middle of February a furious rain storin during which the temperature rose to 40° Fah. During March and April the temperature ranged at 40° to 50° below zero, and up to May 15 the time was occupied in removing the inland ice supplies and equipment to the top of the ice cap at the head of McCormick Bay, at an elevation of some 4,000 feet.
The real start over the ice cap was made on May 15, Lieut. Peary and Astrup, the Norwegian, going to gether, and leaving the others of the party as supports in charge of the stores, etc. On May 24 , the edge o the great basin of the Humboldt Glacier, about 130 miles away, was reached. At midnight of May 31 Petermann Fiord was seen from the edge of its grea glacier feeder basin, and eight days later was seen the land at the head of St. George's Fiord, two weeks longer being required, owing to storms, fogs, crevasse and steep ice slopes, to weather the feeder basins of On St. George's and Sherard Osborne glacier system. explorers to the north and northeast and east, so that their course was deflected to the southeast, and on July 4, after three days' travel overland, a great bay was reached, opening out east and northeast, in lati tude $81^{\circ} 37^{\prime}$, longitude 24°. It was named Independ ence Bay, in honor of the day, and a great glacie flowing north into it was called Academy Glacier The land around the bay was red and brown in color almost entirely free of snow, and covered with glacia debris, flowers, insects, musk oxen and game being abundant. On July 9, the explorers started to return taking a more inland route, and in seven days wer struggling through snow and wrapped in snow clouds at an altitude of over 8,000 feet on the great interio plateau, from which they descended to the east of Humboldt Glacier. In seven days more, traveling a the rate of thirty miles a day, McCormick Bay wa reached, the explorers there meeting Prof. Heilprin and his party of the Greenland Relief Expedition sen out this year. The journey of 1,300 miles over a por end.
Perhaps the most unfortunate feature of the expedition was the loss, a few days later, of young John M Verhoeff, a promising mineralogist, who, in what wa intended as a brief geological trip, a few days befor the return, is supposed to have perished in one of th numerous glacier crevasses. In the words of Lieut Peary, "With the exception of this sad accident, th expedition has been throughout most fortunate, and has carried out almost to the letter the original pro gramme. The convergence of the Greenland coast above the seventy-seventh parallel, the deflection of the main divide to the northwest above the same par allel, the termination of the continental ice cap below Victoria Inlet, and the existence of large glaciers in al the great northern fiords are among the discoveries The expedition brings back much ethnological mate rial, including tents, costumes, sledges, kayaks and dogs of the northern Eskimo, meteorological and tidal observations, and a large number of photographs of natives, dwellings and costumes, and Arctic scen ery.
There seems to be but little room now for doubt as to the extent and direction of the Greenland coast, the northern limit of which was probably reached by Lockwood and Brainard in 1882, at $83^{\circ} 24^{\prime}$ north lati *Full particuisrs of the equipment of the expedition, and what it proNo. 808.
tude. When Peary started homeward from Independ ence Bay he was less than two hundred miles south east of this point, and had for four days paralleted the coast in a southeast direction. The unexplored region stretching to the pole from the north of Greenland, where the nearest approach to the earth's northern axis has been made, includes a distance of about 450 statute miles; from Petermann Land and Spitzbergen lying to the north of Europe, the distances to the pole are respectively about 500 and 560 miles, while toward Asia the Henrietta Islands, discovered by De Long, are some nine hundred miles distant from the pole The great Arctic Ocean, still practically unexplored stretches nearly two thousand miles from Spitzbergen to Alaska, and some fifteen hundred miles from Green land to New Siberia.

A New Bleaching Process

In the Faerber Zeitung a short description is given of a new bleaching medium for silk and wool, or fo fabrics containing those fibers. This new compound is sodium superoxide, which would probably be repre sented by the chemical formula $\mathrm{Na}_{2} \mathrm{O}_{2}$, and is analogous to barium and hydrogen peroxides in its proper ties. All these bodies bleach by virtue of thei containing an excess of oxygen ready to act upon any coloring matter with which it may come in contact The advantage which the new sodium superoxide ha over the old peroxides can be seen when the amoun of active oxygen contained in each is compared Hydrogen peroxide of the usual twelve volume strength contains 1.5 per cent of active oxygen barium peroxide contains 8 per cent, while the new sodium superoxide contains 20 per cent. It is sent out in the form of a white powder, readily soluble in water to a strongly alkaline solution, which, on add ng acids, forms a clear neutral liquid containing peroxide of hydrogen. This can be used for bleaching by the ordinary well known bleaching processes. A method of working consists in taking from 10 to 30 per cent of the sodium superoxide, adding 30 per cen of Epsom salts, the percentages being of the weigh of the fiber which is being bleached. For wool and ordinary silk, about 10 per cent will be required; for tussur silk, 30 per cent, on account of the darker color of the fiber. It takes from two to three hours to bleach with this new material, a much shorter tim than is required for peroxide of hydrogen, while the bleach is just as effective. It is rather hygroscopic and, therefore, has to be stored with great care, but with proper storage, it is very stable, being much superior in this respect to either hydrogen peroxide o barium peroxide. It is also said to be cheaper.

Photographic Frost Pictures.

A very effective background may be imparted, say the Photographic News, to photographic portraits b the following method, described by Mr. Franz Pfen nigberger in the Phot. Rundschau:
A concentrated solution of magnesium sulphate in beer is prepared, and the solution is boiled down for a short time, in order to have the saccharine principle of the beer, which serves as a cement, slightly in excess, The preparation, if stored in a well stoppered bottle keeps well. The photograph is then treated in the fol owing manner
The figure is masked in any convenient way, leaving the background open, and the latter is quickly coated by means of a broad brush with the solution. It is well to apply it a little thicker around the shoulders n order to produce there a more vigorous crystalliza ion. After all has been coated, the picture-which may be printed on any kind of siivered paper-is laid aside. After about ten minutes, the formation of crys tals will be completed, and, at the same time, the laye will be dry. The picture is then, by means of a pad of fine cotton, dusted with gilt bronze. If it is desired to strengthen some portions of the picture, it is only necessary to breathe upon them. Finally, the super fluous powder is carefully dusted off, when the portrait will appear on a bronzed ground covered with frost like crystals. To protect the picture from being in ured, it is necessary to coat it with matt varnish The gilt bronze may be replaced by any other suitable powder, and the crystallization may as well be applied o the film side of the negative instead of to the print In this case the crystalline forms will appear lightly on a darker ground, which also gives a good effect.

A New Anæsthetic

A new anæsthetic, similar to cocaine, has been found in eugenol-acetamide. By successive reactions eugeno is changed into eugenol-sodium, eugenol-acetic acid ethyl eugenol-acetate and eugenol-acetamide. Crysta lized from water, it forms lustrous scales; from alcoho delicate needles melting at $110^{\circ} \mathrm{C}$. Applied in the form of a fine powder, it produces local anæsthesia, without any caustic action; this effect, in conjunction with the strong antiseptic property of eugenol-acetic acid, speaks for the new compound securing a place in the treatment of wounds. Patents for its preparation have been applied for by the Faerbwerken.-Pharm Centralhalle; Am. Jour. Pharm

The volatilization of Quartz

It is not so very long ago, says Industries, when the fusion of quartz was considered to be a feat sufficient to warrant a good deal of interest being displayed in the mode of manufacture as well as in the electrical properties of the quartz fibers with which the name of
Mr. Boyes became so intimately associated. Now we Mr. Boyes became so intimately associated. Now we have gone a step farther, and soon not only the fusion
but the distillation, of quartz may become an every day occurrence. Dr. Seger, the well known German ceramic technologist and editor of the T'honindustrie Zeitung, has published a paper in which he claims to have volatilized quartz in an appreciable quantity. It is noteworthy that the furnace employed was by no means a particularly sensational instrument. One would have expected that for an undertaking of this kind the very latest variety of electric or oxygen injector furnace would have been used, but the furnace actually chosen was of an older and more conventiona type. It was of what is known as the Deville pattern, and consisted of a simple cylindrical sheet iron case lined with dead-burnt magnesite, leaving an interna cavity of about 5 inches diameter and 11 inches high. The magnesite lining only extended about two-thirds the length of the cylindrical casing, which was divided at that point by a perforated iron plate, forming the floor of the furnace proper, and supporting the cruci ble.
Below this division was the air chamber, into which a blast was injected by a side opening, and which served for the preliminary warming of the air before it came in contact with the burning fuel. The crucible was of carbon, and was inclosed in another of magnesite. The fuel used was retort carbon, and was kindled by a few fragments of burning charcoal. The quantity of the former used was 4 kilogrammes, which is cer tainly a very moderate expenditure. After the experi ment it was found that the quartz had undergone fusion, to judge by its appearance, and was noticeably smaller. When weighed it was found to have been reduced to the extent of over 40 per cent, the total mass taken being about $2 \cdot 5$ grammes, and the quantity that had disappeared amounting to 1.1 gramme. That this was in no sense due to accident was proved by repeat ing the experiment with another piece of quartz, with a precisely similar result. The comparative constancy of the loss might lead to the supposition that there was some limiting factor in the volatilization; but a second heating of the same test piece caused a further loss of about 15 per cent on the original weight, and on repeating the heating twice the piece of quartz vanished altogether.
It was observed in the course of the experiments that when the quartz was cooled rapidly it had an opaque, porcelain-like aspect, while when the cooling took place gradually the test piece was perfectly transparent. The results we have recorded are sufficiently startling, and if they had emanated from a less careful technologist than Dr. Seger, would be regarded with some doubt. Even as it is, one cannot help wishing that further details were forthcoming, to set at rest the supposition that some of the basic material with which the furnace was lined may have obtained access to the inner vessel, and by fluxing the silica have rendered it sufficiently fluid to soak into the substance of the crucible. The one way to clinch the matter is to ascertain whither the lost silica goes-in fact, to turn the volatilization into a true distillation. Who knows, when silica is fractionally distilled, of what homologous, but not identical, bodies it may not prove to be composed?

Electric Spark Photography.

Professor Vernon Boys lately brought together in the United Presbyterian Church Synod Hall, Edinburgh, a monster audience to hear his lecture, with experiments, on "Electric Spark Photography." In the course of the lecture Professor Boys explained that by the electric spark articles moving at the rate of 10,000 miles an hour can be photographed, and by the introduction of a revolving mirror a speed of 180,000
miles an hour can be coned with. The mirror mako miles an hour can be coped with. The mirror makis 1,024 turns every second, worked by electricity, which is equal to about 150 times as fast as a rifle bullet trav els. The whole photographic power of the spark is over in a time equal to the ten or eleven millionth part of a second, and it is during that incredibly brief space that the image is made on the sensitive plate.

Chloride of gold and sodium is recommended by Dr. Boubila as a remedy in progressive general paralysis, augmenting the chances of resistance and retarding further development during the period of decline. It is given morning and evening in doses of 2 milligrammes in a potion of 120 gm .; after fifteen days the dose is increased by 2 mgm., until 1 centi The treatment is then discontinued for a month, after The treatment is then discontinued for a month, after
which time it is resumed in the same manner. Under which time it is resumed in the same manner. Under
the conditions named these large doses are borne with out inconvenience.-Rev. Internat. de Bibl. Méd.; Am. Jour. Pharm.

Bristol and the Chicago Exposition.
The people of the United States have designed their great exposition to illustrate their four centuries of development. They will make much of the discovery period of the new world and of the great pioneers who found two continents. Columbus will be first in their hearts, their memories, and their acclamations. And
this will be entirely proper. His qualities were great this will be entirely proper. His qualities were great as his achievements, and he is one the world may that the people of Bristol propose to commemorate at Chicago the doings of the Cabots.
It is their opinion that the Columbian Expositio might have a Valhalla, and no individual god be any the less. They recall with pride that their ancient city was first in westward exploration; that their ancestors money fitted out the first expeditions from England to the new world; that their fellow citizens were the de visers and leaders of the voyages. They say that the part of the Cabots in reserving to the Anglo-Saxon race the northern continent has hardly been adequately noticed in history; and that they wish to quately noticed in history; and that fhey wish to motives of national and municipal pride, the striking influence exercised by their forefathers over the future of the new world.
The two Cabot voyages, those of 1496 and 1497, hav had comparatively little notice from chroniclers for several reasons. In the first place, to minds influenced by enthusiastic accounts of the doings of Columbus, the expeditions seemed barren of results. Again, there is confusion between Cabot father and Cabot son, and there is not the sharp identity necessary to make a hero. Sebastian, notwithstanding a long and brilliant career, passed alternately in the service of England and Spain, died unnoticed in the reign of Philip and
Mary, and the voluminous records and careful maps Mary, and the voluminous records and careful maps
that were the pride of his declining days disappeared without a trace. Had accident or chicanery left to us the diaries and records of Sebastian, there is little reason to doubt but that his niche in the temple of fame would have been forever held inviolate. Amid all the doubts and uncertainties of his almost unchronicled career we may discern one splendid fact, one momentous circumstance, fraught with results to the human race not to be computed by the finite mind and far-reaching even beyond the bounds of time.
Sebastian Cabot pre-empted North America for th Anglo-Saxons. In a map drawn in the year 1500 by Juan de la Coso, friend and hydrographer to Columbus, the northeast coast is starred with five English flags, thus marking the Spanish admission of English rights, in virtue of prior discovery. Other considera tions doubtless to some extent operated in preventing Spain and Portugal from attempting to extend their dominion over the north, but the primary fact was hat England had established herself there. She was tacitly left to the free enjoyment of her territory. It is
idle to speculate on what might have been the history of North America if Spain or Portugal had obtained oothold there. It is probable, however, within bound o say that if Chicago were speaking spanish to-day to celebrate at the coming festival.
The people lof Bristol for over a year have been working at a plan for representing in a simple yet adequate way the share of their ancestors in the na tional glory of America. At a representative meeting held some months ago in the hall of the Society of Merchant Venturers (Sebastian Cabot was the first governor of the parent society in London), the whole matter was placed in the hands of a representative committee of citizens, who in turn delegated their authority to a sub-committee composed of those who by antiquarian studies were qualified to conduct such a matter intelligently. This sub-committee has held many meetings during the past few months, and has finally matured its plans. It decided to reproduce in Chicago some characteristic Bristol structure, and to display therein such illustrative memorials of antiquity as might be available.
After a careful inspection of such buildings as came at all within the purview of the plan, the final decision rested upon two medixval rooms in the build ing now in the occupation of Messrs. Franklyn, Mor gan \& Davey. The building in times past was the resi dence of merchant princes, and these two chambers, the drawing room and the ante room, have been carefully preserved through the vicissitudes of time and the changes of fortune. They are paneled throughout in oak, elaborately carved and ornamented, decorated with rich friezes, and embellished with a profusion of
chaste detail. The larger room contains a chimney piece of florid design, reaching to the ceiling, this atter being of an ornate workmanship in keeping with the general artistic opulence of the chamber. It is intended to reproduce these two rooms, exactly as they stand, in oak, with the carving done by hand. The eproductions will, in fact, be equal in artistic excellence to their models, and there will be nothing of sham or papier mache about them. It is proposed that they should be displayed as a separate structure, and the exterior will be in complete accord as to period
and workmanship with the interior. The rooms, in themselves no mean display, will be used for the receiving of objects of antiquity associated with and illustrative of the discovery and colonial periods of Ameri can history.
It is to be regretted, of course, that the meager ecords left of the lives of the Cabots do not afford means for reproducing objects directly associated with them; but it is not even known in what house they lived, though their parish is recorded. The house that will be reproduced is believed to look down upon the very spot in the Avon whence their little vessel, the Matthew, weighed anchor for the unknown world but more of personal association than this it has been ound impossible to compass. Nor is it possible to ob tain articles for the exhibition that have a direct re lation with the explorers. Articles having even an apocryphal association with them are lacking. Under these circumstances the Bristolians have done the next best thing. They are collecting objects of authentic history connected with the times; and they have a great mass of material to select from which hall illustrate the close relations of their ancient city with the beginning and the development of the new world.
Their plan involves the expenditure of som 3,0002 . They have had the co-operation of the Royal Commis sion, which has made them a grant of one-half this sum; and they are expecting further aid from the exhibition authorities at Chicago, to the extent of 5000. The remaining 1,0000 . they expect to raise among themselves; and this, in view of the purely sentimental nature of the display, and of the prevailng commercial depression, cannot but be regarded as handsome contribution to municipal pride. There can be no two opinions as to the interest that will attach itself to this exhibit; but we are not without some apprehension that the necessary funds will be subscribed, and in any case we think it would be a useless expenditure to provide a separate building for the installation of the memorial. The beautiful decorations would be in every way suitable for two of the rooms in the large building now being erected at Jackson Park for the headquarters of the Royal Commission, and if the memorial was installed there, a large expense would be saved the Bristol Committee and the Commission.-Engineering.

Locomotive Smoke Consumers.

As the result of experiments recently conducted the Pennsylvania lines west of Pittsburg are equipping their locomotives running, according to the Railway Review, into Chicago with a smoke-preventing device, which gives excellent satisfaction. The fire boxes are fitted with the usual steam jet entering both the front and rear, but instead of carrying air in with the jet which is taken from the atmosphere, pipes are carried to the ash pan, and the air taken from directly beneath the grates. The object of this is to avoid carrying comparatively cold air directly into the fire box, which must detract to some extent from the heat of the box. This will also lessen any tendency which the air might have to condense the steam and produce moisture in the fire box. A blower is placed in the smoke stack to operate in connection with the arrangement, the opening of one valve in the cab throwing them both into operation. It is the intention to use this attachment only within the city limits, where the smoke produced is a nuisance, and for this reason it is not made automatic, but is thrown in and out of operation by the use of a globe valve. The device has been carefully tested and appears to be effective in preventing the emission of equipped with it as fast as practicable

Amidol, a Nen Developer.

It can be used in a sulphite solution alonc, without any admixture of free alkali, and thus dissolved it is sufficiently permanent to serve as a one-solution developer, being diluted for use with three or four times its bulk of water immediately before employment. The stock solution in concentrated form is prepared as follows :
Distilled water... ..000 parts.
Sodium sulphite cryst.. 20.
Further diluted, and used with a small proportion of potassium bromide as a restrainer, the images can be made to appear with any required spied and the density modified merely by altering the strength of the developer; the resulting negatives seem uniformly clear and brilliant, without any trace of fog. It is easy to develop many plates in succession with the same solution. Amidol is specially suited for the development of gelantino-bromide prints.

Intensifying "Blue" Prints.

Captain Hemly recommends, for imparting greater intensity and brilliance to blue prints, an immersion in solution of a ferric salt-perchloride of iron for ex-ample-of a strength of five per cent, the prints afterward being well washed.

ART AND PHOTOGRAPHY.
Photography has sometimes been reproached for not being artistic, for presenting itself to the painter as a purely chemical process, and for giving merely mechanical reproductions of nature.
Such reproach may be just in a certain measure when it is a question of photographs taken by operators who are unskilled and devoid of taste; but when he operator himself possesses artistic feeling he knows the operator himself possesses a how to obtain true works of
art that would do credit to art that would do credit to
the most delicate painter. the most delicate painter.
Let us take as an example the pleasing photographs that we reproduce herewith, and that were taken by Mr. F. Boissonnas, of Geneva, and published in phototypy in the Bulletin of the Photo. Club, of Paris.
We give, in the picture, a fac-simile of them obtained fac-simile of them obtained
by engraving upon wood. We preserve the crescent shaped, lozenge shaped and circular backgrounds that the operator added and that produce an excellent effect.
The little girl represented in the different attitudes of soap bubble blowing is a massoap bubile blowing is a mas-
terpiece of gracefulness, and were not this a photograph, were not this a photograph,
the draughtsman of so charmthe draughtsman of so charm-
ing a picture would be con-gratulated.-La Nature.

Epidermin.

Dr. S. Kohn (Med.-Chirurgisches Centralblatt, Vienna, April 29, 1892) describes a base prepared by himself, and prepared by himself, and
named epidermin, which, he named epidermin, which, he
says, is especially valuable in says, is especially valuable in
dermatology. Epidermin is pure bees wax artificially compounded into a liniment with water and glycerin. It is a milky, half-fluid substance, which attains greater consistency upon being exposed to the air. Spread upon the skin, it dries in a few moskin, it dries in a few mo-
ments to a tenacious, elastic, and delicate pellicle. The glycerin contained in it causes it to retain these conditions. kent in glass bottles with glass stoppers and wide necks. He compares epidermin with other substances in use, showing its advantages, and gives fourteen preparations, in each of which it is the basis.-Ther. Gazette.

CARR'S IMPROVED COMBINATION SURFACE GAUGE.

 The combination surface gauge shown in the accompanying engravings is a decided advance over anything that has been accomplished in this direction before. In Fig. 2 is shown the swinging shaft which gives it a wider range than other gauges of the same height. After being set in any position it has a fine adjust-

BLOWING SOAP BUBBLES.-(FROM AN INSTANTANEOUS PHOTOGRAPH.)

ment of $1 / 4$ to $3 / 8$ inch, operated by the eccentric washer \quad pany, of New Haven, Conn., the well known makers of at the base of the shaft, which can be used without the Sweetland chuck, Porter bell clamp, cutting dies, disturbing in any way the rigidity of the spindle. Fig. and other well known specialties. An illustrated cir3 shows how this tool can be adjusted to the edge of cular and price list will be sent on application.
a planer bed, bolt slot or surface plate, to set work by or draw parallel lines.

It can also be adjusted to be used underneath work Enameling Prins without Gelatne or Conodon. using the top surface as a guide, and in laying out quest and alcohol in equal parts without fre quent agitation, and allow to stand two days; finally print in close contact with a

Fig. 4-AS A DEPTH GAUGE.

Fig. 1.

Fig. 3.

Fig. 6.-AS A SCRIBING BLOCK.

HOW HORSE TROTTING IMPROVES.

The recent lowering of the trotting record by Nancy Hanks to 2 minutes $5 / 4$ seconds is a remarkable verification of a mathematical law that has been followed to a fraction of a second for the past sixty-two years.

2 minutes 32 seconds leaves 2 minutes 8.73 seconds. In that year the record of Maud S. was taken at 2 minutes 8.75 seconds, thus agreeing with the calcula tion to within the fiftieth of a second. The record of Flora Temple in 1859 is equally close.

The greatest achievements of record breakers are given below in tabular form. By it the correctness of this law will be readily noted in the close agreement of the two columns headed "observed time" and "computed time."

Year.	Horse.Observed time.	Computed time.
1830	Burster.2-3200	2-3\%00
1844	Lady Sutfolk. . . 2 -26:50	2-2608
1859	Flora Temple... ${ }^{-3-1975}$	2-1973
1867	Dexter...........2-17: ${ }^{\text {a }}$	2-16"35
1874	Goldsmıth Maid.2-1400	2-13"39
1880	Mand S..........2-10775	2-10 85
1885	Maud S.......... 2-8\%5	2-873
1892	Nancy Hanks.... 2-5\%5	2-5.77

In studying the above table it will be interesting to note the intervals between the record breaking years. Since 1867 a remarkable smashing of records has occurred, and a record has been made in close accord with

This law is that the time to trot a mile is reducing at the precise rate of 11-26 of a second a year.
The accompanying chart illustrates how such a mathematical law is ascertained. The paper is first ruled with horizontal and vertical lines. The former are numbered consecutively with seconds from three minutes downward, and the latter are numbered with the years from the time when horse trotting commenced. Each noteworthy lowering of the record was next indicated on the chart, by placing dots at the intersections of the vertical lines indicating the years with the horizontal lines denoting the speeds Only each tenth line is left on the diagram as printed to avoid too much crowding. The zigzag line in the upper corner joins the dots placed as above described. The mathematical law is ascertained by trying various curved and straight lines until the one is found which most closely follows the same general direction as the broken line. As the broken line makes an abrupt turn at 1830, and since trotting did not become an established sport until that year, it will be best to confine attention to that part of the line extending from that year forward. To it a straight line comes closer than any other, and such a line can be drawn so as to come within half a second of it at six points, beginning with Burster's record in 1830 and ending with the record made by Nancy Hanks last week. Such a line will represent the rate of improvement of 11 seconds in 26 years, and will show when extended for ward what trotting speeds to expect in the future.
The trotting time for any year can be computed from this ratio as follows:
The difference is taken between the year for which it is desired to predict or verify the trotting speed and the year 1830, when the law began. This is multiplied

harlan's brick machine.

by the fraction 11-26, and the product is the numbe of seconds to bededucted from the time, $2-32$, made by Burster. Thus if it is desired to compare the record made in 1885 with this law, the difference between this year and 1830 , that is 55 , is multiplied by $11-26$, or what is the same thing, multiplied by 11 and divided by 26 . This gives $23 \cdot 27$ seconds, which deducted from
he above law of improvement every five to seven years. From these considerations a reduction of the record to 2 minutes and 3 or 4 seconds is to be expected about the end of the century and a reaching of the 2 minute gait in the year 1906. The innovations of the pneumatic sulky and the kite-shaped track however do not leave records that are now being made on the same footing with those by which the above law was deduced, and better records than are above indicated may therefore be looked for with these helps.
That the time required to trot a mile should go right on diminishing at the precise rate of 11 seconds n 26 years, and show not the slightest sign of dimin shing, by which we might be able to observe that a limit is being approached, is indeed remarkable and unexpected, but the facts clearly show it, and we are left with no other guide to the future than they afford This guide shows that in the year 2047 the mile minute gait will be reached, and that 297 years hence it will be in order to race trotters with the lightning's flash.
S. W. Balch.

AN IMPROVED BRICK MACHINE.

The illustration represents an easily operated ma chine, patented by Mr. Howard Harlan, by which clay may be rapidly and firmly pressed into the form of bricks, which will be automatically ejected from the moulds. The driving shaft extends through a cen tral vertical post, on the top of which is held a re voluble table having on its under side flanges extend ing into the path of an arm fixed to the driving shaft, by which the table is turned a fourth of a revolution t each stroke. The moulds are arranged around the table near its edge, being readily attached or removed, and in each mould is a vertically movable plunger hav ing a stem projecting downward through the table. A vertically movable post, sliding in a guide bar, is operated by an eccentric on the drive shaft to press upward upon the stem of the plunger with a limited movement, sufficient to compress a brick, and simul taneously with this motion a vertically movable frame, operated by cams on the drive shaft, causes a cove mould to force the clay in the mould downward, so that it will be squeezed between the cover mould and the plunger.
One-fourth way farther around the table is an eject ing mechanism consisting of a sliding frame, actuated by a cam on a countershaft, and carrying a post adapted to raise the plunger to the top of the mould, whereby a brick will be ejected after compression at the next movement of the table. A greater or less number of moulds may be arranged on the table as desired, the machine being shown with four moulds, and the arm on the driving shaft striking a flange to turn the table a quarter way around at each revolution The clay placed in the moulds is thus successively compressed and ejected therefrom.
Further information relative to this improvement may be obtained of Mr. George R. McCrea, of Renovo Penn.

Caterpillars in Pill Boxes.

Mr. E. B. Boulton, F.R.S., fascinated the Biology Section of the British Association with the results of his experiments on caterpillars hatching in pill boxes. The pepper moth was the particular insect which he experimented on, and his experiments showthat if you take an egg of one of these and grow it in a gilded pill box you get a golden caterpillar. Again, if the pill box be black, so is the caterpillar ; while a mixed environment produced a muddled creature, just as in man the environment of the slum or the palace pretty much de-

A WATCHMAN'S ELECTRIC TIME RECORDER.
An improved apparatus designed to afford a simple and effective watchman's time check, to indicate the presence or absence of the watchman at a given point at certain intervals of time, is shown in the accompanying illustration, and has been patented by Mr. Emanuel R. Heyser, of Leon, Mexico. Electric con tact strips are secured to the dial of a clock at opposite edges to cover a space equal to five minutes of time by the clock, the strips being in the path of the minute hand, and having binding posts connected with one pole of a battery, the other pole of which is connected pole of a battery, the other pole of which is connected
with the electro-magnetic check mechanism, electrically connected with the movement of the clock. This check mechanism, in a casing beneath the clock, has a ratchet wheel on the side of which are char acters corresponding with those on a clock dial, and intermediate projections for the half hours. 'The armature lever, which is prolonged above the armature, carries a hooked pawl to engage the ratchet wheel, and carries also an angled arm, the end of which is and carries also an angled an, the end of which is acters on the side of the wheel. A printing bar adapted to press upon this platen is shown in the small view, the bar being drawn out by its knob against the pressure of a spring, which throws the bar inward when the knob is released. A forked arm carries an ink ribbon in front of the wheel, opposite the characters, and in front of the ink ribbon is carried a strip of paper taken from a reel at one end of the casing and wound upon a reel at the opposite end the latter reel being operated by means of spur and ratchet wheel connections to draw the paper along in onnection with the pulling of the printing bar. A spring normally holds the armature lever against a limit screw, but when the minute hand of the clock

HEYSER'S WATCHMAN'S ELECTRIC TIME CHECK.
makes a contact with one of the contact strips on the dial, which occurs every half hour, the circuit of the battery is closed and the magnet in the casing is energized, drawing forward the armature, and moving the ratchet wheel one notch, bringing a dot or char acter opposite the printing bar, and moving the platen to position between the bar and the paper strip. By the pulling of the knob at any time in the five minutes while the circuit of the battery is thus closed, a corresponding record will be made upon the strip, but when the circuit is broken the armature lever is thrown back and the platen carried out of the path of the printing bar, so that no record can be made and the paper strip will show a neglect of duty on the part of the watchman.

Progress of the Telephone.

In Census Bulletin No. 196 is presented a preliminary report on operating telephone companies for the year ended December 31, 1890, prepared by Mr. Allen R. Foote, expert special agent for the collection of statistics of the electrical industries, under direction of Mr. Frank R. Williams, in charge of the collection of statistics relating to all branches of manufactures.
This report is deemed of special interest because of the great advance shown in this industry and the enormous increase developed in the demand for telephone service.

	1880	1890
Number of companies, firms, and persons reporting.	148	53
Total investment	\$14,605,787	\$72,341,736
Gross earnings	3,098,081	16,404,583
Gross expenses	2,373,703	11,143,871
Net earnings.	724,378	5,260,712
Number of exchanges..	437	1,241
Number of telephones and transmitters.	108,638	467,356
Miles of wire	34,305	240,412
Number of employes	3,338	8,645
Number of subscribers................	48,414	227,357
Number of conversations		453,200,000

©rarespondence.

Snakes Within Snakes

To the Editor of the Scientific American.
The following is respectfully contributed to the columns of the Scientific American, if th8ught worthy :
Ernest Welch and A. J. Johnson, twó young men of veracity, were burning logs for us a few days ago near a stock water pond. On turning an old log from its bed there was seen what appeared to be our common vertically striped water snake, the individual being $31 / 2$ feet long and of full habit. Instantly one of the boys cut her in two with an ax. Now they noticed a number of young snakes, some of them cut in twain by the ax, issuing from the sections at the point of severance. Their curiosity being aroused, they took from the carcass, killed, adjusted, and counted forty-five young snakes, 9 inches long. They speedily drifted as investigators into the opinion that snakes were viviparous. They called me to the spot. I took the snakes on a board to the village doctor, where the opinion was rendered that they were undoubtedly oviparous. The doctor said that they had sprung from eggs hatched outside the body, and may have been taken in for purposes of warmth, mechanical protection, or alimentation. But it seems that they would soon smother in the stomach. Then the question arises: Is the snake in some of its varieties a marsupial? Has it a venti lated pouch?
Fillmore, Ind., August 30, 1892.

An Earthquake in Bermuda.

To the Editor of the Scientific American:
A curious phenomenon occurred here on Aug. 23, at about 10 minutes to 5 A . M. A solution of it would be most interesting, especially as every one seems to have a different theory.
I will begin by describing Bermuda's geographical position, formation, etc., well known to every scientific man.
Bermuda is of coral formation, about 22 miles in length and varying in breadth from 3 miles to 1 mile ; very low, the greatest height above sea level being not more than 200 feet. Our nearest point of land is Cape Hatteras, distant about 650 miles. We are nearly opposite Charleston, S. C., and about 770 miles southeast of New York. We are supposed to belong ing from South America to Europe, of which we represent the only peak (or portion of peak, sufficient resent the only peak (or portion of peak, sufficient
for the coral insect to build on) above water. The for the coral insect to build on) above water. The
soundings around us show some of the greatest depths of the ocean, somewhere about 5 miles. We are also very cavernous, in some parts to such an extent that cuttings in roads frequently have to be filled in every few feet with hard substances, etc.
There is evidence of there once being a severe earthquake here, about, I should say, 1400 (as near as one can come by dates corroborating the testimony of discoverers later on, about Columbus' time), nearly hal of the island having subsided in a very remarkable way. Every now and then traces of cedar stumps (the native wood) and other well known roots of our island are dredged up by the large steam dredges used at H. M. dockyard, and layers of soil in which these stumps, etc., were embedded proving beyond all doubt the foregoing statement.
Earthquake shocks have been felt here pretty often, averaging about four or five within the last ten years. I have felt three or four myself, of a very gentle, undulatory type, with little rumbling.

Having stated these brief outlines, I will now de scribe the occurrence in a few words.
At the time above mentioned (10 minutes to $5 \mathrm{~A} . \mathrm{M}$.), about sunrise, a great many people were awakened and pretty well scared and jolted by a heavy explosion, described differently by different persons, followed by a severe vibrating of houses and contents,
and then could be heard the distant rumblings, by and then could be heard the distant rumblings, by some, as the shock (?) passed away. By the majority of people three distinct reports or explosions wer heard.

A remarkable feature was its almost local character the center of the island, a space of about 8 or 10 miles (right across), feeling it most keenly
We are connected with Halifax, N. S., by cable, but no news has been received of any volcanic eruption or earthquake anywhere in our vicinity.
The disturbance seemed to be immediately under us, and in one place was sufficiently heavy to crack a chimney.

Various conjectures are of course afloat, but the two only reasonable ones seem to be that it was either an earthquake or a meteoric stone falling in the vicinity in the sea. But several people were out of doors a the time, and although not quite full light, were not
sensible of any glare, etc., which one would naturally suppose to follow that of an aerolite, and the size must have been enormous, in fact, unprecedented. Some
imagined at the time that one of our large powder magazines had exploded.
One gentleman, who has experienced various kinds of shocks in the West Indies, declares it to be an earth quake of a severe type, i. e., vertical (all shocks felt here before have been undulatory)
Can you help us in any way? About a week before this event we had a severe gale from the southeast.
We have plenty of evidence as to the rocking of the arth and several as to that of the sea in the harbor I would ask, are earthquakes ever accompanied, pre ceded or followed by a noise similar to an explosion?
A. C. C. Jones.

Colonial Post Office, Hamilton, Bermuda

August 30, 1892.

American Potash.

This was formerly an article, says Mr. J. U. Lloyd, of much importance, and was exported from the country in large amounts. The New England States were a first the principal producers of potash, Boston, where it is now of no consequence, once being the great export market. With the destruction of the forests the source of supply receded from the East, progressing into the West, where, until a comparatively recent period, more or less was manufactured, but at present only a few stray casks drift into the hands of whole sale druggists or commission merchants. However, contrary to general opinion, the manufacture of potash is still carried on in some parts of the Northwest on a considerable scale. In the neighborhood of the forest of northern Michigan, and in portions of the provinces of Canada, this substance is still systematically manufactured the year through. By "potash" is meant a substance containing 80 to 95 per cent of carbonate and hydrate of potash, the balance being made up of sulphate of potash, chlorides of sodium and potassium, and insoluble matter. About 70 per cent KOH is the standard which it is possible to obtain, but Mr. Lloyd found the average of many casks of first sorts came found the average of many casks of first sorts came
out at 58.4 per cent, and dealers would not guarantee more than 60 per cent, as they had not control of the "salting" which is practiced by makers. However, a strong protest improved matters during the last twelve
months. A total of $504,138 \mathrm{lb}$. averaged 73.5 per cent months. A total of $504,138 \mathrm{lb}$. averaged 73.5 per cent
KOH , three car loads averaging over 75 per cent KOH while one car load averaged over 80 per cent. This is evidence that a standard of 70 per cent KOH is attainable. For generations it has been customary to add more or less salt to the contents of the potash kettle just before it is "melted down," and sometimes lime is also added. This not only increases the yield and helps to make it cake, but it improves its appearance. Good potash is generally opaque, of a dull gray, slate or bluish color, of ten streaked with red or greenish stains. It deliquesces on exposure to the air, and becomes slowly pasty. It is mostly (unless much lime is present) soluble in water. Sometimes it presents a whitish appearance in the center of the cake, and occasionally is honeycombed. This description will generally average 70 per cent and upward KOH. That which is largely mixed with salt is usually crystalline often nearly white, pearly, and translucent, or of a beautiful delicate pink, and seems to be the most
highly valued by those who judge only from aphighly val
pearances.

A Church-going Horse.
Dr. T. B. Redding, of Newcastle, Ind., writing to Science, says :
Can a horse reason, or does he act solely from in stinct? Many believe that he has reason and intelligence; others attribute all his acts to instinct.
I have a horse, now nineteen years old, that I have owned thirteen years. Soon after I commenced using him, I noticed that on Sundays, whenever I drove him down town, he strongly insisted, by pulling on the lines, on going to the church where I had been in the habit of attending. I watched this disposition con stantly after that, and on every Sunday since, when driven out, he has continued to do the same thing, and if left to his own will invariably goes to the church and stops. I thought it possible that he was guided by the ringing of the church bells, and tested him by driving him down town at all hours of the day, before and after the ringing of the bells; but the result was the same. He invariably insisted on going to church on that day, no matter how often I drove him down town
In going to my office he never offers to go to the church except on Sunday, but on that day he invari ably begins to turn south to the street leading to the church, from fifty to a hundred feet before reaching the crossing, and, if not checked, turns into the street and hurries to the church. He has kept this up for at least twelve years. He never does this on any other day than Sunday. In bad weather or in good weather it is the same.
He knows the meaning of many words, such as office, post office, school house, mill, farm, cemetery, church apple, corn, grass, water, and many others. The fact that he knows the meaning of these words, or at least
attaches a meaning to them, I have tested many times
in many ways. When his corn is about used up, if I speak of it to him and say, "Deck, your corn is out you must go to the mill," even before starting from home, he turns in at the mill as I go by, and goes up to the office door, where 1 have been in the habit of ordering his food.
He also knows a number of people by name and where they reside; and if told to stop at the residence of one of them, naming him, he will do so, without any guiding.

These are only a few of the many evidences of his intelligence. Hundreds of examples might be given showing his knowledge and intelligence, and that he gives very close attention to and understands what is said to him.
Do not these facts strongly indicate that the horse has more than mere instinct, that he reasons; that out of the storehouse of his knowledge and experience he forms conclusions, thoughts, purposes, and plans? He understands certain symbols, such as words; he keep the run of time and knows uniformly when Sunday comes, for he has not made a mistake in this respec for more than twelve years past ; he uses many and di verse means for making his wants known.
Instinct is supposed to imply inherited knowledge of objects and relations in respect to which it is exercised and will usually, if not always, operate where there is no experience to guide. But this horse's knowledge, in these respects, has not been inherited, but is acquired Does the fact of his observing Sunday imply a moral ense? Why does he seek to go to the church on that day? It has been said that animals do reasonable things without having the gift of reason; that they do things involving distant foresight without having any knowledge of the future; that they work for that which is to be without seeing or feeling anything be yond what is ; that they enjoy, but do not understand that reason works upon and through them, but is not in them. The facts that I have related and observed make me greatly doubt many of these statements. I find it hard to sharply define the limits between in sinct and reason. The facts that I have related indi cate reason, intelligence, motives, and the formulation of plans, methods, and schemes for carrying out pre conceived purposes. Some of the acts, at least, indi cate pure reason based upon former and remembered sensations, perceptions, and knowledge, and the pur pose to gratify merely mental desires.
What motives does this horse have for going to church every Sunday, even at a sacrifice sometimes? It is not for rest, it is not shelter, it is not feed, it is not company, it is not to gratify any merely physical want for all these things he has elsewhere every day. It is not purely an intellectual or moral want that he seeks to gratify? He stands near the church door, hear much of the exercises, especially the singing, and wil remain, almost without motion, whether tied or not till the services are over, and I am ready to go home But it cannot be for the mere speaking and singing that he hears there, for he often hears speaking, singing, concerts, the Salvation Army, and music of various kinds while he stands tied at the office on the public square; but none of these take the place of his church going.

The Alphabet in writing and Printing. The proportionate use of letters, as given in "Brewer's "Dictionary of Phrase and Fable," is as follows :
E.

1,000	H.	540	F.	.236	V. 120
770	R.	. 528	W.	190	K......... 88
728		392	Y.		J......... 55
704	L.	. 360			Q......... 50
680	U	. 296		168	X..... ... 46
672		. 280		. 158	Z......... 22
670		...272			

Consonants, 5,977 ; vowels, 3,400
The proportion for initial letters is as follows:

.1,194	M........... 439	w.......... 272	
937	F...... 388	G...... 266	Q......... 58
804 377	U........... 228	K.... 47
574	E........ ... 340	0.......... . 206	
571	H.... 308	V........... 172	Z.
505	L........ 298	N... 153	
463	R........... 291		

For the New York City Cable Roads.
A visit a few daýs ago to the extensive iron works of the Walker Manufacturing Company, Cleveland, afforded a sight, says the Street Railway Review, which has never before been seen. More than 165 car loads of finished work, for the New York cable roads, is piled up in great stacks, to such an extent as to occupy all the available room even in these great shops. Imagine a line of completed work over 300 feet long, 25 feet wide, and in places 30 feet high, stowed away as compactly as possible, and including sections of immense 40 rope drive wheels, differential rims, pillow blocks weighing several tons each, shafting in 30 foot sections and 16 inches diameter, shaft couplers, bed frames large enough to furnish a foundation for a good sized house, sheares, and a great variety of other parts. It is the largest amount of cable machinery ever massed in one factory at one time, and is a most interesting sight. The nicety of finish and the accu. racy of adjustment are wonderful.

THE AUSTIN, TEXAS, DAM.

There is being built across the Colorado River at Austin, the capital of the State of Texas, a massive granite dam, the object of which is to furnish the city with water works and electric light, and to also furnish manufacturing enterprises with cheap water power. This wonderful structure is being built by the citizens of Austin, who at a public election voted to bond the city in the sum of $\$ 1,400,000$ for this purpose The dam is 1,200 feet in length, and 60 feet high. It is 16 feet thick at the top, increasing downward and spreading out in a broad toe or apron, making its extreme width at the bottom 50 feet. The body of the dam is of limestone rock. The upstream face, down stream face, and toe are being made of granite. The capping will also be made of granite in as large blocks as can be handled, worked to regular shape. The entire work is being laid in hydraulic cement. The structure is being built to allow a depth of 16 feet of water on its crest, and the abutments on either end will go to that height. At one end of the dam the na tural rock goes far above this. The other end is occu pied by an artificial bulkhead, called the gate house, containing the sluices for drawing off the water. The wheels will be some two or three hundred yards from the dam, and the canal, which is being excavated in rock, will also be that length. The function of the gatehouse at the entrance to the canal is to enable the water to be shut out in case of repairs, and to prevent an overflow in time of floods. The water will be drawn from the penstocks through iron pipes, pass the wheels, fall into the wheel pits, and be discharged through underground races into the river. There will be three water wheels, forty-five inches in diameter, each capable of giving 600 horse power on a head of 60 feet. The dam is situated two miles above the city and will create a lake twenty-five miles long and from one half to one-quarter of a mile in width. Mr. J. R. Friz zell is the chief engineer of this great work and T. J Fanning consulting engineer. During the flood season the amount of water that will flow over this dam, it is estimated, will be 200,000 to 250,000 cubic feet per second, which is nearly equal to the volumeat Niagar Falls, to wit, 275,000 cubic feet per second.
Our illustrations were made from photographs, for which and the above particulars we are indebted t Mr. W. W. Wilson.
In a report upon the work to the Austin!board, made last year by Consulting Engineer Fanning, he recom mended a modification of the profile of the dam, and remarks as follows:

Not for its length alone, or its great area of flow age, is the dam remarkable, for in France we observe three longer masonry dams, at Buzey, Chazilla, an Gros Bois, $1,545,1,759$, and 1,805 feet respectively, and in Wales the Vyrnwy dam, 1,350 feet long, the latter being for the storage reservoir of the Liverpool water supply. Not in height alone, for in France there are three dams, in Spain two, in Belgium one, and in the State of California one masonry dam exceeding 150 feet in height. There are fourteen other notabl masonry dams having heights exceeding 100 feet.
"But none of these dams are upon great rivers, and very few of them have any water pass over their crest. nel of the Colorado River, where it has 40,000 square nel of the Colorado River, where it has 40,000 square
miles of watershed, and will have floods of 200,000 to miles of watershed, and will have floods of 200,000 to
250,000 cubic feet of water per second to pass from its crest to its toe. Your citizens will appreciate your responsibility when they learn that no dam in exist ence has to pass a volume of water, in flood, even approximating this, through so great a height. Limestone and sandstone yield rapidly to the eroding force of falling water. The evidences of this are abundant in the canyon of the Niagara River below Niagara Falls; of the canyon of the Genesee River below Gene see Falls; of the Mississippi River below St. Anthony Falls; and here, of the Colorado River across Travis Co., as well as in the channels of numerous streams that flow down each of the Rocky Mountain slopes. Such evidences admonish us that this great flood must not be permitted to have sheer fall through so great a height and act with a destructive force such as has heretofore created canyons, but it must be made to glide down the slope of the dam and not be permitted to exert the force due to its velocity except at such distance below the dam that the foundations will not be endangered.
"The profile of the dam shown to me seemed not to fulfill the required conditions for passing the floods because of the slightly rounded or nearly angular form at the front of its crest. The diagram accompanying shows an advised modification of the profile of the upper part of the dam, which is better adapted to pass the flood in a gliding sheet down the face of the dam, and to deliver it to the lower level without a direct blow, and so that its velocity will be expended chiefly in a horizontal direction in the backwater be low the dam, and in eddies at a safc distance below the toe of the dam. The lower part of the down stream face of the dam has a curve of 31 feet radius, to which low water surface is tangent. The central part of this face has a batter of $4 \cdot 5$ inches to the foot. The
new profile at the top part, as suggested, completes the down stream face and crest of the dam with a curve of 20 feet radius, to which both the front batter and the surface of the pond at a level of the crest are both tangent, this curve ending on the crest at 5 feet from the upper angle of the crest. The upper angle of the crest is then rounded off with a smaller curve, and the entire front of the dam becomes a reversed curve of ogee form, the form of dam best of all adapted to pass a large volume of water through so great a height The top curve conforms nearly to the theoretical form of a medium flood stream. At higher flood stages there will be a tendency to vacuum under the curved stream immediately after it has passed the crest, which, to gether with the pressure of the atmosphere upon the top of the stream, will keep the full flood stream in close contact with the curved face of the dam, and cause even the highest flood to glide down the fall without shock upon the face of the dam or the sof rock foundation."

At the Rate of Ninety miles an Hour.
On September 1 the first train out from Buffalo on the Philadelphia and Reading road, according to watches held by the road's chief engineer and news paper men and guests, made the phenomenal run o nine miles in six minutes, a speed of ninety miles an hour. The train ran only as far as Rochester, seventy ne miles, where it made connections through to the East. It consisted of an engine and two heavy pa senger coaches.
Just east of Lancaster there is a long stretch of leve rack, and Engineer Randell pulled the throttle wide open and Chief Engineer Paul King and others held stop watches. They all showed the train had turned off nine miles in just six minutes.
All through to Rochester the run was phenomenally ast, and averaged a mile a minute. The road is on of the smoothest in this country, and the ninety-si pound steel rails are the heaviest made.
lightning full mounted screw plates.
A new set of screw plates, shown in the illustration has just been put on the market by the Wiley \& Russel

lightining full mounted screw plates.
Manufacturing Co., of Greenfield, Mass. These new plates have a stock of suitable size and weight for each die. The time and trouble of fitting and changing the dies each time is saved, and several sizes can be in use at the same. Each die may remain undisturbed in it place, ready for use until worn out in service, when nother may be substituted, the stock remaining good.

Softening water.

According to the Dyer and Calico Printer, there ar wo satisfactory methods for this purpose in use.
In the first process, hydrated baryta is placed in a filter press, which is traversed by the water to be purified, and produces an effluent showing only one or wo degrees of hardness. Hydrated baryta, which is now largely used in sugar refining, and is easy to proure, precipitates all the bases, lime, magnesia, etc., as well as the sulphuric and carbonic acids, so that the carbonates and sulphates of lime and magnesia, which are the most harmful substances, are precipitated by one treatment.
According to the other process, hydrated oxide of lead is employed instead of baryta, and precipitates the carbonates, sulphates, and chlorides. It is necessary to obtain the hydrated oxide of lead cheaply, and he following imethod has been devised for this purose
A solution of sodium nitrate is placed in a va divided into two compartments by a diaphragm Lead electrodes of large surface are placed in a solu tion, and a current from a dynamo is then passed through. The sodium nitrate is decomposed, caustic soda being formed in the negative compartment, and nitric acid at the positive pole, from which it dissolves a certain quantity of lead, forming lead nitrate. When he current has passed through the liquid for a certain into, the solutions are run from the two compartment agitator. The soda precipitates hydrated oxide of lead, and itself forms sodium nitrate; the solution is then filtered, and the nitrate solution again submitted to electrolysis. When the baryta or lead oxide is used up, it is replaced by freshly prepared oxides. It is stated that the use of the filter press can be avoided by employing plumbate of sodium (a solution of lead
oxide in caustic soda). The precipitate is simply allowed to settle out and the precipitated shows hardness of about two or three degrees.

Taffy Candy.

To four pounds of white sugar add one quart o water, place over a clear fire, stir till the sugar is dis olved, and boilit to the "crack;" when the sugar is a the "ball" add half a pound of good, sweet butter cut in pieces, stir until the butter is melted and thor oughly incorporated in it. Flavor with extract of vanilla or lemon, and, when cooked to the "crack" pour it upon a buttered marble slab, and, when cool nough, cut it into squares or tablets.

CREAM TAFFY.

Another very fine ?and rich taffy is made by boiling the sugar with milk, or part water and part cream instead of all water, using granulated sugar, and flav oring highly with extract of vanilla or lemon, the pro portions of ingredicnts being the same as the foregoing recipe. These taffies may be flavored with chocolate, coffee, ginger, rose, or any fruit juice, and may also be made of maple or light brown sugar, according to the taste of the maker. The original "taffy," or "toffie," is of English origin, and was invented by a lady of the ittle town of Everton. The lady sent a sample of it to the Queen at Windsor, who immediately adopted it as the confection best suited for the royal nursery This soon becoming known, all the ladies of the land mmediately wanted it for a similar purpose, end the lady inventor was overwhelmed with orders for it, and oon acquired a handsome competence from its sale. Taffy remains to this day the most popular English confection. The manner of its preparation is as fol lows: Put half a pound of thc best of sweet, fresh but ter into a bright, clean copper pan, place it upon a moderate fire, and, as soon as melted, add and stir in with a wooden spatula two pounds of brown sugar flavor it with the grated yellow rind of a fresh lemo and a pinch or two of powdered ginger, stir ail con stantly, but gently, until it is boiled to the "crack," then pour it upon a buttered marble slab, and, when sufficiently cool, cut it into squares, diamonds, or tab lets. Four ounces of sweet almonds, blanched, and cut into fillets, and then thoroughly dried in the stove號 very delicious kind of nougat.

BUTTER SCOTCH
is simply brown sugar and butter melted together flavored with extract of lemon, cooked to the " crack," and finished as taffy

TO PREVENT CANDIES FROM BECOMING STICKY
All boiled candies are liable to become sticky if ex posed to the action of the air. They should be kept in closely covered jars or boxes. The best plan, howver, that we know of to prevent candies, such as taffies peanut bar, walnut bar, clear candies, nougat, and al similar goods, from becoming sticky, which is caused by their absorbing the moisture of the atmosphere, that which we have always adopted when we desired to keep such articles for any length of time, and one hat has always proved satisfactory: When the can dies are first made, and cut into bars or pieces, varnish or cover each bar or article by means of a soft brush with a thin alcoholic solution of gum benzoin. Var nish them all over with this preparation and let them dry ; this forms a thin, impervious skin on them which effectually prevents the air from acting on th candies, besides it gives them a fine gloss. Benzoin has a fragrant odor with very little taste, and is easily pulverized ; it is a stimulant and expectorant, and is sometimes used in pectoral affections. This varnish may be made in advance and kept in a closely covere ar or bottle, for use at any time. It is also an exce ent varnish for glossing chocolate creams, etc.-Con fectioners' Journal.

Galvano Plating with Iron and Nickel
Mr. Capelle, the French chemist, recommends, ac cording to L'Industrie, the following solutions for plat ing with iron and nickel : Solution 1st, for iron.-Take equal parts of pure sulphate of iron and of the sulphate of iron and ammonia, to which is added 1 in 1,000 of sulphate of magnesia. The solution should have a strength of 18° to $20^{\circ} \mathrm{B}$. Solution 2d, for nickel.-To a solution of sulphate of nickel and ammonia, 2 per cent of sulphate of magnesia and 2 percent of boric acid are added, and the solution is then neutralized with car bonate of magnesia. The bath should have a strength of 8° to $10^{\circ} \mathrm{B}$.

Discovery of Another Salcllite of Jupiter.
The Lick Observatory announces that Prof. Barnard has added a fifth satellite to the four satellites of Jupiter discovered by Galileo on January 7, 1610. It was discovered by Barnard on September 9. Its period is about 12 hours and 36 minutes. Its distance from the planet center is about 112,400 miles. It was observed by him on September 10,20 hours 53 minutes and 20 seconds Greenwich mean time. Its magnitude is the thirteenth.

IMPROVED REAPING, THRASHING, AND BAGGING MACHINE.
 Necessity has truly been the mother of some of the

 greatest inventions. The requirements of the various fields of labor have been wonderful developers of man's ingenuity. This fact is most apparent in the vast harvest fields of North Dakota and California, where the sickle, and the cradle, and the flail, for so many centuries wielded by tillers of the soil, would not, even in the hands of an army of men, have been dequate to the requirements of the hour.Here may perhaps be found one of the most, if not the most, distinctly American invention ever made, in the combined reaping and thrashing machine. A few years ago, a progressive farmer in the vicinity of Merced, California, not satisfied with the slow pro gress of his header and thrasher when operated sepa rately, set his wits at work to devise a combination machine that would do the work of the two with one motor.
The result of his labor was a ponderous affair weigh ing eight tons and costing him $\$ 3,000$. It did not work satisfactorily, and he rebuilt it at an expense of $\$ 5,000$. This machine operated satisfactorily, but it required thirty powerful mules to push it. These mules were attached to a "push beam" fifty feet long and nearly as large as a ship's spar.

This cumbersome wachine was so arranged that it
the speed with which the New England farmers pre pare their grain for the market.
As the machine advances, the knives in the cutter bar clip off the heads of the stalks. These fall on a broad endless canvas belt that carries them to the cylinder or beater of the thrasher, which removes the grain from them. It drops through a series of sieves over and among which a rotating fan keeps a strong current of air moving. This removes the dust and chaff, and the grain pours in a steady stream through a trough into sacks which are sewed up and dropped on the ground to be picked up by teams that follow the thrashers. The work of each machine for the day, in an average field, is 950 sacks. Besides the mules it requires three men at a cost of two dollars a day each to operate each machine.

Butter and Checse Microbe

In its relations to the operations of the dairy, the study of bacteriology has only just begun; but already, in so far as the work of bacteria has been looked for where it might be expected, it has been found. It has for a long time been known that milk is a most efficient means of transporting infectious diseases; as we now know, this is because its chemical composition adapts it so well for the nourishment, while in transit, of the microbes which are the actual
any one species of bacterium as that one which exclusively produced the flavor of the one kind of cheese or of the other. The most he could establish was that the solubilizing of the curd was effected by one or more kinds, and the production of the flavor by one or more other kinds. A great amount of work remains to be done in this special field alone.-Pres. Caldwell's address, Am. Chem. Society.

Gold Waste of value.
When the American Waltham Watch Company noved to new quarters in May last, they left behind a snug fortune in the old buildings in Bond Street, this city, in the shape of minute particles of gold among the old rubbish and in the cracks of the pine flooring. The precious metal has been reclaimed, however, by the Irvington Smelting and Refining Works, at Irvington, N. J., in the form of bars of yellow gold. The total value of the gold reclaimed is between $\$ 65,000$ and $\$ 67,000$. The gold recovered must have accumulated since 1879 , when the factory was occupied by the firm. An average of 350 gold watch cases were turned out every day, each case weighing from twenty to fifty pennyweights. The gold was valued at eighty cents a pennyweight, and during a year it was estimated that more than $\$ 500,000$ worth of gold was used in the manufacture of watch cases The water in which the workmen washed their

IMPROVED REAPING, THRASHING, AND BAGGING MACHINE.
could be steered by a man whose title was "helmsman." It required four men besides the mules to operate the machine. . The cutting bar was twentytwo feet wide and the harvesting capacity of the machine was forty-eight and a half acres a day. The expense of operating this machine was, of course, large. The ideas brought out in the construction of this machine were valuable, and inventive minds at once set to work to improve upon them, which they have done so successfully that, as compared with the bulky Merced machine, there are now combined reapers and thrashers that are compactly built and which are easily operated by seventeen horses or mules.
The amount of work that one of these machines is capable of performing in a day will seem incredible to those persons who have never seen them in operation; and to those agriculturists who have never seen anything swifter in operation than the cradle and the horse power thrashing machine, the sight of thirty-five of these monsters working at one time in a single field of wheat, as is frequently the case on the great. Dal rymple farm in North Dakota, would be an astonish ing revelation
In one day of ten hours, seventeen mules will draw a combined reaper and thrasher twenty-tbree miles. The machine cuts 2.69 acres to the mile, which makes it capable of harvesting 61.87 acres a day. This would mean, in a year when the yield was fair, about 1,900 bushels of grain. This grain is garnered at the rate of 190 bushels an hour, or three and one-sixth bushels a minute, which is indeed a wonderful improvement in
this baneful character. Two illustrations must suf fice; cream must undergo a certain change, called its ripening, before butter of the best flavor can be produced from it. The microbe that causes this change has been, at least to a large extent, separated from many others in the milk, and it is claimed that the pure culture of it can be practiced on a large scale in the dairy; the directions for this operation were first given by Weigmann, in 1891, with seed to be obtained from some bacteriological institute, and the use of this pure culture product is specially recommended at cer tain seasons of the year when it is particularly difficul to make good butter
Again, in the ripening of cheese we should naturally look for the action of microbes. Several investiga tors have taken this matter up, but by far the most careful research was made by Adametz, and published in 1889. He identified twenty-eight species of bacteria in ripening cheese, and a very large number, 850,000 , in a gramme of a hard cheese (Emmenthal), and 5,600, 000 in a gramme of one of the soft cheeses. Two dis tinct kinds of change take place in the ripening of the cheese : the conversion of some of the insoluble casein of the fresh curd into a soluble and more digestibl form ; and second, the development of the flavor, by which one kind of cheese is distinguishable from another. If the curd is sterilized at the time when it is ready to be put away in the ripening room, and is there protected from infection, neither of these change takes place; the dependence on microbial co-operation is thus established. Adametz was not able to identify
hands, the mats on which they walked, and the towels with which they dried their hands and faces were carefully preserved, and at the end of every month were strained or burned and the residue afterward sinelted and refined. About $\$ 1,000$ a month was saved in this manner. Every summer parts of the flooring were taken up and smelted, and sometimes as much as $\$ 7,000$ was realized in this way.
To obtain the gold concealed in the cracks and revices in the old building, wagons were especially made to cart the old material from the factory to the smelting works, and every stick of wood in their premi ses was taken away. The planks of the floors were sawed into small pieces and then burned. The ashes were subjected to a chemical wash and the gold ex tracted.

The Volcano of Kilauea

Dr. Sereno E. Bishop, in the September number of the American Journal, gives an account of a recent visit to this remarkable mountain. He says: The conical form of Halemaumau has become very distinct, and is strongly appreciated in the ascent to it on nearly very side. The volcano will soon be very accessible for tourists. The Hilo road is perfectly graded and rolled, and will probably be completed in a few months, when the drive to Kilauea will be one wholly of pleas ure. The new hotel is a superior one, with lodging for 70 guests. Plans are in progress for improving th walk over the lava. The whole is now in the hands of an active and enterprising corporation.

THE STUDY OF THE STARS.

 A. e. beace.During the beautiful autumnal evenings few persons can look up into the starry dome of heaven without longing for a better acquaintance with the glowing.orbs whose radiance meets the view in every direction. If one turns to the star maps and books of astronomy, there will be found clearly laid down the history, names, colors, magnitudes, and positions of all the principal celestial bodies. But when, after studying the map, he goes out of doors, thinking to carry the chart in his mind, and easily to locate and recognize

Fig. 3.--LUMINOUS stars.
individual members of the glittering host, he is sadly disappointed. To his untrained eye the glorious stars appear the same as before, all mixed in inextricable confusion; and for him the map is of little value. Discouraged with the result of this firsteffort the majority of people abandon the matter and go through life with out ever gaining an insight into this the sublimest of the sciences, and never experience the inexpressible delights that attend on this grandest of studies.
To assist the amateur, whether old or young, in the study of astronomy, to render the opening lessons easy and attractive, and insensibly to interest his mind in this most ennobling subject, has led me to design the simple devices which I will now describe.
One form is as follows : I provide a sheet of card board, say two feet square, one side of which is covered with what is known as luminous paint. This remarkable substance has the quality of storing up the sunlight, and gradually delivering the same in the darkness. The paint is a chemical combination, chiefly of lime and sulphur. This luminous sheet I pin upon board a few small stars of different sizes, to represent stars of the first, second, third and fourth magnitudes, and provide and provide
each star with each star with

In use the luminous board is held as shown in the engraving, and on it are placed the paplaced the paper stars The holder of the board glances upward at the sky, notes the position of the stars, and then arranges their counterparts upon the luminous board, minous board, the glowing purple light of which, even in the darkest night, enables him to do this with the utmost ease and satisfaction. The counterfeit stars being thus aring thus arranged and fastened upon
the board, it the board, it
is taken inis taken in-
doors and comdoors and compared with the mapor chart, with which the selected group is instantly reinstantly recognized and
named. named
In this simple waythe forms, positions, and component stars of

THE STUDY OF THE STARS-THE LUMINOUS BOARD.

Blue Transparencies.
all the principal heavenly bodies may quickly be learned by any person without a teacher; and the study, while it instructs and impresses the mind, is, in the highest degree, fascinating.
A still simpler device, but in the same line, is to cut the stars out of the luminous cardboard, and then arrange and pin them as before described upon the surface of a wooden board, say two feet square, painted dead black. In this case the movable stars will appear luminous on the board, even in the darkest night. This is illustrated in Fig. 2. Instead of using ordinary pins, wire round staples bent up as shown in Fig. 3 will be found convenient; these are easily fingered and quickly placed as desired.
A light, convenient, non-warping star board may be made by gluing together, crosswise, three sheets of pine wood veneers. It is needless to occupy space in describing all the uses of this device for promoting the first lessons in star study. Suffice it to say that with the contrivance in hand, together with star maps, such as those that were prepared for the Scientific American by the late Richard A. Proctor, any person may soon become an intelligent student of the skies; and his knowledge may be greatly supplemented and extended if, at the same time, he provides himself with the admirable book, "Astronomy with an Opera Glass," by that most excellent observer and writer,

Fig. 2.-LUMINOUS STARS ON bLackboard

 Mr. Garrett P. Serviss This work, theProctor star maps, and other desirable astronomical |potash. After the print has again been well washed, publications, may be had at the Scientific American ${ }^{\text {at it allowed to dry, and then rendered transparent by }}$ office, book department.

Medical Uses of Carrier Pigeons and vaccination
At the last meeting of the Academie de Medecine Dr. Hervieux, who presides over the Public Vaccination Department at the headquarters of that learned body (vaccinations from the calf are performed gratuitously at the building in the Rue des Saints-Peres every Tuesday, Thursday, and Saturday) read a report by an army surgeon, M. Stroebel, on the transport of vaccine by carrier pigeons. It appears that one pigeon is capable of conveying in one journey from five to six tubes. The utility of this means of transport in times the reprey obvious, and one can imagine the joy of at the apparition of a flock of these swift vaccine carriers in a besieged town. placing it on a warm glass plate and treating it carefully with paraffin. The print is then framed between wo glass plates. The above-mentioned cyanotype paper, giving white lines on a blue ground, may be prepared by placing plain photographic paper in a solution of 24 grammes of ammonio-citrate of iron and 25 grammes of potassium ferricyanide in 150 c. c. of water, and then drying it in the dark.

Tetanus Due to Hypodermic Needle.

An instructive case is reported in a recent number of the British Medical Journal. A patient who had been in the habit of injecting morphine hypodermically into himself came under observation with symptoms of tetanus, which eventually resulted in death. A careful search revealed no other cause for the tetanus than a small inflamed and suppurating place near the shoulder, which had been caused by one of the hypodermic injections he had given himself. The lesson taught by this case of the importance of the observance of scrupulous cleanliness, even in so small an operation as a hypodermic injection, cannot be too strongly impressed, and the memory of the disastrous effects which may result frow $t h e$ neglect of proper precautions should be firmly fixed in the mind of every practitioner.

The ordinary hypodermic syringe is known in France as the seringue de Pravaz, the inPravaz, the instrument having been invented by Dr. Pravaz, of Lyons, whose death is now announced.

The Decay of Professional Photography.
Professional photography at the present time is admittedly not in a flourishing condition, and the causes commonly assigned for the depression include, of course, bad trade, severecompetition and the influence of the once despised but now potent amateur. We fear, however, that a photographer himself is more of ten the cause of his own unfortunate position than are those we have just named. No parent in his senses would dream of apprenticing a lad to an ordinary photographer nowadays, and the reason for this strikes us as being equally available as an explanation of the ordinary photographer's lamentations over the smallness of his profits. In the establishment of such a man a clever, intelligent lad of fifteen or sixteen might pick up in the course of a year or so all that wasto be learnt there, and probably a little more than his principal was competent to teach him
For what is to be learnt in ninety-nine studios out of a hundred beyond lighting, posing, exposure, and development? The retouching, as one may gather from our advertisement columns, is generally put out; the printing is more frequently executed by trade printers than not, and in cases to the contrary is chiefly confined to one or, at most, two processes. Again, photographers who do their own enlargements are remarkably few; and, indeed, to sum up the average photographer's business, it may safely be laid down that most, if not all, the work and its numerous varieties is "put out." In such cases, which, we believe, form the majority, we submit that the apprenticeship system is bound to fail on account of the inability of the principal to impart any but a limited range of practical knowledge to the youth he is supposed to teach.
But this is not all. The mere taking of the negative is often, if not exactly, "put out," at least "farmed; " that is, supposing a portrait photographer to have an order for a landscape embracing a house, a piece of architecture pure and simple, an interior, or an objet d'art, ete., to photograph, he probably prefers not to undertake it himself, but to employ another photographer, who makes a specialty of such kinds of work, to produce the negatives for him. The growth of specialism in modern photography leaves the average professional photographer much in the position of a mere commercialist, with just the necessary superficial technical knowledge that will enable him to conduct his business with more or less success.
Of course, there are exceptions to the picture we are drawing, but we do not think they are sufficiently numerous to shake the accuracy of the outline. The race of photographers who collodionized and sensitized their own plates, sensitized their own papers, retouched their own negatives, did their own printing and enlargements, and in short carried on in their own establishments most, if not all, the work which to-day is "given out," does not seem likely to be perpetuated among the professionals of the present time. $-B r$. Jour.

Potschke's New Process of Photo-Sculptur

It is now about thirty years since Villeme, of Paris, introduced his method of photo-sculpture, which it was hoped would revolutionize the plastic arts much in the same way that photography has revolutionized the graphic arts; but the practical failure arose from several circumstances, among which may be mentioned the difficulty of cutting the clay block by the guidance of the silhouettes, and the fact that some of the
views taken by the circle of cameras must of necessity be so lighted as not to give clear outlines which could be accurately followed. The new process of Potschke seems to promise well. The model is placed on a turntable, and as a means of providing register for the various photographic silhouettes to be produced, a vertical rod accurately corresponding with the axis of the turntable is attached to the roof of the apartment, and terminates close to the top of the model or sitter A thin horizontal ring also surrounds the model. A series of silhouette photographs being now taken with the turntable in the required positions, prints are made on stout paper, preferably the blue or cyanofer paper. These are cut out so as to make a set of guiding sil houettes in paper, which silhouettes are stiffened by repeated treatments with silicate of soda. A foot or base is now provided, in the middle of which is erected a cylindrical or axial rod corresponding to the gauge rod referred to as depending from the ceiling over the head of the model. Guided by the impression of the
gauge rod, the silhouettes are cut vertically, a width gauge rod, the silhouettes are cut vertically, a width
corresponding to the gauge rod being removed, and they are then mounted on the axial rod attached to the foot, wedge-shaped gaps being left between. A horizontal ring corresponding to that photographed gives another register and point of support for the silhouettes, and also gives a means of measuring the angles so as to insure the correct position of each sil houette. In this way a kind of skeleton of the bust is built up in radial silhouettes attached to the vertical or axial rod. The next step is to fill the spaces be-
tween the silhouettes with clay or other plastic material, and, when the wedge-shaped gaps are nearly filled, the horizontal ring may be removed. By now
modeling the clay to the outlines of the silhouettes, a sufficient approximation to the bust is obtained for handing over to the skilled work person who must finish it. The model thus obtained can be moulded and cast from by usual methods. It is easy to see
how the method here indicated may be subject to how the method here indicated may be subject to
wide modifications under various circumstances. It wide modifications under various circumstances. It
would seem perhaps easier and more satisfactory to cut out the guiding templets in sheet metal, and solder them to the central rod, than to use paper.Photographic Work.

The Great Jetty Works at the Mouth of the

The project under which the work of improving the mouth of the Columbia River is being carried on was adopted in 1884. It contemplates providing a channel across the Columbia River bar, having a depth of 30 feet at mean low tide. This is to be effected by concentrating the water flowing over the bar, and increas ing the resultant current to such a degree as to procure the desired depth. Any work for accomplishing this end must be more or less tentative in its character The work which is now in progress is the building of a low-tide jetty, starting from Fort Stevens, on the south cape, and extending in a westerly direction, with a slight curve to the south, out across Clatsop spit, for a distance of $41 / 2$ miles, more or less, as circumstances may require, to a point about three miles south of Cape Disappointment. The jetty is constructed of stone, resting upon a mattress foundation about 40 feet wide and from $21 / 2$ to 5 feet thick. The stone extends to the level of four feet above mean low water. The material thus far has been placed in position from a jetty tramway supported upon piles driven along the line of the jetty and 24 feet above the level of low tide.
The tramway is a double track, three foot gauge railThe tramway is a double track, three foot gauge rail-
road, the tracks being 13 feet between centers and 28 feet above the plane of mean low water. The material is landed at the wharf, and transported to place over these tracks, which are built in advance of the main works. Captain T. W. Symons, United States Engineers, in his lastest report concerning this great under taking, which has just been made public, says :

Before the commencement of this work, the channel or channels over this bar were very capricious in location and variable in depth. The depths were usu-
ally from 19 to 21 feet, and the channels variedin numally from 19 to 21 feet, and the channels varied in number from one to three, and in location through nearly 180 degrees from Cape Disappointment to Point Adams.
"The results of the jetty already constructed are very marked in the building up of Clatsop spit, and in the effects produced by the concentration of water upon the bar. There is now a straight out-and-in channel, having a width of one-fourth mile, with a depth nowhere less than 29 feet, and for a width of one mile a depth of 27 feet. At the end of last fiscal year the shortest distance from the 30 foot curve on the outside to the same on the inside of the bar was 3,000 feet. This distance is now reduced to 1,200 feet. These depths refer to the plane of the mean of the lower low waters.
"Since the commencement of the work in 1884 there has been used in the construction of the tramway and its repairs 377,660 lineal feet of piling and $2,223,580$ feet B. M. of lumber. The cost of the tramway has been approximately $\$ 6.50$ per lineal foot. There has been used 18,414 cords of fascines. The mattress work in place has cost $\$ 4.50$ per lineal foot.
"Under the contract, dated January 22, 1891, in force with Joseph E. Smith, 150,500 tons of rock were receiv ed during the year. The total amount of rock receiven from all sources since the commencement of the work is 478,890 tons.
" About 25,000 tons of this rock was used in securing the root of the jetty, and in protecting the buildings and railway between that point and the wharf. The balance has been distributed along the line of the
jetty. From the end of the jetty back for a distance f 2,500 feet the rock is raised to a level of 4 feet above datum, for 13,000 feet it is at datum, for 5,200 feet it will average 4 feet above, for the remaining distance it of the jetty it was found to be necessary to pile the rock well up toward the high water line, to protect the pil ng of the tramway from the heavy drift brought down by the river during the winter and spring. At places was a decided tendency during the last of the flood tides and the first of the ebb for the water to flow across the jetty in great volume and with considerable
velocity. Where this was the case the sand would not deposit in the vicinity, but would be scoured out, in creasing the area of the waterway. At these places rock was dumped in until this action ceased. It was found that when the jetty reached the height of about feet above the mean level of low water the flow, durng both ebb and flow, was under control. The sand was deposited to the level of low water and above-in
many instances on both sides of the jetty. "Under the contract entered into wides
"Under the contract entered into with Richard
Hoyt, April $20,1891,1,768$ cords of fascines and 3,528
poles were received. These were used in making the "The piles used under the last 1,000 feet of the jetty. " The piles used during the year were purchased in open market at the rate of $91 / 2$ cents per lineal foot, delivered at Astoria. The lumber was purchased in open market also, at $\$ 10$ per M, delivered at Fort Stevens.

It is estimated that $\$ 525,000$ will be required to finish this work. Should $\$ 350,000$ of this be appropriated for the fiscal year ending June 30, 1893, it is recommended that the balance, $\$ 175,000$, be made available for the fiscal year ending June 30, 1894.
"The original estimate for the construction of this work was $\$ 3,710,000$. Of this amount there has already been appropriated, to June 30, 1892, $\$ 1,337,500$. There was a balance on hand at that date of $\$ 24,331.12$, exclu sive of outstanding liabilities.

It is proposed to expend this and future sums appropriated in raising the jetty to a height of 4 feet above low water, in those places that are not yet at that height, and in farther strengthening the jetty. There is now about 13,000 feet that is at the level of mean low water. Experience has shown that it will not besafe to leavethe jetty at this height. The first half of the tides flowing across the jetty, either ebb or flood, take the sand with them and scour channels. Especially is this the case where there are low place in the jetty. It is only by building up the jetty that this cross flow can be prevented. About 4 feet above low water seems to be the height required. The jetty toward the outer end will need to be protected with large rocks to resist heavy seas."-Pacific Lumber man.

International Congress of Experimental

At the recent meeting in London, the president read part of a report of the census of hallucinations which since the last meeting in 1889, has been actively car ried on in England and to some extent in the United States, France, Germany, Russia and Brazil. To the question, "Have you ever, while in good health, and believing yourself to be awake, seen a figure of a person or an inanimate object, or heard a voice which in your view was not referable to any external physical cause ?" 17,000 answers were received in England. It appears that about one in ten of persons taken atrandom had experienced hallucinations of some kind, the apparitions being mostly those of living people or unrecognized human figures. A remarkable class was that of collective apparitions, the same hallucinations being simultaneously perceived by two or more differ ent people, although in some of these instances there seemed to be a possibility of verbal suggestion from one to another. But, after all deductions for possible sources of error, there was a strong presumption against chance coincidence, if ordinary accuracy on the part of informants was to be assumed.
Mrs. Sidgwick read a paper on Thought Transfer nce. Numerous experiments had been made, and the successful percipients had been seven in number and were generally hypnotized. One percipient had suc ceeded in the experiments with numbers, when divided from the agent by a closed door and a distance of abou seventeen feet, and the ideas had reached the percipient, as visual impressions recurred with closed eyes, or as hallucinations on a card or paper, and in other ways. Attention was drawn to the fact that only some persons are capable of acting as agents or percipients, and that there is variation in this peculiar ability in the same person on different days, and even at different times on the same day.

The Disgrace of Pinkertonism.

There has been much said and written in the last four weeks about the disgrace of Pinkertonism. Reference has been had in this verdict to the character of the Pinkerton system and of the Pinkerton guards But there is another disgrace that ought to be empha sized in this connection-the disgrace of a condition o things that requires the importation of dare-devil men to secure rights which local authorities do not guar antee. It is disgraceful that men cannot be secured in the possession of their own property, disgraceful that men cannot go to work except at the risk of their lives in an establishment from which others have voluntarily withdrawn. It would be well for those who join in the general cry against Pinkertonism to have a serious thought or two about the disgraces that are the occasion of Pinkertonism.-Iron Trade Review.

The New Star in Auriga again visible.
Professor Edward S. Hilden telegraphsfrom the Lick Observatory that the new star that appeared in the constellation Auriga last February, and which faded to about the fifteenth magnitude, so that it appeared very faint through the big telescope, was ob served again recently by Professors Schaeberle and Campbell and himself. He says the star has increased in brightness in a surprising manner, being now often and one half magnitude. The present observations, he says, will enable astronomers to get something lik a complete history of the remarkable changes to which the star has been subjected.

A FIELD GLASS CAMERA

A camera which, when folded, has the appearance of a field glass case with shoulder strap attached, is shown a field glass case with shoulder strap attached, is shown
in closed and open position in the accompanying illustration, the view of the case when open, asit would be used in taking pictures, having parts broken away to show the interior. By pushing in small pins on each side a spring catch is released, and the camera is thrown into wide open position for the reception of a plate holder at the rear. The lens is in the narrow front end of the case, and is covered by a shutter, operated in a simple manner to give instantaneous exposures, there being also a sliding cover which may be used for time exposures. The finder is at one side of the lens, and may be turned so that the sight may be used to take pictures both ways of the plate, either vertically or horizontally. The plates are $31 / 4$ by 414 inches in size, each holder carrying two plates. A number of the holders may be conveniently carried in the pocket. The case being opened, the plate holder is introduced, the shutter set, and the flexible slide withdrawn, as shown in the view, when it is only necessary further to press the finger on the button near the objective. The whole process is but the work of a moment, and, the instrument having a first class objective, an excellent picture can ordinarily be obtained. This camera seems to be an almost ideal hand apparatus, as it has the appearance simply of a glass such as travelers frequently carry. The frame is of metal, but is quite light, and is covered with yellow or black leather, the whole construction being designed to render the apparatus equally useful in all climates, thus especially fitting it for the use of explorers and tourists.

This camera is of foreign manufacture and is imported and introduced here by Mr. L. Manasse, of No. 88 Madison Street, Chicago.

Relics from Denmark.
The peat bogs of Jutland, Denmark, have been yielding some very remarkable symbolic records in the shape of plates of silver, hammered out with figures of men, women and animals. The eye holes of the figures are now empty, but had evi dently been filled with glass. One of the plates, which is nearly seventeen inches long, shows warriors with helmets and other ornaments One figure is a god with a wheel at his side, and on another are two elephants. A third shows a horned ed in a sitting posture with his god in a sitting posture with hi have apparently nothing to do with northern mythology, as was first supposed. The whole find has now reached the Danish National Museum, and we see that these pieces belong to the godlore of the Gallic peoples. The god with the wheel for instance, is the Gallic sun god The whole is the work of a Gallic artist at that early period when the Roman and Gallic peoples first came in contact. Allow ing time for these things to wander so far north, the date would seem to be, as regards Denmark, the first century before Christ. Other things belonging to thi Gallic group have been found previously in this coun try. The total weight of precious metal hitherto ex humed is about twenty Danish rounds.-Amer. Anti quarian.

Dangers of Ammonia.

by prof. w. k burton

The author says in Photographic Work: I protest against the very strong ammonia made particularly for photographic work, because of its highly danger ous nature, because such ammonia is always of very uncertain strength a little time after the bottle ha been opened, on account of its great volatileness, and because there is so slight an advantage in this ex ceeding concentration.
The following accident has twice happened with the writer : A bottle of ammonia was opened. For a few seconds nothing took place, but then suddenly ebullition began at the bottom of the liquid, and three quar ters of the contents of the bottle were violently dis charged against the ceiling of the room. The force of discharge may be judged when I say that in one case the room was thirteen feet high and the bottle was on the floor when it was opened.
In neither of these two cases was there any seriou result. In one (the bottle holding half a gallon), the occupants of the house had to take to the street, and could not enter the house again for some half hour or so.
I have, however, recently heard of a case where the contents of a bottle of ammonia discharged themselve as I have described, and a part of the liquid being blown into the eye of the operator, he totally lost the use of that organ.

In England this very strong ammonia is bad enough but in climates where the weather is sometimes hot it is much worse. With the thermometer above $90^{\circ} \mathrm{F}$. in the shade I would much rather handle nitro-glycerin than " 0.88 ammonia."
And how small is the gain from this extreme concen tration! Why was it ever considered necessary to have a stronger ammonia than the liquor ammoniæ fortior of the British Pharmacopœia? The specific gravity of this ammonia is 0.891 , it contains only about 10 pe cent less actual ammonia than " 088 ammonia," yet is far less dangerous.
I should, however, strongly advise the adoption of ammonia of 0.9 specific gravity as a standard for pho tographic purposes. Such a liquid contains about 20 per cent less ammonia than " 0.88 ammonia" (involv ing an increase in the quantity of solution used of one quarter, or 25 per cent). It is much less liable to lose strength by volatilization, and it is not nearly so dan gerous as the very concentrated ammonia made fo photographic purposes.

Baldness and its Treatment.
There are two classes of patients who resort either to the profession or to quacks-generally to the latterfor aid in the production or reproduction of hair in those parts of the scalp or face where it ought to grow, but owing to age or disease fails to do so. There is, first, the youth who from vanity or a desire to improve his chances of employment wishes to don before his time those hirsute appendages which are universally regarded as the ouṭward sign of manhood. To him in spite of the confident assertions of nostrum adver

A FIELD GLASS CAMERA.
isers, we can offer little beyond the poor consolation, of which he is well aware, that time is not only the sure, but almost the only remedy. No doubt those means which promote an increased circulation in the skin of the face will also promote the nutrition of the hair, and therefore, but only within narrow limits, in creased growth in the more vascularized region. This doubtless is to a large extent the modus operandi of shaving, which, it is well known, increases the vigor of the hair in the region operated upon. The grod effect f the slight irritation of the razor on the callow chin of the slight irritation of the razor must not, however, be used as an argument for the ap-
plication of stronger irritants, and the young man who, n his eagerness to hasten a natural process, painted strong acetic acid on his cheeks in the then approved mutton-chop shape not only excited inflammatory red ness and brought ricicule on himself, by publishing his youthful yearnings to all beholders, but also, by the inflammatory exudation produced, injured the nutrition of the follicles and hindered rather than helped forward the growth he so much desired. On the whole, patience, plus the adoption of all means which pro mote general invigoration of the system, and the avoid ance of excesses of all kinds, is the best advice that can be given to the beardless boy.
The second class, apart from those who have a defi nite disease like alopecia areata, comprises those who are losing their hair prematurely, or even as a result of advancing age, and it is among these that the vender of hair restorers find a ready market for their wares. It ould take up too much space to discuss all the cause of baldness, which may be either of local or genera rigin, or of the two combined; but it is too much th custom, instead of investigating carefully into the gene ral health and circumstances of the patient, and th xact condition of the skin of the scalp, to prescribe a hair lotion in which may generally be found as the principal ingredient cantharides in some forin or other

This, by attracting an increased blood supply to the part, is often useful, no doubt, where the baldness is due to mere sluggishness of the cutaneous circulation but it fails altogether to reach the cause of that ver large class who lose their hair from seborrhœa capitis. This is benefited by microbicide remedies-sulphur mercurial applications of almost all kinds, and many other antiseptic drugs, both new and old. We do not know what particular microbe, among the legion which may be found in the greasy and dry scales in seborrhoa produces the proliferation of epithelium, which, accord ing to Unna, is directly due to an inflammatory pro cess; but the effect on the follicle is such that it lead o atrophy of the hair, and if the disease is not arrested atrophy of the whole follicle and consequent permanent alopecia.
Where the damage to nutrition is not so great, the hair is lusterless and more or less marked canities en sues, and then the hair restorers, which color the hair from without and not from within, are eagerly resorted to. Sulphur and acetate of lead form frequent in gredients of these applications, while perchloride of mercury is too frequently the leading ingredient of a large number of vaunted remedies. No doubt it is o high value as a microbicide when employed in suitable cases, but used indiscriminately for months or even year injurious effects may be, and sometimes are, produced Pilocarpine, hypodermically injected or given inter nally as tincture of jaborandi, is certainly of value a a direct promoter of the growth of hair but it is to powerful a remedy for indiscriminate use and th copious perspirations and sometimes the cardiac de prassion it induces should keep its employment within narrow limits. Less direct mean may be found in tonics of iron strychnine, quinine, etc.; but mor powerful are cod liver oil and change of air, generally to a bracing climate. It will be seen from the foregoing remarks that baldness is a sympton of such diverse con ditions that there is no routin treatment for it, but the caus must be carefully sought out and intelligently treated, while the loca treatment must be diligently and perseveringly carried out, as whe due to its most common cause seborrhœa, relapses are the rule and constant watchfulness agains recurrence is accordingly required -Lancet.

The Saxon Tunne

In consequence of the fall in the price of silver, the Saxon govern ment has decided not to complete its work on the Rothschoenberge Stollen, which, if completed, would be the longest tunnel in the world The tunnel was intended to drain the water from all the Freiber silver mines and carry it to the Elbe. The main tunnel is 9 mile long but its branches add 21 miles to its length making the total extent almost 30 miles. The tunne was begun at state expense in 1844, and after thirty three years of continuous work it was opened in April 1877.

Hundreds of men are thrown out of employment by he government's decision, and it is expected that many more will follow, as the Freiberg mines cannot be worked without great loss at the present price of silve Work in the mines was begun in 1200 , and since that ime the mines have produced $0,500,000$ Prussian pounds, equal to $151,860,500$ troy ounces of silver.

Electric Luminosity of Vacuum Tubes
In the course of a discussion before the British Association on a paper by Professor Schuster on "Primary and Secondary Cells," Mr. Crookes stated that if a ong vacuum tube containing oxygen exhausted to a point giving the greatest luminosity is held somewher near a plate connected with one of the terminals of high tension coil it becomes very luminous. If the ube has been lighted and put in a cool, dark place, und the it and ace, amount of placing it near the coil will make it lumin ous. If the tube is rubbed, it suddenly flashes into uminosity, and remains so; but if laid down in a dar room for an hour, it becomes non-sensitive again. It seemed to him that the gas inside the tube requires to be put in a state of disassociation. Professor H. Von Helmholtz, who was one of the lions of the meeting said he believed that in these vacuum tubes, if there is a little stratum of ras adhering to the surface there ar always molecules, which can be separated into positive and negative. There is really a measurable stratum of air adhering to the interior of the glass tubes. If a rarefied vacuum is made, the greater part of that air goes a way; but there are always traces of gas left, even in the vacuum of a glass tube which is completely melted

[For the Scientific American.] a Cholera Ship in 1853.

I lived in Bangor, Maine, in 1849 and 1850, when the Asiatic cholera visited that city. I had a contract for a large lot of doors and sash for the United States government to be shipped to California for some gov ernment building, I then being in that business.
I had but fairly commenced on the work when the scourge broke out. My partner, a Mr. Wing, fled with his family to the country. Deaths were soon rated at one to two hundred daily. People there were generally panic-stricken, and the city was deserted. Many of my workmen left, so I mustered all of the pluck and courage that nature gave me and determined to live or die at my work bench. My family, then only wife and one child, lived a little out of the city. At 7 o'clock every morning I was in my workshop, and 10 to 11 o'clock at night often found me there. Coffins could not be sup plied in sufficient quantity to bury the dead, and I was besought to make coffins, but my government contract prevented my doing so.
While at my work bench I saw one man die in a dirty cellar kitchen. There were few if any regular funerals, but daily coffins or boxes with the dead were seen going with the poor victims to their final rest. It commenced there in the lowest, filthy localities of the place, and from there went among the richest localities. I could form no other verdict than it being a scourge of intemperance, dirt, and filth and of very high livers. I did not change my method or style of living; ate fresh vegetables, fruit, meat, and melons. I had never poisoned myself with tobacco, beer, or spirituous liquors of any kind, took my baths regularly, and lived as cleanly as possible.
There was a medical fraternity called the Hot Crops, and they had what was then called a Hot Crop hospital. The very first thing that they did was to give a cholera patient a dose so hot that it would almost burn his vital organs. I tasted the stuff, and it was like eating red peppers, that would make the tears run, and it was admitted that they were the most successful of any class of practitioners. It died out with
the fall frosts, and there ended the most terrible scourge that I was ever witness of or ever hope to see again. I ost money on my contract, but got out alive.
December 7, 1852, I sailed from New York City on steamer Uncle Sam for California, via the Isthmus of Panama. We were seven days on that filthy malaria and turkey buzzard region, with a railroad to the Chagres River only, where we were boated by native in almost a nude state up the river to Cruses, and from there on mule back or on foot (the latter I chose) un til we reached Panama. There we took the steame Cortez, with as stern an old sea captain as ever stood before a mast. I had a second cabin ticket. Imagine going from the State of Maine in midwinter, with the system and blood prepared for 10° below zero, and in a few days in a tropical climate at 100 to 110 in the shade and one imagines the change and contrast! No soone had we left land than a high fever set in, and such a headache I never bore in my life. My first thought was ice water, but ice could not be bought. The smal amount was used only at the bar. I watched wher the bartender came to get it out of a small room. I stood there with my blanket, and as his back was turned I grabbed a piece quite the size of a water bucket, rolled it up and slipped around the corner and off, rolling it up and hiding it, and the last I heard of the bartender was "Stop that man!" but I did not stop until I had my prize hid safely in the bow of the ship. I then got a lady to sew a piece of oil silk to gether and make me a bag. I slept three days and nights by my ice, punching off small pieces, and swallowing them and keeping a little in my oil silk bag on my forehead. When my ice was gone my feve went with it and I was on deck again.
The second day out from Panama death commenced from Panama fever, as it was called, and such a con dion as there was among the poor steerage passengers cannot be described, and myself one of a very few who was able to render any assistance. I went to the old captain and begged him to allow me to take a few dainties from the cabin to the poor steerage passengers
yielded and took me to the head steward and gave directions to only allow me to take anything out of the cabin, and cautioned me to be extremely prudent and cautious, which I was. Soon the Asiatic cholera broke ut, and a poor victim would die in terrible agony in ide of an hour. They would be apparently well, and all at once in terrible agony, so that they could not tand, and then in a short time all was over and the body sewed up in a blanket and the feet weighted and they were slid off a board behind the wheel after reading the Episcopal burial service. The mighty deep was their grave.
I finally persuaded the mate and ship physician to make beds in clear weather on the bow deck, and all that were possibly able to be got there were taken This gave them fresh sea air, and, I think, saved many ives. But as near as I could keep count about 70 out f 700 passengers died on that cholera-stricken ship. It was said to be the most fatal trip to the Golden Stat up to that time.
J. E. Emerson.

Plumbiferous Glass Wool.

In the course of gas-analytic operations the author caused gases containing sulphureted hydrogen to tra verse a plug of fine white glass wool, as obtained in commerce. The wool was blackened, and on further investigation it appeared that the blackening was due to the formation of lead sulphide. Hence a plumbifer ous glass had been used for the production of the glass wool. In various analytical operations where glass wool is used the presence of lead is objectionable. Nor can such material be used, as recommended, for filter ing acids, since they may become contaminated by taking up lead.-L. Blum, in Zeitschrift fur Anal Chemie, xxxi.

The sailing ship Roanoke, launched at Bath, Me. ately, is said to be the largest wooden ship afloat Her length is $311 \cdot 2 \mathrm{ft}$.; breadth, $49 \cdot 2 \mathrm{ft}$.; depth, $29 \cdot 2 \mathrm{ft}$. height under spar deck, 9 ft .; gross tonnage 3,539 and net tonnage $3,400 \cdot 4$. She is designed for the California trade

RECENTLY PATENTED INVENTIONS.

Mechanical.

Wrench.-John Ryan, New York City. This is a wrench composed of but few parts, each of which can be economically and strongly made, and the wherever a pipe wrench is to be employed. The sliding section of this wrench has a longitudinal slot
around which are teeth, and the locking device conaround which are teeth, and the locking device consists of a pin turning in the shank or the fixed rection and passing through the slot of the sliding section, a toothed locking plate engaging with
Tool Handle.-Albert Landon and ouis Martel, Rutland, Vt. This invention provides a simple and durable handle capable of containing a number of tools--such as a putty knife, screw driver,
and awl-the tools when not in use being concealed in the handle without being removed from attachment thereto. A lock or latch which keeps the cover of the handle. closed is used to throw the tools up from the
handle so they may be grasped. While one tool is handle so they may be grasped. While one tool is rigidly held in operative position the others are concealed and locked in the handle.
Boring Machine.-Jonathan W. Day, Crystal Springs, Miss. This is a novel contrivance for boriny incluned apertures into the stumps of trees to
form draught channels to facilitate the burning out of the stumps, or for boring apertures in logs, timber and other articles. It consists of a truck frame on which are mounted inclined slotted ways, in which slides a frame with a crank-shaft carrying a gear adapted to operate an auger mounted in the frame. The machine is of simple and strong constructio
MORTISING MACHINE.-Erik J. Gisvold, Eagle Mills, Mich. This invention provides a moderate priced machine, with readily adjustable atachments, for use in cutting base blocks, corner machine may be readily converted into an implement or use as an ordinary mitering machine or a dadoing machine. Attachments are also provided for the machine whereby shingles may be cut in a number of ancy shapes.

Miscellaneous.

Scale Attachment.-Louis F. Robare, Au Sable Forks, N. Y. This invention provides a simple and durable construction designed to render
the beam noiseless at the fork, contacts made of soft the beam noiseless at the fork, contacts made of soft scale beam with the fork. On the underside of the end of the beam is a contact of rubber or other soft material, so that when the beam swings downward the noise is deadened when the contact strikes the cross
bar. The locking lever is formed with a fork in which bar. The locking lever is formed with a fork in which is journaled a rubber roller, adapted to engage the top
of the beam end, thus deadening the noise when the of the beam end, thus
beam ewings upward.
Sealing Device.-Ludwig Wurzburg, London, England. As an improved article of manu-
facture, a nail foruse in sealing bozes, etc., is provided by this invention, the nail having a split shank, whose lower portion has one or more transverse apertures adapted to receive a sealing wire or cord, or a com-
bination of two or more flanged nails may be similarly bination of two or more flanged nails may be similarly
used. By means of this improvement a box, case or
package may be fastened in such a manner as to in
cate whether or not it has been tampered with.
Shaft Tug.-Joseph L. Gregory, Washington, Mo. This tug is made of two metallic sections screwed together, and having flanges around their inner edges forming a groove in which a packing ring of leather or similar substance is held to project, o constitute a cushion upon which the shaft is sup-
ported, and against which it may rub aud strike. The ported, and against which it may rub and strike. The and jar and rattling are avoided.
Rice Scourer.-Squire A. Pickett Crowley, La. In a nearly cylindrical casing supported op and damper openings at the bottom, a shaft carry ing pairs of beaters is arranged to be rapidly revolved. In the lower half of the casing are openings closed by ratings or wire netting, affording ventilation to prevent undue heating of the rice, and permitting the dust
and scoured-off rice skin to escape

Plant
PLANER FOR ICE ELEVATORS. William H. M. Smith, Brooklyn, N. Y. The flaner clination above the elevator, and provided with several series of knives, one in rear of the other, the knives of the several series being in alignment, while means are
provided for adjusting the inclination of the planer body and locking it in position. The machine is ane especially designed to facilitate the removal of snow ice from the ice blocks in a manner to prevent the waste of good ice.
Folding Bed.-William S. Nevins, Terre Haute, Ind. This invention provides a bed of simple and inexpensive construction which may be manipulated without the use of weights. The bed is
pivoted within a casing to the base of which and to the pivoted within a casing, to the base of which and to the
head portion of the bed back of the pivot springs are head portion of the bed back of the pivot springs are
attached, while spring-pressed levers fulcrumed in the attached, while spring-pressed levers fulcrumed in the at the sides of the bed. Handles on the sides of the bed are adapted to engage latches on the sides of the casing. In the back of the casing are shelves on which may be placed pillows or surplus bedding.
Milk Receiver.-Silas J. Morgan, La Grange, Il. A box or casing with chates to receive
and conduct milk and cream to receptacles has beende signed by this inventor, the box having scales to weigh the milk as delivered and a pociet for the reception of tickets, while an indicator visible from the exterior
notifies the milkman of the required quantity of milk or which the scales and receptacle have been aror whic
anged.
Stereopticon and Magic Lantern Device.-Horace W. Force, Newburg, N. Y. This invention covers a novel slide and shutter, with connected mechanism, for the successive exposure of different pictures in such manner that there will be a practically
instantaneous change of views, without showing them in motion on the screen. The mechanism is so arranged that the shutters close and open while the carrier is stationary, the improvement also dispensing with the necessity of using in all cases a "double disolving" instrument.
Bow for Stringed Instriments.on the bow sechmer, Horicon, Wis. A slide mounted on transverse threaded aperture through which a screw
extends into contact with the staff, the head of the extends into contact with the staff, the head of the
screw having a concave outer face to receive the end of
the thumb. This improved bow is designed to enable
the player, especially a beginner, to more readily hold the player, especially a beginner, to more readily hold
the bow in correct, easy position, without danger of its slipping.
Bracelet. - Louis Cremonesi, New York City. This bracelet consists of an endless spring formed into a series of open loops and links held to the loops and baving wideued and inwardly curved free ends. The bracelet oo that it may be made quite small and still be readily slipped over the hand. The construction favors its manufacture in very effective designs.
Pound Net. - George Williams and Albert A. Cleveland, Astoria, Oregon. This net consiste of a lead proper, heart, tunnel, and pot, of the ordinary construction, but with guards arranged in
series alongside of and a short distance from the lead the guards being short lengths of net and spiles in hook shape, with the end of each guard section lapped slightly past the adjacent end of the next section,
whereby the fish meeting the lead of the net will be prevented from drifting back too far away from the preventa and the
be insured.
Handle Holder for Brushes, etc. -William E. Baruett and Bennet R. Chalk, Mount Washington, Md. This device comprises two separated sockets, between which the handle is pivoted, provided
with opposite lugs adapted to extend into the sockets with opposite lugs adapted to extend into the sockets
and be there secured. By this means the handle may be fixed at one or the other side of the brush, and conbe fixed at one or the other side of the brush, and con-
veniently changed from side to side to equalize the

Designs.

Spoon.-Richard E. Acton, Alexndria, Va. This spoon has on its, handle end a miniature likeness of Gen. George Washington in court dress, his right hand grasping a staff and his left resting on his sword, while within the bowl is a represenwhich Washington attended.
Metal Border. - Charles Osborne ew York City. The leading feature of this design serpentine figue in relief, irs surface having are flower-like figures, making a metal border especially adapted for dishes of various kinds.
Trimming.-Charles Lexow, Rosebank, N. Y. This design presents loops and sets of band, rope, or brail-like figure, producing a rib of emicircular or circular cross section.
Trimming.-Henry M. Sacks, Madison, N. J. A series of connected scallop or crescent-like agures is presented by this trimming, the upper por-
tion having a cord-like appearance and the remaining portion having a fringed, feathery, or fur-like effect.
Trimming.-Henry M. Sacks. Madison, N. J. This design preeents a series of spire-like figures having a cord-like effect, each figure having a central stem and curled tendrils at each side, and the figures
holding suspended a feathery skirt figure or drapery. Clasp.-Sara Baxter, New York City. This is an ornamental garment clasp, with two body portions, one representing a spread cagle and the other

top of the cross.

Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please send name of
of this paper.

SCIENTIFIC AMERICAN

 buildina edition. SEPTEMBER NUMBER.-(No. 83.)TABLE OF CONTENTS.

1. Elegant plate in colors, showing a handsome residence at Plainfield, N. J., recently erected at a
coet of $\$ 9,900$ complete. Floor plans avd perspective elevation. Mr. Oscar Teale, architect, New York,
2. Plate in colors showing an elegant residence a Montclair, N. J. Two perepective views and floor plans. Cost $\$ 17,000$ comple
H. Kimball, architect, New York.
Elevation and plans for a house at Arlington, N. J. Cost \$5,500.
A beautiful residence at Denver, Colorado. Per spective and floor plans. Cost about $\$ 40,000$. Elegant residence at Denver, Colorado. Cost about
$\$ 30,000$. Floor plans and perspective elevation. $\$ 1,000$ cottage near Tacoma, Wash. Perspective elevation and fioor plans.
 of $\$ 3,000$ complete. Floor plans and perspective elevation.
A house at Bridgeport, Conn., built at a cost of $\$ 1,800$ complete. Plans and perspective
3. Sketch of an English country residence

Floor plans and perspective sketch of a cottage,
estimated to cost complete about $\$ 3,500$. cementine residence at Pittsburg, Pa. Floor
plans and perspective elevation. plans and perspective elevation
Miscellaneous contents : Asphalt paving in New
York.-Bricks of glass.-Dry rot.-The new build-York.-Bricks of laws at Boston.-A substitute needed.-The palace citadels of Nineveh.-Underpinning by bore-holes.-Ruins of Javanese architecture.-Making water-tight work below water level. The Goulds power pumps, illus trated.-The Cook plumb and level, illustrated. Quarter-sawed oak.-Ventilation of churches.An improved power mortiser, illustrated.-A new
dimension saw, illustrated dimension saw, illustrated.-An improved fire place furnace, illustrated.-Fireproof flo
Artistic elevator inclosures, illustrated.
The Scientific American Architects and Builders
The Scientific American Architects and Builders
Edition is issued monthly. $\$ 2.50$ a year. Single copies Edition is issued monthly. 82.50 a year. Single copies
25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages ; forming, practically, a large and splendid Magazine of ArchitroTURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness,
The Fullness, Richness, Cheapness, and Convenience
of this work have won for it the Largest Circountios of this work have won for it the Largest Circountion
of any Architectural publication in the world. Sold by all newsdealers.

MUNN \& CO., PUBLIshers,

PBisiness and Personal．

The charge for Insertion under this head is One Dollar a line for each insertion ；about eight words to a line．Adver－ tisements must be received at publication office as early as
$20^{\prime \prime}$ combination wheel and lever drill．The best drill on the market for the money．Send for
prices．W．P．Davis，Rochester，N． \mathbf{Y} ．
＂U．S．＂metal polish．Indianapolis．Samples free． Drop presses a specialty．Am．Tool Works，Clev．， O ． Presses \＆Dies．Ferracute Mach．Co．，Bridgeton，N． 6 Spindle Turret Drill Presses．A．D．Quint，Hartford．C Best baling presses．Ryther Mfg．Co．，Watertown，N．Y Portable and Stationary Cylinder Boring machines． Pedrick \＆Ayer，Philadelphia，Pa．
For Sale－Patent No．342，617，poultry carver．Address or terms，Ligon \＆Allen，Sonora，K
Tools for sheet metal goods，presses，lathes，dies，et
Empire Machine and Tool Co．，New Brunswick，N．J． The Improved Hydraulic Jacks，Punches，N．J． Expanders．R．Dudgeon， 24 Columbia St．，New York． Screw machines，milling machines，and drill The Garvin Mach．Co．，Laikht and Canal Sts．，New York． For bridge erecting engines．J．S．Mundy，Newark，N．J． Centrifural Pumps．Capacity， 100 to 40,000 gals．per
minute．All sizes in stock．Irvin Van Wie，Syracuse，N．Y． Portable engines and boilers．Yacht engines an Street，New York．
Guild \＆Garrison，Brooklyn， \mathbf{N} （，brooklyn，N．Y．，manufacture stea ucid blowers，filter press pumps，etc．
Split Pulleys at Low prices，and of same strength and
appearance as Whole Pulleys．Yocom \＆Son＇s Shafting appearance as Whole Pulleys．Yocom \＆Son＇s Shafting
Works，Drinker St．，Philadelphia，Pa， Perforated Metals of all kinds and for all purposes， Harrington \＆King Perforating Co．，Chicago．
To Let－A suite of desirable offices，adjacent to the Scientiffc American offices，to let at moderate
Apply to Munn \＆Co．， 301 Broadway，New York．
The best book for electricians and beginners in elec By mail， \boldsymbol{w}_{4} ；Munn \＆Co．，publishers 361 Brod Hopkin， Competent persons who derre opular book．of ready sale，with handsome proft，may apply to Munn
Broadway，New York．
Co．
For Sale－East and Western State rights for a good patent for sale，or will sell half interest in entire patent． Ohio．A good chance for parties with capital．G．S Dippry，Canton，Ohio．
Wanted－A successful inventor and effficient designer
of harvesting machinery．Must be also an experienced and practical mechanic．Also want a thoroughly compe－ polis，Minn．Stat Give references．Address Esterly Harvesting Machine
Co．，Whitewater，w is． Send for new and complete catalogue of Scientific and other Books for sale by Mun．
New York．Free on application．

HINTS TO CORRESPONDENT
Names and A ddress must accompany all letters，
or no attention will be paid thereto．This is for our
orfor orno atation and not for publication．
information ans should
References to former articles or answers References to former articles or answers should
Ingive date of paper and page or number of question．
Inquires not answered in reasonable time should be repeated；correspondents will bear in mind tha
some answers require not a little research，and though we endeavor to reply to all either by let
or in this department eacc muntst tale his turn．
or in this department．each must take his turn．
Special W ritien Information on matters of
personal rather than general interest cannot be expected without remuneration．
Scientifle Anmerlcan Supplements referred
to may be had at the office．Price 10 cents each． Scientinc American supplements referred
to may be had at the offece．Price 10 cents each
Books referred to promptly supplied on receipt of
M1inerals sent for examination should be distinctly
marked or labeled．
（4532）W．J．P．asks：1．Suppose orse shoe steel magnet were substituted for the core sent through the wire with which it was wound，would would attain？A．In this case a permanent magnet will favor the magnetism．On the other hand，it would be weaker if a current were sent in the opposite direction， and in all probability the polarity of the permanent magnet would be reversed．2．Explain how four A．This query cannot be answered in the space at our command．You will find it described at length in Prescott＇s＂Electricity and Electric Tolegraph．＂ or the plates of a secondary cell？What other metals besides lead can be used for the same？A．Lead foil will do for experiment，but it is not thick enough for practical use．4．Please tell me how to make fulmin－ ing folminate A．You wil ind the method of mak－ work on chemistry but we edvise you in almost every it，as it is a very dangerous explosive．5．Please ex－ plain the thermostat used in chicken hatchers，A．It generally consists of a compound thermostatic bar made of brass and steel brazed or riveted together and ar－ ranged to open and close dampers，or to regulate
lamps either directly or through the medium of an electric current．
（4533）J．J．B．asks ：1．How can I ob－ tain pure nitrate of silver from the coin？A．Dissolve the coin in nitric acid，evaporate to dryness，fuse，melt
at a low heat，cool，dissolve and filter 2．How can J reduee the coin into pure metallic silver，suutable for electroplating？A．Dissolve in nitric acia，precipitate
with dilute sulphuric acid and zinc．3．Also nickel
and ammonia double sulphate．A．This salt you can buy ready made．Or dissolve equal weights of am－ monium sulphate and of nickel sulphate in water， vaporate and crystanze．4．Whe ane acias chloric acid A．Salt and sulphuric acid are caused oreact on each other．For 47.5 parts sult， 98 parts of acid are needed．The gasenus hydrochloric acid is collected in water．5．Is hydrocyanic acid（prussic acid）expensive？If so please state if it would be heaper to make it in small quantities than to purchase it ready made？A．The dilate acid costs $\$ 1$ per pound，the concentrated \＄1．50．It is dreadfully poi－ and should not be attempted except by a skilled per－ son．6．Is there any way that I can temper twist drills that have become untempered by heating while drilling？ A．You can temper by ordinary methods，except that hey may bend or spring when dipped．
（4534）O．A．J．asks（1）the melting pint of bronze phnsphor．A．About $1,692^{\circ}$ Fah．2．Are laster of Paris moulds sufficiently good to cast bronze yokes for dynamo？A．Plaster of Paris will hardly quality used by brass founders．3．Please describe how I can melt the bronze in a forge．A．You can melt bronze in a forge by building up the fireplace a ew inches with brick and making the fire deeper，place the bronze in a black lead crucible in the center of the fre and cover the crucible with a large piece of charcoal． ．What kind of wheel shall I use for water at 28 pounds pressure per hall whigh pressure water wher ．For infor n small high pressure water wheels we refer you （4535）C．E．F．－Dirty type is generally which it is washed with hot or cold water．This opera－ ion will clean the type but it will not make it as bright as new type．If the type sticks together，it should be soaked in weak ammonia，but if it is copper－faced am－ monia cannot be used．It is to be separated by soak－ ing for about a week in weak lye．For thinning ink ase inkaline，but anything that reduces the ink derrac．s from the efficiency．The sample of printing which you iug the work is embossed by means of a bronze stamp cut the reverse of the type．The counter dye can be made in several different ways．It is often made from eather，by taking a new belt leather，wetting it well and while it is soft gluing it on the press，then running he impression＇up the center and letting it．remaiu over－ night．In the morning the leather will be hardened fed face，in in the usual way，without ink．
（4536）P．C．R．asks：How can the con－ ents of a ball be obtained？A．For the contents of a 0.5236 ．Why d multiply the cnbe of the diameter by out of the waters a boats have their propened to have the propellers submerged at the deep load line．Is there anything gained by this？A．When light or partly load－

Communications Received．

TO INVENTORS．
An experience of forty years，and the preparation of
more than one hudred thousand applications for pa－
 ynopsis or the patent aws of the United states and all
foreign countries may be had onapplication，and persons
 tensive faciitiles for connucting the business 3 Addreas
MUNN COO．offte SCIENTIFC AMERICAN， 361 Broad－
way，New York．

INDEX OF INVENTIONS

Which Letters Patent of the

Sentember 13， 1892

AND EACH BEARING THAT DATE．

［See note at end of list about copies of these patents．］
Air brake and car coupling，combined，P．Pelton．482，382
Alarm．See Burklar alarm．Fire alarm．Water

Car
Cars
Card
Carr

Ca

ic appa
coul
os

繮

Clot
Clot
Clut
Clut
liut

Cotton cleaning machine， \mathbf{C} ． Cotton gin huller，W．G．Beckw Counter foot railing，G．A．Sche Coupling．See Car coupling． Cultivator，hand，R．O．Osborn．

 Draught equalizer，J．L
Driel．See Brick drier．
Drill．See Dental drill
Dumping apparatus，se
 Edison，Eration，means for oont

$\stackrel{+}{\mathrm{Eva}}$

Ence post and brace，combin
ender
Fifth wheel P．Mo McLaughlin．

Fire aliarm，M．Deutsch．C．McGr
Fire escape，A．Ferguson

mis．

数

震

TRADE MARKS.

THE HUB FRICTION CLUTCH,
 DEVELOPMENT OF ELECTRI
 Steel Type for Writing Machines,

To INVENTORS aND MANUFACTUERERS

Sixty-first Grand National Exhibition

American Institute of the City of New York

TRADES UNIONS. THE TENDENCY

Single Track Overhead Railway,
 SINGLE TRACK OVERHEAD RAIL WAY MFG. CO.

"As this Company is operating under leterers patent.

WANTED.

From Novelty Companies or others making the introduction of new devices a specialty, contracts for introducing our PATENT ADJUSTABLE-

—TELEPHONE ARM SUPPORT

 Patented Aug. 23, 1892.Designed to relieve the telephone user from the severe muscular strain caused by holding the arm in one position for any considerable time. Address L. C. LINCOLN, Genl. Agt. Woonsocket Edge Tool Co., Woonsocket, R. I.

πSTEVENS PATENT
RELIABLE INSIDE CALIPERS
No. 51. With right and left hand screw. No. 51. With right and left hand screw.
These Calipers have two tension screws add-

 P. o. Box 280 , Chicopee

A NEW EDITION OF

This attractive little book. of 150 pages, embraces a
great variety of information useful for reference in the great variety of information useful for reference in the house and workshop. It contains the last Census of the
U. . by states and counties, and has the area of square
miles in each state and territory, with tables of the ocmiles in each state and territory, with tables of the occupations and the number engaged in each kind of busi-
ness; lists of cities having 10,000 inhabitants; all the ness; lists of cities having 10.000 inhabitants; all the
statistics being compiled from the 1890 census: the
United States patent laws, with directions how to obtain statistics being compled from the 18s census: the
United States patent laws, with directions how to obtain
patents secure caveats, trade marks, design patents patents secure
and copyrights.
The book contains tables for calculating the horse power of steam engines, and other information useful and varied. The matter crowded between the covers any other source. Price 25 Cents. May be had of

```
    IMCTININ de CO.
```

 Publishers of Scientific american,
 361 Bruadway, New York.
$\underset{\substack{\text { Improved Screw Cutting } \\ \text { Foot and Power }}}{ }$ ATMES
 SEBASTIAN LATHEE COMPANY,
RAINMAKERS IN THE UNITED

WANTED by an English Engineering Firm,

TO BUSINESS MEN

tising medium cannot be overestimated. Its an ancudation
is many times greater than that of any similar journal is many times greater than that of any similar journal
now published. It goes into all the States and Territories, and Is read in all the principal libraries and reading
res ooms of the world. A businoss man wants something more than to see his advertisement in a printed news-
paper. He wants circulation. This he has when he advertises in the SCIENTIFIC American. And do not let
the advertising agent influence you to substitute some other paper for the Scientific American, when se-
lecting a list of publications in which you decide it is for lecting a list of publications in which you decide it is for
your interest to advertise. This is frequently done for the reason that the agent gett a larger commission from the SCIENTIFIC AMErican.
For rates see top of frat col
For rates see top of first column of this page or ad-
dress MUNN \& CO., Publishers 361 Broadway, New York.

Mechanical Help for Inventors. There is nothing like a first-class ma-
chine shop, organized for and adapted to chine shop, organized for and adapted to miscellaneous jobs, to carry out an inventor's ideas and make the most of them. Primer to send
HOW TO MAKE A STORAGE BAT-
 PLEMENT, N, 8 AS. Price 10 ce
Oftee and fromall newsdealers.
TO INVENTORS, - Asistatace given in difa

FOR RENT, WATER POWER.

Industrial, Manufacturing, and Uncurrent WORDEN \& FANSHAWE,

The BILLINGS \& SPENCER CO., Hartford, Conn.

NOW READY!
 a NEW AND VALUABLE BOOK.

$\mathbf{1 2 , 0 0 0}$ Receipts. 650 Pages. Price $\$ \mathbf{5}$. This splendid work contains a careful compilain the Notes and Queries of correspondentsas pub-
lished in the Scitific American during the
past fifty years; together with many valuable and mportant additions. are here collected, nearly every branch of the use-
ful arts being represente. It by far the most
cowprehensive volume of the kind ever placed be fore the public. ists and workers in all parts of the world; the information given being of the highest value, ar-
ranged and condensed in concise form convenient. for ready use.
Almost every inquiry that can be thought of,
relating to formule used in the rarious manufacturing industries, will here be found answered.
Instructions for working many different processes in the arts are given.
It is impossible within the limits of a prospectus
to give more than an outline of a few features of Untensive a work.
Uo exder the head of Paper we have nearly 250 receipts, embracing how to make papier mache; how
to make paper water proof and tire proof; how to
make sandpaper, emery paper, tracing paper,
 paper, photograph papers, ete. have nearly 450 re-
Under the head of Inks we
ceipts, including the finest and best writing inks of all colors, drawing inks, luminous inks, innisi-
ble inks. ${ }^{\text {old, silver and }}$ bronze inks. white inks
directions for removal of inks; restoration of directions for removal of inks; restoration of
faded inks, etc.
Under the of Allors over 7o0 receipts are
given, covering a vast amount of valuable inforof Cen.
Of Cements we have sowe 600 receipts, which
include almost every known adhesive preparatich, How to makse Rubber Stamps forms the subject
of a most valuable practical article. in which the complete process is described in such clear and ex-
plicit termm that any nntelligent person may readily For Lacquers there are 120 receipts: Electro-Me-
tallurgy, 125 receipts; Bronzing, 127 receipts ; Phoography and Microscopy are represented by 600
recits.
Under the head of Etching tnere are 55 receipts, embracing practical directions for the production
of engravings and printing plates of drawings.
Paints, Pigments and Varnishes furnish over ing on those subjiects.
Under the head of Cleansing over 500 receipts the removal of spotseng very broad, embracing
of objects and mats from all sorts
materials, bleaching of fabrics, cleaning furniture, clothing, glass, leather, metals,
and the restoration and preservation of all kinds of objects and materials.
In Cosmetics and Perfumery some 500 receipts are given.
Soaps nave nearly 300 receipts.
Those who are engaged in any branch of industry
probably will find in this book much that is of practical value in their respective callings.
Those who are in search on independent business
or employment Those who are in search of independent business
or employyment, relating to the home manufacture
of sample articles, will find in it hundreds of most
excellent sugqestions.

Send for descriptive circular.
MUNN \& CO., Publishers SCIENTIFIC AMERICAN OFFICE,

> AMERICAN OFFICE, 361 Broadway, New York.

HARRISON CONVEYOR!

Sone lier Mexirical Bulsis

BUILDERS OF HIGH GRADE BOATS. OE 1 TEE.-A Practical Treatise on the Manufactur

 WAHNSCHAFFE. -A Guide to the Sciention

HENRY CAREY BAIRD \& CO.

TEEL TYPE FOR TYPEWRITERS
 Na, in:

Model Makers' MODELS $\begin{gathered}\text { Dies, Castings, } \\ \text { Patterns, Tools. }\end{gathered}$

圆Canning Machinery il Burners for Soldering, Air
Pumps, Can Wipers, Can Pumps, Can Wipers, Can
Testers, Labeling Machines, PRESSES AND DIES. BURTMFG. OO QUARTZ FIBERS.-BY PROF. C. VER

KNAPP ELECTRICALPM © TELEGRAPH TELENHE AFIRE ALARM INSULAT BDANE COPPER
WIRE annunciators.burglar alarms.bells, bat teries:

WHAT ELECTRICITY IS.-BY W. W rated with some newexperimension. Contained in in sice

V thest Loose pulerolen VandUZEN PTTTL.L. PULL. OILER

ESS \& HEAD NDISES CURED

 ATENTS:
MESSRS. MUNN \& Co. In connection
with the pubication of the SIENTICC
AMERIIAN, ontinue to examine improveents, and to to uct as to eoxicitorine of Patevoneapperienct hne of business they have had forty-five years

 D igns, ${ }^{\text {Patents }}$ Apeance, Reissues, In Irringements,
Assignments. Rejected Cases. Hints on the sale of
Patents, etc. We also send, free of charge, a Synopsis of Foreign Pa-
tent Laws, sowing the cosi and metbod of securing
Patents in mil the principal countries of the world.

Complete Stock Oars, Sweeps and Boat Trimmings. Cedar Row Boats from \$izs upward. STEND 10c. FOR COMPLETE CATALOGUE.
DAVIS BOAT AND OAR CO., DETROIT, MICH., U. S. A.

Perfect Newspaper File
The Koch Patent File, for preserving Newspapers, Mag-
azines, and Pamphlets, has been recently improved and price reduced. Subscribers to the SCIENTIFII AMERIsupplied for the low price of 81.50 by mail, or 81.25 at the
office of this paper. Heavy board sides; ineriptio office of this paper. Heavy, baard sides; inscription
SCIENTIFIC AMERICAN" in gilt. Necessary for
every MUNN \& CO., Publishers Scientific American

THE STIRLING BOILER is economical in fuel, repairs, and
absolutely safe at high pressure.
Practically HE STIRLING COMPANY general offices: ULLMAN BUILDING, OHICAGO Branches in all principal cities.

Useful Books!
Manufacturers, Agriculturists, Chemists,
Mechanics, Builders, men of leisure, and professional men, of all classes, meed good books in the line of
their respective callings. Our post office department their respective callings. Our post omed depart
permits the transmission of books through the mails
at very small cost at very small cost. A comprenensive catalogue of
useful books by diferent authors, on more than fifty useful books by different authors, on more than fifty
different subjects, has recently been published for different subjects, has recently been published for
free circulation at the office of this paper. Subjects free circulation at the office of this paper. Subjects
classiffed with names of authors. Persons desiring a copy have only to ask for it. and it will be mailed
them. Address, MUNN \& CU., 361 Broadway, New York. COOLEST BREEZES ON HOTTEST DAYS
 AIOMHighest Eficiency-Nolseless-Requiren no Repairs. RIR OO.

CHUCKS.

SCIENTIFIC AMERICAN SUPPLE-

 MENT. Any desired back number of the SCIENTIFICAMERICAN SUPPLEMEN can be had at this ofice for
Io cents. Als to be had of newsdealers in all parts of
the country.

THE MILITARY ENGINEER AND

$\$ 10.00$ t0 \$50.00 $\begin{aligned} & \text { per night. } \\ & \text { hirtand and pro- } \\ & \text { Atable bu si- }\end{aligned}$

VOLNEY W. MASON \& CO. FRICTION PULLEFS, CLUTCHES, and ELEVATORS PROVIDENCE. R. 1 .
OYSTER CULTURE.-A VERY INTER-

" OTTO /aas and gasoline ENCINES, $1-3 t 0100$ horsepower
Can be used in cities or in country independentountrys inde-
pr gas machines. OTTO GAS ENGINE WORFS No Enginee WANTED-To manufacture on royalty, by a re able Novelty, salabe to wood or iron workers. Address L.

ARTESIAN

ture and furnsh everything re-
quired to trill and complete
same Portale
and Morors
andeer
Mounted Steam Drilling

LIFE SAVING DEVICES.-A COL

CTAARERB
 POWER WHIVEER FOR HOSIERY AND WRying in yentilitiverans, CEO. P. WLARK

STEREOTYPING; THE PLASTER AND

PROPOSALS

ELECTRICITY

 BELLS send B WIRE, MOTOMS, ELECTRICAL SUPPLIES, STANLEElectical House Purrien

ON BALANCING MARINE ENGINES

TO Inventore E. Konigsiow, mn manacturer iof Fine Miachinery

EYESIGHT: ITS CARE DURING INfancy and Youth A valuable article by L. W. Fox,
M.D. Contained in SCINTIFIC AMERCAN SUPPLE-
MENT, No. S2P. Price 10 cents. To be bad at this office

[XCELSIOR LANTERN,

the headlight of education.
With PATENT ARGAND LAMP, double concentric wick, or with oxy.-hyd. gas jet. Our MULTIFOOAL PATENT LENS makes the picture any desired size.
Sendfor(stalogieto J. W. QUEEN \& CO.
PHILADELPHIA, PA.

Pience?
This new book, by Geo. M. Hopkins, is just what Physical Science. No one having the sinitit of the
times can afford to be without the kind of scientimes can afford to be without the kind of scien-
tificic information contained in this book. It is not only instructive, but entertaining.

2HDertisements.

Victors

 (GGEST,OVERMAN WHEEL CO.

This Company owns the Letters Paten granted to Alexander Grabam Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders eac individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

HELICOID SHANK WOOD SGREWS.

 BUSSEELE EREWIN migg. company,

" A wise and prudent man" considers his watch as a timekeeper, not an ornament. It must be accurate first of all. Yet it may be rich and eiegant, too. He wants that; but does not want to pay too much for it.
A coin-silver or 14 -karat gold filled watch; with jeweled works; stem-set and stem-wind--that is the new, quick-winding "Waterbury.' vanf jownors

The 1892 noded Remington

 Ex \Rightarrow THE BUNOY AUTOMTTIC Typewriter
For Ease and Convenience of Operation, Simplicity of Design and Durability of Construction, is
 send for catalogue.

WYCKOFF, SEAMANS \& BENEDICT, 327 Broadway, N. Y.

Regular
Junior Folding Daylight Ordinary
I. $4 \begin{aligned} & \text { styles and sizes } \\ & \text { tor the season of }\end{aligned}$ Ior the season
1892,

Latest improvements, registers for exposures; glass plate attachments; daylight loading, etc., etc. Send for catalogue. THE EASTMAN COMPANY,

THE SMITH PREMIER TYPEWRITER

H. W. JOHNS'

Asbestos Sectional Pipe

 Coverings.Non-Conducting Coverings for Steam and Hot Water Pipes, Boilers, etc. AEBPESADLY ATTACEED OR REMOVED BYANY ONE.
We are prepared to take contracts for appling Steam Pipe and Boilior Coverings in any
 bt Maiden lane, N. Y. Jenscr Citr. Cricaco, Prithat \qquad

寺
and
After being on the Market Seven Years THE AGME AUTOMATIC ENGINE AND BOILER ESPTITETEADES:
No For either Natural Gas or Petrol
 POREBATM.

VANOUZEN STEAM PUMP THE BEST M MHE WORLD.
Pumps Any Kind of Liquid.

 THE VANDUZEN \& TIFT CO,
THE

ELECTRO VAPOR ENGINE.

GAS OR GASOLINE FOR FUEL.

 NO BOILER. NO FILEE. NO DANGER. ngine operated by spark
from small battery You turn the S witch,

—manufactured by-

THOMAS KANE \& CO., CHICACO, ILL.

Edison General Electric Company

Incandescent Lighting, Street Railways and Transmission of Power SAFEST-MOST RELIABLE-BEST.
OUK EI,ECTRIC LAMP SIGNS ARE A GREAT COMMERCIAI, INNOVATION.

 Pans, Specifcations, Sheets of Details, Estimates, etc.
The elegance and cheapness of this magnificent work
haver have won for it the Largest Circulation of any
Archite. Arealtectural publication in the world. Sold by all news-
deal 2.50 a year. Remit to
MUNN \& CO
 LIFE OF AN ANT.-BY E. A. BUT-

EVERYBODY CALLS

