
[Entered at the Post Office of New York, N. Y., as Second Class inatter. Copyrighted, 1892, by Munn \& Co.
A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCLENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

1. Side view of the Miantonomoh. 2. The Miantonomoh under headway. 8. Interior nf conning tower. 4. Gross section of turret and hull,

THE NEW AMERICAN WAR STEAMER MIANTONOMOH.-[See page 85.]

grientifir anmerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

NEW YORK, SATURDAY, FEBRUARY 6, 1892.

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT NO. 84O.
For the week Ending February 6 , 1892. Price 10 cents. For sale by all nemsdealers. I. AG

remotal of snow by melting.

The subject of disposing of snow which has fallen in the streets by some more rapid and less cumbrous method than that of carting it away has attracted considerable attention from time to time. Various systems of melting it have been proposed, and calculations as to the thermal energy required indicate the practicability of so doing. As fast as melted the water could be run away through the sewers. The calculations were made and the possible economies of the process were
examined into and the results were published some examined into, and the results were published some could probably be more economically disposed of thus than by carting it off to the distant river edre and there dumping it into the water
Mr.Charles E. Emery, the distinguished civil engineer, and one of the highest authorities on the use and distribution of steam, examined the question at about the period alluded to, and reached the same conclusion Still more recently the subject has been taken up in England and the proposition has been made to use ga for melting snow. While gas is an expensive fuel, it develops a definite economy in use, because it can be more advantageously applied than any other fuel, where the center of heating is of limited area or volume Putting the price of gas at a fair figure for England, 2s. 6d. per thousand cubic feet, an English contempo rary, The Building News, concludes that snow could be very advantageously disposed of by melting with burning gas.
Mr. Emery did not examine the subject from a theoretical standpoint only. He also tried a steam melting process, which gave excellent results and was distinguished by great simplicity of appliances. A tarpaulin 25 feet square was used to cover an area. It was drawn about upon a sled and spread where required. When spread, the steam was admitted to its interior as it lay upon the snow, and the latter was rapidly melted. In this way it was found that large area could be denuded of snow with economy.
The great trouble was the supply of steam. In streets possessing steam mains this trouble would not exist, but in other places a portable boiler would have to accompany the apparatus. The method seems far simpler and more practical than gas melting with special burners and melting plates, and for this country at least would, we believe, prove far more economical. The steam process involves the direct contact of steam and snow. In the gas process as described the conduction of heat through a metal heating plate is also involved, which would be a cause of inefficiency and would retard to a degree the melting.

the evening sky.

The early evening sky just now presents a spectacle of uncommon beauty. Sweeping with the eye upward from the western horizon, the lovely crescent of the new moon meets the view; next, the brilliant orb of Venus, gleaming with golden splendor; higher up is the refulgent globe of Jupiter, the largest of the planets, the fastest in circumferential motion, attended
by four mouns, visible in the telescope. The exterior by four moons, visible in the telescope. The exterior
of the earth turns at the rate of a thousand miles an hour; that of Jupiter, twenty-seven thousand miles an hour. Continuing upward are the fabled Pleiades, the seven stars, visible in all lands-a cluster of flaming suns, forever flying onward in space.
The rosy red Aldebaran next is seen, burning (if you look in the spectroscope) with hydrogen, sodium, magnesium, calcium, iron, tellurium, antimony, and mercury. Looking eastward, that wondrous constellation Orion is beheld, with his three-starred belt, three equidistant suns, one degree apart, and those more distan stars, four in number, of which Regel below the belt and Betelguese above are brilliantly conspicuous. Below Orion, toward the east, shines the majestic Sirius, brightest of all the stars. Still eastward is Procyon,
above it Castor and Pollux, Capella and Algol, all promiabove it Castor and Pollux,
nent in the heavenly dome.
Astronomy is indeed the sublimest of the sciences; no study is more interesting, none more elevating to the soul ; yet how few pursue it! Probably less than one in ten thousand persons can recognize or name the principal constellations. The glories of the heavens pass by unnoticed and unknown.

the war ship and her crew.

The relative possible effectiveness of modern war ships may be measured by comparing the strength of armor, of battery, power of engines and the like, the one with the other. But other factors must be determined in order to come to anything like a reliable conclusion as to the result of an engagement between one type and another, to wit, the experience and training of officers and crew, and their familiarity with the apparatus they handle; else the opposing commanders might come together before engaging and, sitting down at a table, with pencil and paper before them, calculate the chances and award the victory without firing a gun. Given two ships of equal armor, armament and power, who will doubt that, barring accidents, the one whose crew is quickest and surest at the gun
win? So, too, of ships unequal in size and armament. The most powerful will not necessarily have the adantage.
It is an axiom among boxers that a good big man is better than a good little man, but that a clever little man is better than a sluggish big man. On the same theory a big ship, however heavily armored and armed, with unskillful officers and men not used to or slovenly at the guns, would be no match for a much smaller craft with less powerful guns but officers well schooled, energetic and enterprising, and a crew well drilled and handy. Those who have read the naval history of the United States will recall the victories gained by the Yankee ships in the war of 1812, through superior seamanship and gunnery. Though often opposed to ships of superior tonnage and weight of battery, manned by men whose courage had been tried in many seas, the advantage in training proved to be a factor that turned the scalo in favor of the Yankee crews. It is upon the superior training, the energy and the enterprise of the officers and crews of our fleet that we must, in large part, rely in the possiblc contingency of war with Chile. There is one Chilean ship, the Capitan Prat, now being completed in a French yard, that, in point of size, armament and armor, is superior to any ship which we, at present, have afloat. But there is reason to believe that any one of several of our ships could profitably engage her, for, with such a crew as she is ikely to get, nothing like the maximum effectiveness of her apparatus could be developed.

Texa:, Lignite.

According to Professor E. T. Dumble, a very careful comparison of Texas lignites with those of Germany and Austria shows that they are in all respects fully equal to some of the better grades of those in use, and equally applicable for all fuel púrposes under similar conditions. This conclusion is supported by the indorsement of some of the most eminent authorities on the subject in Germany and Austria, to whom specimens were submitted for examination
Lignite of this character is found at Rockdale, on the International \& Great Northern R.R., and at Elgin, on the Houston \& Texas Central R.R., both of which ocalities are sufficiently near to Austin to give an abundant supply of the fuel at a very low price. The bed at Rockdale is open, and is being worked on a small scale; that below Elgin was opened by Captain Mather, of the Austin water works, who reports the seam to be about eight feet in thickness and that it was similar in all respects to tinat at Rockdale. Taking into consideration the character of the lignite which occurs at Rockdale, which has been fully tested by the geological survey, and that at Elgin, and the extent of these deposits, there is no reason why the fuel cannot be mined and delivered in Austin at a price which will make it the cheapest of the cheap fuels ; and its quality is such that it can be used with greatest success and economy in the manufacture of lime, cement, brick, stoneware, glassware, pottery, etc., and under steam boilers of every kind, thus being en. tirely suited to all the manufacturing needs of Austin. In developing the iron resources of central Texas it will be possible to use some of these lignites as part of the fuel of the smelting furnace. The character of coke which can be made from them is now the subject of experiment, but it is too early to make any definite statements regarding it. Outside the first smelting of the iron, however, the quality of the lignites adjacent to Austin is fully sufficient for all the operations for converting pig iron into wrought iron and steel, as well as for all rolling mill purposes.
All that is needed to secure the desired results is a proper construction of the fire boxes, grate, etc., general plans for which can be secured through this department, or directly from the mechanical engineers of Germany and Austria.

An Electric Mail Car.

One novelty in the way of electric traction on the St. Louis and Suburban Railway, now in successful operation in St. Louis, Mo., is the application of electric motors to a United States mail car, which makes regular trips over the entire line, distributing and collecting the mail at the differentrailway stations, as is done on steam railways. This car is of the same length as an ordinary steam railway mail car, and is equipped with double trucks with 36 inch wheels, a Thomsoi-Houston tienor of 15 horse power capacity being connected to each truck. A very high speed is attained, and the delivery and collection of mail is made without stopping the car, as in steam service.

At Fagersta, in Sweden, briquettes are now bemg manufactured out of wood charcoal by the addition of coal tar. A paste is made out of the charcoal and the tar, which is transferred to a press, whence it issues in slabs about 16 in . thick, which are exposed to the air on the ground for several weeks, during which period the water in the tar evaporates. This combustible has been successfully employed for steam boilers, its calorific power being said to approach that of the best English coals.

An Englishman's Views on the Great Exposition. Mr. James Dredge, editor of Engineering and ago to examine and report to his government upon the condition and prospects of the Chicago Exposition. Recently he read an able and exhaustive paper before the Society of Arts, in London, which is full of instruc the Society of Arts, in London, which is furp orise. The following are his concluding remarks :
I hope I have made it clear that the pre-eminence of the Columbian Exposition may be fairly claimed by its organizers, not only because it will be far larger than any international exhibition that has preceded it-that is simply a law of natural development-but because of the real beauty and grandeur of its buildings, and, I think, because of the greater variety, novelty, and interest of its contents. The development of industry in the United States has advanced at such a prodigious rate of late years that no one can form even a faint idea of its present condition, except by facts and figures, than which nothing is more misleading. Last year I ventured to suggest several reasons why this exhibition should be truly international, and to-day I find no reason to modify the opinions I then expressed. On the contrary, many significant facts combine to prove the correctness of those views, and that they were not overstated, at all events, so far as this country is concerned. There is a very general feeling of resentment against the United States, because she surrounds her industries with a high barrier of tariffs. Nothing could be more unreasonablc than this resentment; it is the business of every country to guard its welfare in the way which seems best to itself, whether by great armies, powerfu navies, or internal policy. And, in spite of all the im pediments placed in the way of our industrials, no less through the protected ports of North America. This vast volume of trade is carried on to the mutual benefit vast volume of trade is carried on to the mutual beneit
of sellers on this side and of buyers on the other side of the Atlantic. It seems to me that among these of the Atlantic. It seems to me that among these
great interests involved, there would be enough to occupy all the space that has been assigned to us at the exhibition. Again, we have many special industries, the products of which are of the luxurious and costly kind, to acquire which is the privilege of wealth; and there is no country in the world that can compare with the United States in the number and capacity of such purchasers. This should prove a sufficient inducement to many manufacturers who may become exhibitors at Chicago, with every reasonable certainty of selling all that they may send, and of establishing permanent and profitable connections in the future. Americans are rapidly becoming leading patrons of art. The fact that most art students from the United States go to Paris to study is probably the reason why the French school controls the American market. It is time that this condition of things is changed; and there is little doubt that it will be changed, if English artists respond to the invitation to exhibit, and are fitly represented in the noble gallery of fine arts that will form so conspicuous a figure at the Chicago exhibition. English sentiments will remain deeply implanted in American nature, and will respond freely to the feelings expressed by the noble English school which won so much admiration and surprise at th Paris Exhibition of 1889
I have pointed out that it is the avowed intention, in American official quarters, to make a bold stroke at our South American trade, and to wrest from us a much of our commerce in tho western southern hemi sphere and elsewhere as may be possible. Being forewarned of this approaching struggle, which is without unfairness and without bitterness, our manufacturers should be forearmed, and, by carrying the war into our commercial enemy's camp, should turn the ex hibition to their advantage, and prove to all the world the incontestable superiority of the goods which we export, both as regards quality and price. Whatever
benefits the United States may derive from the policy of high tariffs, it is certain that such complete protection must act prejudiciously on many industries, both as regards the quality of the goods produced and the cost of producing them. This is an inevitable conse quen:ee of the absence of the healthy stimulus of com-
tion. When, therefore, foreign purchast s have an ty of comparing at Chicago the relative
uur own goods, side by side with similar If ess uur own goods, side by side with similar be Iitlle fear of the result. Of course, this has not a unifersal application; we cannot expect to hold the lead in every branch of manufacture, and it must be frankly admitted-and admitted, I hope, with due admiration of American ingenuity, skill, and enterprisethat in many things the United States have left us far befiind. Any attempt at competition in those directions F ould, of course, be useless, and only lead to disap pointment and loss of money.
Another important inducement to manufacturers to be present at Chicago must not be lost sight of. The number of Americans visiting Europe increases year by year; for the most part they are wealthy and leav
large sums of money behind them, and, fortunately fo
our trade, England is rising in favor with these visitors. Many shopkeepers and manufacturers enjoy great
support from American customers, and it would be bad policy for them to neglect the means which will be afforded them in. 1893 for increasing this support and making new conncetions. Exhibitors of such goods as the wealthy American tourist loves to buy will be remembered long after the exhibition has been closed and will be sought for in England by visitors who will remember their displays at the exhibition.
To the horticulturist, the coming exhibition affords the certainty of a rich harvest, for as it has already been pointed out, our pre-eminence in flower culture
is undisputed, and this branch of industry is less is undisputed, and this branch of industry is less hampered by tariff obstacles than most others.
Much machinery of varied classes may be exhibited with profit, chiefly for the benefit of foreign customers, but in some cases also to meet the demands of the American market. A large exhibit of objects con nected with transportation-such as railway rolling stock and ship models-may be confidently expected these would be shown, not with the expectation of any actual trade benefit, but for the information of Americans who sooner or later will visit Europe. With a more direct purpose, the manufacturers of bicycles and tricycles may be expected to attend, for they epresent a very important industry, in which country takes an undoubted lead. Patentees of machinery and of processes may, if their exhibits pos-
sess real merit, fairly hope to do business in the sess real merit, fairly hope to do business in the
United States, and our most advanced steam engine practice will certainly be represented there on a large scale. Altogether, one way and another, we may fairly hope that the area allotted to us in the Machinery Hall will be filled with representative exhibits, and that the displays in the Electricity and Mining Building will not be unworthy of the country. As regards agricultural exhibits, American manufacturer have taken so decided a lead in the implement trade that there appears but a slender chance for the British exhibitor in America; but the classification in his department is so wide and varied that it embrace many objects in which we can be represented with profit; especially is this the case with live stock for breeding purposes, for which there is always a demand in the United States, and an exemption from deman.
duty.
To
To urge manufacturers to incur the trouble and expense of exhibiting at the Chicago Exhibition, on the merely sentimental ground of aiding in the triumph of great work, would be absurd, although there are idealists on both sides of the Atlantic who see in the
general advancement of humanity sufficient reason for demanding on the part of others large pecuniary sacri fices. But an exhibition can only be successful as a commercial enterprise, and any manufacturer would be as foolish to participate without reasonable prospect of benefit as he would be to abstain from mere prejudice against the tariff. Let our manufacturers consider, therefore, carefully before deciding; they can obtain sufficient data from which to form a fair appreciation of the chances of profit or loss, and if the odds are in favor of the former, they may go to Chicago, certain of a reception they have never experienced before at
any international exhibition; a reception based on true generosity and friendship, from a nation speaking their own language, bound to them by tie of kinship, and by community of sentiment ; compe titors only so far as competition is inseparable in the struggle for pre-eminence.

Resinized silver Paper.

The particular method of preparing the paper recommended by Herr Valenta is as follows: Ten parts of chloride of ammonia are to be dissolved in one hundred parts of water; from three to four parts of gelatin should be swollen in water. To prepare the saponified solution of resin, some water is heated to boiling poin in a porcelain dish, and some solution of ammonia add ed, and the light yellow French resin, finely powdered, added in small quantities, with constant stirring. When all the resin is saponified and the solution quite clear the swollen gelatine is added and dissolved, the solu tion of chloride of ammonium is now added, and the bulk of the solution made up to one thousand part with distilled water, carefully neutralized with dilute hydrochloric acid; and finally a concentrated solution of citric acid added till a strong acid reaction is given. The resin is precipitated in a very fine state of division
by the addition of the acid, and a milky liquid thus ob by the addition of the acid, and a milky liquid
tained, which is used to salt the paper with.
Rives paper gives the best results, and itis best salted by spreading the warm solution over the paper with a pad, and then allowing it to float on the warm solution for three minutes. The salted paper should be dried in a fairly hot room. Sensitizing may be effected as usual by floating on a 50 or 60 grain silver solution fo Wo to three.minutes, and then drying in the dark.
The paper should be fumed for ten minutes befor use, as greater brilliancy-and quicker printing is thus
obtained. The prints, when removed from the printing rame, have a dark-blue, violet shade, and if washe slightly and then fixed in an acid fixing bath, a pleasing
reddish-brown tone results. The prints are not sunken in , and possess much greater brilliancy and pure whites than ordinary salted paper prints.
Beautiful black prints may be obtained by the folowing procedure, and they closely resemble good platinotypes. The prints must be well washed to free from nitrate of silver, immersed in a bath of gold chloride 1 part, borax 80 parts, water 10,000 parts, till they assume deep violet tone when examined by transmitte light. They should be then washed and placed in a platinum bath, composed of 1 part chloroplatinite o potash, 300 parts of water, and 15 to 20 drops of hydro chloric acid. They tone very quickly to a fine black, and should be then well washed and fixed. It is essen tial to print very deep for this platinum toning
If the prints are fixed on removal from the gold bath, the image on drying is a good reddish-black, and if an acid uranium nitrate bath be substituted for the gold nd borax bath, a fine red tone is obtained.-Amateur Photographer

The Crushing Resistance of Bricks
The Department of Experimental Engineering, Sibey College, recently received from an Ithaca manuacturer four samples of brick to be tested. All the brick were tested entire and on edge, as they would be ased for the purpose of paving. The sides were dressed to parallel planes on an emery wheel, so that the bearing should be uniform over every part. A single layer of thick paper was placed between the surfaces of the brick and the testing machine.
The repressed brick exhibits the greatest crushing strength of any brick on record; it is also superior in strength to sandstone, and fully four-fifths as strong as granite. The tests of stone are usually made on cubes one or two inches on each edge, and such tests show a greater strength per square inch than would be the ase if the form of the block was like that of the brick tested; so if the proper allowance for form should be made, there is little doubt but that the crushing strength of the best brick would compare favorably with the strongest granite. The best results from ordinary pressed brick usually show a strength from 6,000 to 10,000 pounds per square inch, so that the other bricks tested, considering the quality and method of manufacture, show an extraordinary strength. No test could be made for wearing qualities, but the brick exhibit, so far as can be determined by striking them with a hammer, sufficient toughness to make them a superior article of paving brick.

Cloud Rain.

Mr. John Aitken, the well known meteorological investigator, to whom we are indebted for the discovery of several fundamental facts in connection with the formation of fogs and dew, has been investigating clouds from the summit of the Rigi and Pilatus. He now finds, as in former observations, that fog is intimately dependent on the presence of dust particles in the air, each of the invisible granules forming the nucleus of a tiny head of water, these vesicles constituting in the aggregate clouds, mists, and their kindred. At elevated situations the air is comparatively free from dust, while lower down it is full of it. But while clouds are passing over a peak the number of particles varies considerably. This, he discovers by a series of carefully compiled data, is due to the fact that the air entering into the clouds has forced itself up from the valley below. Hence the mountain air is pure or impure in exact accordance with the amount of this lower world current which has reached it. When the cloud vanishes, the ether resumes its old composition. Another curious fact just discovered by the same indefatigable observer is that the moment a cloud forms it
begins to discharge its contents in the shape of a steady begins to discharge its contents in the shape of a steady
shower of minute drops. These drops are not capable of being appreciated, by the unassisted senses; but by the "fog counter," an instrument of Mr. Aitken's invention, the exact number falling on a given space can be readily noted. What is still more curious is that though the air is in such circumstances saturated with damp, seats, stones, and other large objects near the earth are perfectly dry, the drops being evaporated by the radiant heat of the ground; but a pin's head or other small object, not offering the same area, is in these circumstances often covered with a minute globule of water. The fact of a cloud thus beginning to rain small drops whenever it is formed may account for the disappearance of these vaporous masses by gradual exhaustion, without any change in the wind or temperature.

Articular Rheumatism.

In the North American Practitioner for September, 1891, Dr. Joseph Lane Hancock writes that for the last two years he has been treating cases of inflammatory rheumatism with a local application of carbolic acid applied, in the form of a four per cent solution on a warm flannel cloth wrapped closely around the entire affected joint
Dr. Hancock states that his custom is to leave this dressing on overnight, placing it in position just before the patient retires.

A MACHINE TO FACILITATE FILLING OF BAGS.
The filling into bags of granulated sugar, grain, etc. is designed to be efficiently and conveniently effected by the machine shown in the illustration, which has been patented by Mr. Jose R. Mesa, of St. Catalina, Correl Falso, Macuriges, Cuba. Its frame is attached to a post or other suitable support, and has a transverse pivot, on which are fulcrumed oppositely extend ing levers, the inner ends of which are upwardly curved, and carry at their extremities friction rollers. These rollers are adapted to be engaged by a cam on the front end of a shaft turning in bearings in the frame, and carrying a gear wheel meshing with a pinion on a main driving shaft, whereby the cam imparts a continuous swinging motion to the levers. On the free end of each lever is a bagholder, supported from an eye, and having three outwardly extending arms connected with the inside of a ring, having an outer beveled edge, around which the upper edge of the bag is held by another similarly formed ring, having grooves to accommodate the seam of the bag, the mouth edge of the bag being turned over upon the outside of the outer ring. The bag is filled by a spout, as shown in the dotted lines, or by other

MESAS PACKING MACHINE

means, and, as the filling progresses, the bag is constantly swung up and dropped down upon the floor, by the action of the cam upon the levers, whereby the contents are very firmly packed. The bag is readily disconnected from the holder by a slight movement of the outer ring, just before it strikes the floor, and an empty bag is just as readily attached in position to be filled. The motion of the machine and the rate of feed are designed to be so regulated that the bag will be lifted and dropped any desired number of times before being completely filled and detached from the holder. Either of the levers may, if desired, be ope rated singly.

Further information, relative to this improvement may be obtained of Mr. Henry Mesa, No. 591 Lexing ton Avenue, New York City.

AN IMPROVED WRENCH.

A wrench, especially adapted for use in cramped obstructed situations, as in corners and other locations where the space is limited, is shown in the accompany ing illustration, and has been patented by Messrs. Wil liam F. Parsons and Andrew Davis, of New Kamilche, Washington. The handle bar has a fixed and a sliding jaw of the usual form, and the inner end of the bar has a notched curvilinear edge, there being pivoted upon thi end two parallel jaws of a grip piece, the intervening slot receiving the curved ratchet head of the handle bar. Two similar, oppositely located locking dogs are pivoted between the jaws, adapted to interlock with

PARSONS \& DAVIS' WRENCH.
the notches in the ratchet head, a spring between the limbs of the dogs causing the toes of the latter to simultaneously enter the notches of the ratchet head, and retain the grip piece at any desired point of angular adjustment. The wrench is ordinarily employed in the usual manner; but in use within contracted spaces, as in turning a bolt or nut close to a corner or near a ver-
tical wall, the handle may be swung around, as shown in full and dotted lines in one of the figures, the grip piece being manipulated by pressing in upon the grip piece to be locked at the desired angle to the handle bar.

A BALANCED VALVE FOR STEAM ENGINES.

The improvement shown in the illustration is de signed to render the balancing of the ordinary locomotive slide valve more perfect when the engine is moved by gravity, without steam, as when the locomotive descends a grade with steam shut off from the valve chest. Fig. 1 is a perspective and Fig. 2 a side sectional spective and Fig. 2 a side sectional
view of steam chest in which the vew of a steam chest in which the
valve is provided with this improvevalve is provided with this improve-
ment, which forms the subject of a ment, which forms the subject of a
patent issued to Mr. Daniel Kiley, of patent issued to Mr. Daniel Kiley, of
No. 12 Cooper Street, Brooklyn, N. Y. Under the lid of the steam chest is a pressure plate, held a short distance away from the lid by spacing blocks at each corner, thus affording a smal steam space between the lid and plate, which is of less width and length than the inside of the steam chest. There the inside of the steam chest. There
are the usual steam ports and pas are the usual steam ports and pas-
sages, as indicated by the arrows in sages, as indicated by the arrows in
Fig. 2, but in the top of the valve body are cut grooves near each side and end wall, intersecting each other at the corners to form a rectangular channel all around the top of the body, and in this channel is placed a
 washer plate of the same shape, there being below the plate, in each side and end channel, a semi-elliptic spring, as shown in Fig. 3, there being also at each corner a pin, around which is held a spiral spring. Upon the washer plate, in each groove, is inserted a joint bar, fitting practically steam tight, but free to slide vertically, the upper sides of the bars having a steam tight engagement with the lower side of the pressure plate, so that a shallow air tight chamber is produced between the plate and the top of the valve between the grooves, which is maintained when the valve is in motion. In connection with this chamber there is centrally formed an aperture in the top wall of the valve, in which is screwed a valve box having a disk valve that closes upwardly, but, when free to do o, drops slightly, opening a passage through latera holes in the valve box. In the lid of the steam chest is also held a winged valve, sliding above a hole in the pressure plate by the loose engagement of its .wings with a cupped recess in a cylindrical plug screwed in the lid, the hole in the pressure plate being thus sealed when the valve is held upon the plate by steam pres sure. This winged valve and aperture in the pressure plate may be located at either side of the center, if desired, or anywhere within the air tight space under the pressure plate, and in the plug is located an oil cup or other means of supplying the lubricator required. other means of supplying the lubricator required.
When the locomotive is using steam and the wing valves close the aperture in the pressure plate, there will be only normal air pressure in the chamber unde the plate, but when steam is cut off and the locomo tive, in descending a grade, pumps air out of the steam chest, the wing valve is opened and the lower valve is closed by the vacuum. These valves thus allow the vacuum to get hold of the whole top surface of the main valves, the same as an ordinary valve without a balance, and lessen the friction between the joint bars and pressure plate.

AN IMPROVED ORE WASHING JIGGER

The illustration represents an ore washing maçhine designed to be simple and durable in construction, and very effective in operation, completely separating the ore from the tailings. It has been patented by Mr Thomas Rowe, of the East Fork Concentrator, Triumph P. O., Alturas County, Idaho. Upon a suitable frame are blocks, on which rests the jigging frame, supporting transverse rollers over which passes the endless carrier belt, also passing over rollers journaled at the ends of the main frame, one of the latter rollers receiving motion to move the belt. The jigging frame is slightly inclined longitudinally, and is also inclined transversely, the belt being correspondingly inclined in the two directions. After the belt leaves the roller at the high end of the table, toward which its top portion always travels, it passes under a roller in a depositing trough beneath, filled with water or other suitable liquid, and adapted to receive the precious metals separated from the tailings. The belt passes from this trough upward, the tailings. The belt passes from this trough upward,
over an intermediate roller, and thence around an adover an intermediate roller, and thence around an ad-
justably journaled roller, whereby its tension may be conveniently regulated, before passing over the roller at the other end of the table. On the sides of the jigging frame are transverse strips resting on the tops of cams, as shown in section in Fig. 3, these cams being secured on longitudinal shafts, one of which has a cone pulley connected by belt with a power shaft, while
each of the shafts, one on each side of the machine, ha a crank arm, and the crank arms are connected with each other by a link, as shown in Fig. 2, whereby, as the machine is operated, the cams are continuously lifting and suddenly dropping the jigging frame, thereby imparting to it a jigging motion. A belt from the longitudinal shaft rotates a short shaft, on which is a worm in mesh with a worm wheel on one end of the shaft carrying the roller over which the carrier belt passes at the high end of the table, giving a traveling
motion to the belt as the jigging frame is operated. At the high side of the frame, but near its lower end, directly over the belt, is the inlet chute, through which the ore is passed on to the belt, a trough to supply water being also adjustably supported at the desired distance above the high side of the belt by means of transversely extending slotted arms connected with vertical slotted posts. One or more perforated water supply pipes also extend over the belt near its high end, for the further washing of the pulp and clearing of the ore. At the low side of the frame is an inclined board discharging the tailings into a longitudinal trough, having a partition near its high end forming a second compartment, the latter discharging into a receptacle, into which some of the heavier tailings are washed, to be treated over again, while at the lower end of the frame is a transverse board to prevent the material flowing off that end of the belt. As the pulp is fed on to the carrier belt against the pitch of the latter, the jigging motion and the flow of water cause the heavier particles to be

ROWE'S ORE WASHING JIGGER.
gradually separated from the tailings as the belt advances, the tailings passing into the trough on the low side. The ore, however, settling upon and adhering to the belt, is carried forward in almost a straight line, adhering to the belt when the latter passes over the roller at tf 3 high end, to be washed off and deposited in the settling tank.

The Language of Monkeys.

Professor Garner, who has acquired reputation as a tudent of the monkey language, proposes to visit Africa, with such appliances for a residence among the gorillas as will enable him to become acquainted with their speech, the vocabulary of which is likely to be richer than that of ordinary monkeys. He intrends to occupy a large and strong iron cage, in which he can be safe from the attacks of the powerful animuls, while he listens to their remarks and preserves them by the phonograph. Professor Garner thinks that he will be able to ascertain the views of leading gorillas with less difficulty and more precision than is possible in the case of some distinguished persons who spe. with great facility on topics of vital interest.

THE "TEMPLE BLOCK," SALT LAKE CITY.
The Mormon Tabernacle at Salt Lake City, the central one of the three structures shown in our illustration, has had the reputation of being, ever since its erection, the largest assembly hall in America. It is capable of comfortably seating 8,000 people. It is 250 feet long, 150 feet wide, and 80 feet high. The building was completed October 6,1867 , having been a little more than two years and a half in process of erection. Its construction was superintended by Mr. Henry Grow, and the cost was paid by the voluntary contributions of the Mormon people. The roof is composed of a lattice truss, the thickness from the inside of the ceiling to the shingles being ten feet, and the trusses resting upon forty-four sandstone piers built in the most substantial manner. There are twenty double doors, nine feet wide, opening outward, with large windows above them running up under the eaves, serving the double purpose of lighting and ventilation, there being also two large windows in the roof. It is lighted by electricity. The large organ with which it is furnished was made in Salt Lake City, and nearly all of the work was done within the Tabernacle itself. Mr. Joseph Ridges superintended the construction and Messrs. Johnson \& Taylor added many improvements. It has 57 stops and 2,648 pipes, the largest made of wood brought from Southern Utah, and its cost was over $\$ 100,000$
Twice a year, April 6 and October 6, the Tabernacle is filled to its utmost capacity. Perhaps the most remarkable thing about the building is its marvelous perfection as a sound chamber, a faint whisper being plainly heard 250 feet away, at which distance also can be distinctly heard the fall of a pin dropped only two inches upon a table. The latter fact was demonstrated only a few weeks since, in the presence of a representative of the Scientific American. Curiously enough, however, [it appears that, although a speaker need never speak very loudly to be distinctly heard in all parts of the building, yet a serious obstacle to the hearing frequently arises from any noise made by the hearers-the moving of feet, or other slight cause, naturally producing as far-reaching effects as the voice.
The Temple, shown at the right of the picture in its present unfinished state, was commenced in 1858. Upon the arrival of the Mormons in Salt Lake Valley, in 1847, Brigham Young, looking toward Ensign Peak, marked the site with his cane, saying : "This is the place to stay; this is the spot I have seen in vision." When completed it will be one of the most durable and imposing edifices in America. The walls are ten feet thick at the surface of the ground. There are to be three towers at each end, the center ones being each 220 feet high. The building is 186 feet long by 99 feet wide. It is built of white granite, quarried at the mouth of the Little Cottonwood canon, twenty miles

The Assembly Hall, in the southeast corner of "Temple Block," is 68 by 120 feet in size, and has an auditorium designed to seat 2,000 persons. The cost of the building was nearly $\$ 250,000$.

A MACHINE TO GRIND SICKLE BLADES, ETC
A compact and simple machine to facilitate the grinding of sickle blades of harvesters or mowing machines while on the cutter bar, giving them a correct beveled cutting edge, and also adapted for sharpening

KNOBEL'S SICKLE GRINDER

cutting tools of various kinds, is shown in the accompanying illustration. The improvement forms the subject of a patent issued to the Rev. A. Knobel, of Louisville, Ky. To a forwardly extending portion attached to a casting to which the four legs are bolted, is attached a sickle clamp, consisting of three pieces, one of which is bolted to the base piece, an intermediate part being attached to this piece by a hinge joint, and an upright clamping section being hinged to the intermediate part, whereby the knife may be kept in a horizontal position and at the same time moved per pendicularly to bring all parts of the edge to be ground against the stone. A lever inserted in holes in either side of the intermediate piece may be used to move the knife perpendicularly, but this lever may be dispensed with, and the knife moved by simply grasping a two-part handle, the lower part being movable, so that by closing the hand the knife is gripped. The clamping section has side arms or extensions, whereby
it may be adjusted backward and forward, while the seat-holding rod is held in any position to which it may be raised by a key seated in the socket portion of the support. The tool rest or table is designed to facilitate the handling of the work, and the cranks and tate the handling of the work, and the cranks and
pedals are adapted to insure a steady motion in either pedals are

The Manufacture of Mosaics.

One of the few industries of Rome is the manufacture of mosaics, the largest establishment being under the control of the Church, and employed almost entirely in the adornment of churches and religious estab lishments. The process of making a picture in mosaic is very slow and requires the highest order of skill. To begin with, mosaic is made of glass, and its value consists in its being indestructible
The workmen in great pictures have to use something over 26,000 shades of colored glass to produce the tints requisite, as in a mosaic every color is necessary, just as in an oil painting. To make a picture, the process is this : A plate of metal of the required size is sur rounded by a raised margin an inch in height. A mas tic cement of powdered stone, lime and linseed oil is spread over the bottom of the plate, and that is covered up with plaster of Paris to the level of the rim. Upon this the picture to be made is very carefully drawn, and the mechanic's work begins
He takes a piece of glass of the exact tint necessary and fits it into its place, grinding to the shape. Then he goes on, one piece at a time, till the picture is finish ed; then the face is ground down to smoothness, and the picture is set in its place.
Some of the greatest pictures of ancient and modern times are in mosaic, the tints, with all the delicate shades, being carefully reproduced as in oil, and the effect being finer. The ceilings of many of the great churches of Rome are entirely of mosaic, as well as many of the altar pieces and other decorations. As they are entirely indestructible, and never lose their color, they are very much prized. A picture in mosaic costs a great deal, but then it is eternal, barring fire and earthquakes.
All over Rome there are small shops devoted to the manufacture of mosaic table tops, box covers, etc., the workman toiling all his life on one subject. The man who begins on St. Peter's or the Coliseum never does any other subject, and he becomes so skillful in this one that he is enabled to execute it not only well, but cheaply. He has only the tints to manage that enter into one picture, and he places them mechanically and very rapidly.

Cement for Metal

This well known cement, which is prepared from zinc oxide and zinc chloride and some other material,

THE FIVE MILLION DOLLAR MORMON TEMPLE AT SALT LAKE CITY.
diskant, and formerly hauled by ox teams, but now the knife will be firmly seated when the end sections \mid such as iron slag, powdered glass, etc., may be caused brought by rail direct to the Temple grounds. It has are being operated on, and the clamp, while holding to set more slowly by adding with the zinc chloride cast up to date nearly four millions of dollars. The the knife securely, allows it to be quickly and easily Mrormon temples are not designed for public worship, released and a new section clamped as the work prohout for the administration of ordinances, rites and gresses. The seat for the operator has a pipe support, adthencnies, etc., and the assemblies of the orders of the in the upper end of which slides a piece of square iron, priesthood.
when it is mixed with the other ingredients, some zinc sulphate and powdered limestone. The adhesive power of the cement (for cementing metals) may be increased by the addition of 2 per cent of ferrous sulphate. $-H$. spenle.

Starboard and Port.

Since the 1st of July, of this year, the old words of command for altering the helm, viz.; "starboard" or "port," have been given up on board the ships of the North German Lloyds and the Hamburg-Ameri lines, and the order "right" or "left" substituted.
It is difficult to break with old customs, and seamen in especial are conservative; it is, therefore, not a matter of wonder that many old sailors look with great disfavor upon this latest innovation. On board the steamers of the two great lines mentioned above, however, the change has been made obligatory, and, according to a report forwarded to the directors by one of their oldest captains, who was himself opposed to the idea, has been attended with the happiest results.
As soon as the order "right" is given, the telegraph is moved to the right, the wheel is revolved to the right, the ship turns to the right, the rudder indicator points right, the rudder itself moves right, and the steering mark on the compass as well; and so vice versa when the order "left" is given. Nothing can besimpler, and no possibility of mistake can arise.
The objection has been raised that the new words of command are not international, and are therefore illegal. This statement, however, will not hold good, as both English and American pilots, in whom every one has confidence, have made no difficulties in using the new words of command when piloting ships of the two before mentioned companies.-Nautical Magazine.

THE "ADAMSON" GUN.

The illustrations represent a sectional elevation, end view, and plan respectively of a gun invented by the late Mr. Daniel Adamson. The principal feature of this type of gun consists in abolishing the trunnions and substituting therefor a ball joint, A , or spherical enlargement, which works in a suitable socket on the gun carriage. The advantage claimed for this arrangement is that the gun-a model of which is now exhib-ited-can be readily trained to cover a much greate ited-can be readily trained
range withoutmoving the carrange without moving the car-
riage. The gun was made at riage. The gun was made at
Bofors, in Sweden, and, according to Industries, has been tested by Swedish artillerists with the following results:
The gun was fired five times in twenty seconds. An elevation of 25 degrees was found to carry the projectile $\dot{2} 6,250$ feet, or nearly five miles. Eighty-five rounds were fired. It is stated that the gun, with even more than sufficient strength, combines great durability with respect to its weight, and that the mechanism is simple and easy to manage, and does not require experts for its handling. The leading particulars of this gun are : Caliber, $3 \cdot 36$ inches length, $98 \cdot 43$ inches ; weight, 1,200 pounds; rifling, number of grooves, 24 ; depth of grooves, 0.039 inch; width 0.295 inch ; width of lands, C•138 inch ; twist muzzle, 33 caliber; weight of shell, 14.77 pounds; weight of charge (black powder), 5.51 pounds; volume of chamber in case, $161 \cdot 72$ cubic inches; volume of bore, $796 \cdot 40$; muzzle velocity, 1,020 fcet with black powder, and 1,970 feet with smokeless powder.

The Tocei Twins.

The Southern Practitioner, an influential monthly devoted to medicine and surgery, published at Nash ville, Tenn., has produced in the January number the engraving of the Tocci twins, with the description, which appeared in this paper in issue of December 12, last year. In referring to this interesting specimen of tocology, the editor states the source from which his article is derived as follows :
"The description is taken from that standard and most reliable publication, which we regard as the best journal in Americaor the world, the Scientific AmeriCAN. Having had a personal and private interview had a personal interview with Messrs. Chang and Eng, the great Siamese twins; and in a somewhat arduous work in medicine since 1854 , it has been my opportunity to see more or less of monstrosities and abnormal formations, yet I do not hesitate to class the Tocci twins as something more than remarkable. It is to be hoped that if they ever marry they will have 'two souls with but a single thought, two hearts that boat as one.'"

Anti-Friction Bearings.

The metal of the well known patent Magnolia antifriction bearings has been found by analysis to have the following composition :

The origin of letters patent for inventions dates as far back as the Statute of Monopolies in the reign of James I., by which statute exclusive rights were given to the first and true inventor of a new manufacture for a term of fourteen years, provided it was not contrary to law or mischievous to the State. A patent for a use ful invention is not under our llaw, nor, indeed, under the law of England nor any foreign country at the pre sent day, the grant of a monopoly in the sense of the old common law. It is the grant by the government to the originator, discoverer, or inventor of a new and use ful art, machine, manufacture, or composition of mat ter, or any new and useful improvement thereon, of the exclusive right, for a term of years, of practicing that invention. The consideration for which this grant is made by the Crown is the benefit to society resulting from the invention, which benefit is conferred upon the public by the inventor : first, by the immediate prac tice of the inventor under the patent; and, secondly, by the practice of the invention or the opportunity to practice it, which becomes public property on the ex piration of the patent.
The history of patents in Canada begins in 1824, when the first patent was issued on the 8th of June to one Noah Cushing, of the city of Quebec, for a washing and fulling machine. From that date up to the year of the confederation of the Provinces, there were only 1,866 patents issued, and these comprised the patents issued by each of the provinces or colonies, which before that period had a separate patent act of its own. fore that period had a separate patent act of its own.
Since confederation, however, a great increase has been made in the number of patents taken out in Can ada, nearly 40,000 patents having been issued since then. Our valuable manufacturing, lumbering, and mining industries, fostered and protected by the national policy, have in a large measure stimulated the progress of invention in this country, and it may safely be said that the sons of this fair dominion have pro duced inventions the importance of which is in no de
ers of tyrants, and the like. And if any one rightly compare them, he will find the judgment of antiquity to be correct; for the benefits derived from inventions may extend to mankind in general, but civil benefits to particular lands alone. The latter, moreover, last but for a time, the former forever. Civil reformation is seldom carried on without violence and confusion, while inventions are a blessing and a benefit without injur ing or afflicting any."-The Canadian Manufacturer.

The Carbonization of wool

The successful extracting of cotton from union cloths without injury to the reclaimed wool has led to the ex tension of the process to raw wool for the purpose of ridding it of burrs and other particles of vegetable mat ter. These burrs are very difficult to remove, and often leave a large amount of waste during the process of extraction, while, if allowed to remain, they would do in calculable mischief to the yarn. There are two methods of dealing with them in general use-one is to pass the wool through a burring machine, which beats the burr from the wool; and the other is to destroy the burrs by carbonization. The former method is most suitable when the wool contains large burrs; but carbonization is more economical for wool containing small burrs, traw, chaff, and other small particles of matter. One drawback in using the burring machine is that many of the smaller burrs adhere to the wool after being passed through the machine, and carbonization is afterward resorted to, in order to reclaim the wool attached. to them. For this and other reasons the chemical proces is likely to totally supplant the burring machine in ourse of time. The process generally adopted is similar to the one followed in making extract wool. Th burry wool is first saturated with a dilute solution of sulphuric acid, whizzed in a hydro-extractor, and after ward opened out and spread in a heated room. Here chemical action is quietly at work, the burrs are de prived of their hydrogen, and crumble to carbon, while the wool is liberated and washed

Another method which finds favor is to saturate the wool with a solution of chlo ride of aluminum $\left(\mathrm{Al}_{2} \mathrm{Cl}_{6}\right)$. After boing whizzed and dried it is taken to a room heated to about $200^{\circ} \mathrm{F}$., where it re mains for a little less than an hour. Washing in fuller's earth and water follows, by which the chloride is removed and the residue of carbonized matter washed away. The prejudice which formerly cx isted against these method of extracting burrs is rapidly disappearing, as experience has proved that if the wool be properly clean previous to carbonization, and the acid the required strength, no in
gree inferior to those of our neighbors south of us. Such is the enterprise of Canadians that patents for important inventions are now being taken out by them not only in Canada, the United States, and Engand, but in the various colonies of the empire, and in many foreign countries.
Patents are granted in Canada for a term of fifteen years. The first government fee is $\$ 20$, which fee protects the invention for five years, two further fees of $\$ 20$ for each succeeding five years being requisite in order to protect the invention for the full term. It is, therefore, necessary to pay the first fee in order to ob tain the patent, and the subsequent fees in order to keep it alive the full term. Two other requisites are necessary in order to keep the patentalive, namely, the article covered by the invention must be manufactured within two years from grant, and it must not be im ported for more than a year. Specifications, drawings, and models are required to be sent to the Canadian Patent Office before a patent will be granted, and such is the importance of having inventions thoroughly covered, in order to protect the inventor from infringement, that special experts are employed by inventors, so that their applications may be prosecuted to a suc essful issue before the Patent Office. It is essentia that men having a legal as well as a mechanical experience should be employed.
Many people are in the habit of not only thinking of, but speaking of, inventors as cranks. But when one considers the advantages reaped from the indomitable energy and perseverance of such so-called cranks, it must be confessed that to that class of the community we are more indebted than to any other.
Lord Bacon corroborates this! statement in the folwing:
"The introduction of great inventions appears one of the most distinguished of human actions, and the ancients so considered it; for they assigned divine honors to the authors of inventions, but only heroic honors to those who displayed civil merit, such as thc founders of cities and empires, legislators, the deliver ers of their country from lasting misfortunes, thequell-
jury to the fiber is caused, neither is the felting of the wool in any way destroyed.

Convention of the National Association of

 Inventors.On January 19 of the present year, the National As ociation of Inventors held their first annual meeting. This body is tho outcome of the Patent Centennial which met at Washington last winter. The list of officers includes distinguished names. The President, Dr. Gatling, of Hartford, Conn., known as the invent of the Gatling gun, occupied the chair, and was the writer of the presidential address, which was read by the Commissioner of Patents, Hon. George E. Simonds Other officers of the association are as follows: Vice Presidents, Hon. Gardner D. Hubbard, president of the American Geographical Society; Wm. A. Anthony president of the American Institution of Electrical Enrineers; Thomas Shaw, of Philadelphia, inventor; and Hon. Benjamin Butterworth, secretary of the World's Fair ; Secretary, Prof. J. E. Watkins ; Treasurer, Mr. Martin E. Stone.
The president's address touched upon the propriety of liberal treatment of inventors, the necessity for increasing the number of Patent Office examiners, and the necessity of a special patent court. The World's Fah and the exhibition of the results of American invention were also spoken of. Informal discussions of the work of the two main committees on legistation and manu factures occupied much of the time of the meeting, and inally an adjournment was taken for one year, to mee again in Washington.

A WELL known business man, referring to the success of his firm, said: "We attend to our own busimess and nothing else. You never hear of any of us being on the road nor out driving. We do not go to the theaver. We have no outside business-no ventures or speculations in oils, wild lands, patents or stocks. What money we have we have put into our house. We take care of our business and our business takes care of us. We keep abreast of the time."

THE NEW AMERICAN WAR STEAMER MIANTONOMOH. The double turreted monitor Miantonomoh represents the latest accession to the United States navy. She is now practically completed, and nothing is left for her full equipment and preparation for war but the introduction of some minor pieces of machinery, and some additional supplies, her crew and much of her ammunition being now on board. She is a typical batile ship. It is believed that there is no ship of war afloat in any water that she could not cope with. In the matter of speed, she is, like all the monitors, somewhat deficient, her rated speed being $101 / 2$ knots per hour.
The keel of the Miantonomoh was laid by John Roach \& Sons, at their works on the Delaware River, in 1874 , and the hull was completed there. In many respects she represents a reproduction of the old wooden monitor Miantonomoh. The present ship is built of iron, except as regards her armor plates, which are of steel. The general dimensions, as given in the official records of the navy, are as follows :
Length, 250 feet; beam, $551 / 2$ feet; mean draft, 14 feet $13 / 4$ inches; displacement, 3,815 tons; indicated horse power, 1,030 . The maximum depth is 17 feet $41 / 2$ inches, leaving about 3 feet of freeboard. The engines are of the inclined compound type, and actuate twin screws. The armor of the hull consists of a protective belt 6 feet deep; the upper section is 7 inches thick, and goes 18 inches below the water line. The next section is composed of two superimposed plates, one 3 inches and one 2 inches, and the final strip at the bottom of all is 3 inches thick. The deck, which is almost flat, and non-deflective, is composed of two superimposed plates of $7 / 8$ inch steel planked over with 4 inch pine.
The outer plating of the turrets is $111 / 2$ inches thick. This is backed with 10 inches of wood, which is again backed with two steel plates, each $1 / 2$ inch thick. The turrets are 24 feet in external diameter, rise a little over 6 feet above the deck, and are each surmounted by a conning tower a little less than 8 feet diameter at the base, and projecting 2 feet above the top of the main turrets. In action, when the turret is struck, rivet heads or splinters are liable to be detached and to fly off with considerable velocity. To protect the firing crew from injury, an inner shield lines the turret. This shield is spaced off 8 inches from the backing, and is composed itself of $3 / 4$ inch steel plate. The deflective armor of the conning tower is 9 inches thick.
In each turret two 10 inch breech loading rifles are mounted în parallel, and are manipulated by hydraulic gear. Each gun is held in place by hoops upon a saddle, which is free to slide back and forth upon the rails of the carriage. As shown in the cut, the carriage is pivoted to the turret at its front end, so as to be incapable of recoil. The recoil backward of the gun itself is checked by a hydraulic cylinder containing water, through which a piston is driven by the action of the gun on its recoil. A very limited waterway is provided for the escape of the water from behind the piston, so as to bring the gun to a stop without serious shock. With a full charge, the gun recoils about forty inches.
Below the gun deck of the turret the space is utilized for the supply of ammunition. The shells and powder cartridges are brought in, and, by means of a circular railroad, are wheeled around the turret so as to come under the hatch, which, of course, shifts around as the turret turns. An elevator is provided for carrying them up to the gun deck, and there they are shipped on a carriage upon another transverse railroad, which brings them opposite the open breech of the piece. For loading, the breech is dropped, bringing the bore in line with an inclined hydraulic cylinder and rammer in its rear. An approximately vertical hydraulic cylinder and piston permit the breech to drop or raise it, as desired. The shell is pushed home by a hydraulic rammer; next the powder is inserted, bag by bag, and pushed home by the same rammer. Brown perforated hexagonal prismatic powder (Dupont's) is used. It is packed tightly in the cartridge bags, several of which are used for a charge. In the rear of each bag are nine lievagonal grains of priming powder to disseminate the ignition. The breech block, which is of the interrupted serew type, with mushroom and gas check, is inserted and turned home, a copper priming needle is pushed through the axial vent of the breech block, so as to wibk a hole in the rear powder cartridge, the primer, Wich may be frictional, detonating, or electric, is put or tire is fixed by rotating the turret. In the conning arwe the firing office: looks ont of a little cross-shaped window, which in itself forms the rear sight; forward ore the roof of the turret is the front sight. These two are arranged accurately parallel with the vertical $p^{\text {banes passing through the axes of the guns. The }}$ clevation of the guns is determined by the hydraulic ram just mentioned, and actuated by a lever in the conning tower, and the firing officer has at his side a
dial indicating the number of degrees of elevation dial indicating then piece.
given each pion

Through the center of the turret a hollow spindle runs down the bottom of the ship, through which com-
munication is had from the conning tower to the different mechanism required to be worked therefrom. Without leaving his place, the firing officer can locate the turret to bring his sight to bear upon the object, can raise or depress either or both of the guns to get the range, and can fire them singly or simultaneously, if desired, by the electric primers, simply pressing a bulb to produce the ignition. Immediately after firing, the turret can be rotated so as to present its unperforated side to the enemy, while the guns are being loaded. Levers and valve handles are provided for all the manipulation, within easy reach in the conning tower. By the speaking tubes and bell calls of the central spindle, the officers in the tower can communicate with all parts of the ship, including the other turret.
The water supply for the hydraulic machinery of the turret enters through this center spindle, which, it will be understood, is stationary, the turret rotating around it. Two collars, three sided, or D shaped, in section, encircle its lower part, and, as these collars rotate with the turret, the water is delivered into one and discharged from the other, through the center spindle. The problem to be solved was the introduction of water into machinery in and moving with a rotating turret, through whose center a stationary hollow spindle extends.
The ship is provided with a fighting mast of hollow steel, through whose center ammunition is hoisted to the fighting top. Her armament includes the four 10 inch breech-loading rifles, whose manipulation has been described, and which weigh about 63,000 pounds apiece One is 27 feet, another 29 feet, and two are 30 feet long. They have a practical range of 7 miles. The
service charge is 256 pounds of powder. The projectile service charge is 256 pounds of powder. The projectile
is a cast iron shell with soft metal rotating band, is a cast iron shell with soft metal 12 pounds of shellexploding powder, contained in 128 cotton bags. Each shell has a percussion primer. The guns are American in their assembling, having been turned out at the Washington navy yard. The shell is $9 \frac{95}{100}$ inches diameter, giving only $\frac{1}{2} \sigma$ inch total windage. The rotating band, however, fits so tightly as to leave little chance of escape of gas.
A very important feature is the steering mechanism. The ship steers very badly by hand, but is provided with steam steering engines that keep her under perfect control. An electric steering device is to be put in that will enable her to be worked from either conning tower. Thus the ship will be fought entirely from this point, the steering, rotation of the turret, ranging and firing of the guns, being effected therefrom, and within absolute control of a single man if desired.
To prevent water from entering around the turret a diaphragm of leather is provided which encircles the base of the turret and is held down by segmental plates of metal and expansion turnbuckles against a wooden scupper groove. In action the turnbuckles are to be backed up a little to relieve the friction, so that the turret can be turned freely and without injury to the diaphragm.
A double line of teeth encircle the base of the turret with which the turning engine engages. The turret is carried by 20 forged steel coned rollers, 14 inches diameter and 10 inches thick. Eight small horizontal rollers bear against the interior of the base, to prevent lateral displacement.
The vessel has a double bottom, a clear space of 28 inches existing between the two skins. She is lighted throughout by electricity.

The Coloration of Preserved Foods.*
The time-honored method of imparting a beautiful green color to preserved foods consists in treating the articles to be colored with a solution of copper sulphate which is quickly poured off and the last traces removed by repeatedly washing with water; the preserved articles are then boiled and the vessels containing them are soldered up. The coloration results from the formation of the copper salt of an acid derived from phyllo cyanin. This body is very inert, is insoluble in water hydrochloric acid and acetic acid, soluble in alcohol, and indifferent to the action of light. As the quantity is quite small, only a few milligrammes in 100 grammes the author is disposed to tolerate the practice.
The green coloring matter of leaves, etc., is extremely sensitive both to light and to acids of every kind. In order to hinder its decolorization, sodium carbonate is commonly added to green vegetables before cooking, by which treatment free acids are neutralized, and also such salts as potassium acid oxalate. Not only is the action of the acids upon the chlorophyl thus prevented, but a relatively stable sodium salt, green in color, is formed, enhancing the effect. A. Tschirch.

An alloy which adheres firmly to glass and can, herefore, be used for joining up glass tubing, is said, by Mr. F. Walter, to be made by adding 5 per cent of copper to 95 per cent of tin. The tin is first melted and the copper added subsequently.

* Read at the sixty-fourth meeting of the Deatsch, Naturforsch. u

Sorrespondence.

The 100 Puzzle.

To the Editor of the Scientific American:
The request of I. W. B. (Dec. 19, 1891) for a solution of the " 100 " puzzle has, I note, brought out a number of ingenious evasions of the terms of the puzzle. The only way in which a study of such problems can be made of use is in trying to discover why they are insoluble.

Referring to the table below, the reader can see that the sum of nine consecutive numbers, beginning at 1 (column 1), is equal to 5 nines, 45 , and that the trans ference of any figure to the place of tens (columns and 3) subtracts the amount of the figure from the units and adds it to the tens, thus increasing the total by as many nines as there are units in the figure. The sum of any nine consecutive figures can never be there fore anything but a multiple of nines. The sum of any nine consecutive numbers (columns 4 and 5) will also be as many nines as the lowest figure of the series contains more than one, plus the original 5 nines of the lowest series, and the sum of any two series will differ by a many nines as the difference in their lowest figures.

Another peculiarity of the nine digits is that shown in column 6, where each of the 5 nines is successively canceled till there is no remainder.
I saw it demonstrated some years ago that all the curious properties of the figure 9 would pertain to the figure 8 if our notation was reckoned by nines instead of by tens.
A. C. B.

Frankford Arsenal, Pa.
How to Improve the Acoustics of Halls and
To the Editor of the Scientific American
I have read with much interest what Dr. Ephraiz Cutter has suggested about getting the key note of an auditorium, all of which is reasonable, but now 1 will suggest a remedy for a very little trouble with churches and halls where it is most difficult to hear the voice of the speaker distinctly for more than 25 feet distant.
The reason is that the sound is absorbed by the walls and furniture on the same principle that dark surfaces absorb light and heat.
In my long experience in constructing cold storage and refrigerating rooms, I have found, when the rooms were perfectly covered with a jacket of thick cotton rattan, without a single board or piece of wood in sight, that ordinary talking could be easily heard a hundred feet distant.
We now use an artificial board about one inch thick. It is very porous and lighter than cork, and is entirely free from vibration, and thus a perfect non-conductor of sound as well as of heat. If a hall should be finished with this insulating board instead of plaster and wood finish, there would be no trouble for any speaker to be heard in the most remote corners.
A. J. Сhase.

Boston, Jan. 26, 1892.

Street Railroads.

It is but a little time, says the Railway Age, since al street railways were horse railways, and it is surprising to learn that already more miles of lines are operated by electricity and steam power than by animals, and still more surprising that electricity is even now used for more than half as much mileage as that operated by animal power, as the following. statistics of the United States show :

Number of miles operated by electricity.
 Number of miles operated by steam motor
 Number of miles operated by cable.

The number of horses employed on street railwa ines in this country is stated to have decreased 28,681 , being now only 88,114 , while electricity is still pushing orward at a rapid rate to displace the four-footed motors.
lectric highting at the Worid's Exposition The Fine Arts Building is to have no fewer than 2,000 incandescent lights. The grand Manufacturers Hall is to have 2,000 are lights of $2,000 \mathrm{c}$. p. each. The total reached so far for all the buildings is 5,180 are lights and 14,700 incandescents, with some 10,000 more ncandescents for the Administration Building. Allow ing 20 cents per night per arc, that means over $\$ 1,000$ nightly for are lighting ; and should all the 25,000 in candescents burn every evening there will be a further item of another $\$ 1,000$, assuming a rate of one cent per lamp per hour for four hours. The lighting effects will certainly be the finest the world has ever seen.

THE WASHINGTON GUN FACTORY.

In 1866, the Washington navy yard was fixed upon as the site of a naval gun factory, for the finishing of guns from forgings furnished by outside American steel manufactories, a similar gun factory for the army being established at West Troy, N. Y. At that time here were not in the country any steel manufacturers having the plant necessary to make these great forgings, but, under the encouragement guaranteed by the government, private enterprise was stimulated, and within the following two years both the army and navy departments were able to make satisfactory contracts with American producers, for the heaviest forgings, of a quality which would stand the severest tests. It is conceded that the plant now established at Bethlehem, Pa., is equal if not superior to any in the world for the production of armor and high-powered gun forgings.
The Washington gun factory was promptly proceeded with, and has already turned out a large num-

The rifling is effected in a machine carrying a bar whose cutting head sperates during withdrawal, various devices being employed for regulating the twist or inclination of the grooves. The rifling is righthanded and the grooves are wider at the origin than at the muzzle. The breech is closed by the interrupted screw system. The factory is now well provi ded with the necessary boring and turning lathes, planers, slotters, shapers, and milling machines, drills, rifling machines, etc., which must each do their share in the work required upon the modern gun.

Nickel Coating on Platinum or Silver
The following (says La Metallurgie) is the method of nickel-coating platinum, silver, or alloys of these metals adopted by the Societe de Laminage du Nickel, France. The metals to be united to each other should be in the form of plates or wires, the surfaces of which must be as clean as possible. The nickel should, more-
over, be in such a condition of malleability that the
used in pharmacy, chemical laboratories, and certain industries, owing to their perfect resistance to the action of acids and alkalies.

Discovery of गPlanets by Means of Photography. Dr. Wolf, of Heidelberg, has discovered two minor planets by means of photographic plates taken on December 22 and 23. One of these is new (No. 323), but the other is probably identical with Sapientia (No. 275), which has only once been observed, in opposition. Since Dr. Wolf's discovery the two planets have been watched by Dr. Palisa at Vienna. The art of stella photography has made rapid strides of late years, and has now become a powerful instrument in astronomica research. It has been expected that new planet would be discovered by this means, since, if two photographs of the same region of the heavens be taken at different times, upon comparison, a planetary body will betray itself by its movement with regard to the
fixed stars in the interval, or, if a single plate be ex-

BORING, TURNING, AND CHAMBERING HEAVY GUNS AT THE WASHINGTON GUN FACTORY.
ber of six inch rifled guns, with a smaller number of hammering or rolling which completes the welding|posed long enough, the planet will, by its movement, eight and ten inches caliber, and the work for nearly a year past has also embraced those of twelve inches caliber. Work is also proceeding upon lathes for the production of 13,14 , and 16 inch guns. Our view gives a good idea of the appearance of the lathe room, to which the forgings are first sent, after the most careful inspection, rigid tests being made of several pieces cut from each forging. The lathes are served by a 110 ton overhead traveling crane, composed of a bridge which travels lengthwise the shop, a trolley traversing the bridge and fitted with gearing that hoists and lowers the weight to be moved. The power is transmitted through square shafting, the motions being controlled by clutches. On their arrival, the cars containing the forgings are run under the overhead cranes, the forgings being thus taken directly to their respective lathes for boring and turning, two operations which are frequently performed at the same time, the cutting tools shaving off the outside of the tube while the "hog bit" is taking the first and second boring cuts. The final boring cut is taken with a packed bit, this work and that of rifling being intrusted to very skillful me chanics only, as any error here would cause the ruin of the piece.
hould perfect the intimate conjunction of the metals. The surfaces to be united are powdered by a welding material, such as borax, and the two pieces are after ward subjected to a suitable welding temperature they are finally united by hammering or rolling. In order to insure a successful conjunction, the surfaces to be welded should be prevented from coming in contact with the air, which would oxidize the nickel in its ed hot state. For this purpose, a method (one of everal) may be employed which consists in enveloping at the outset the metals to be joined by thin metallic sheets. When, after suitable heating and hammering, the metals are welded, the protective sheet can be removed by pickling, scouring, or other method. With the view of preventing the soldering of the proective sheet on the metals to be welded, it has been found advantageous to coat the interior surface of the protective sheet with a deposit of magnesia, lime, oxide of zinc, or other substance having the same properties, in order to obviate interior contact of the protective sheet with the metals to be welded. When the welding is finished, the protective sheet can easily be removed. Plates and wire obtained in this manner are adapted for the manufacture of receivers and utensils
race a " trail" upon the plate, whereas the images o he stars will be dots, the telescope being driven by clockwork so as to keep them alwaysin its field as they apparently revolve around the earth in consequence of the diurnal motion. The mean places for 1891 of the two planets found by Dr. Wolf are (1) $6 \mathrm{~h} .38 \mathrm{~m} .42 \cdot 28 \mathrm{~s}$ $+24^{\circ} 47^{\prime} 0 \cdot 3^{\prime \prime}$, and (2) $6 \mathrm{~h} .49 \mathrm{~m} .30 \cdot 64 \mathrm{~s} .+18^{\circ} 37^{\prime} 5{ }^{\circ} 33^{\prime \prime}$

The preliminary survey of the Hawaiian cable has been nearly completed. The Albatross has laid out a line rom Salmas Bay across the Pacific, and aftertakting in a supply of coal made a return trip, the progress of which was interfered with by rough weather and inter rupted by a lack of fuel. The vessel put in at \&an Francisco, and on January 6 proceeded to sea again to complete the survey of 600 miles. The line laid dorwn by the Albatross on its outward trip is slightly north of hat laid down by the Tuscarora fifteen years ago Several submarine peaks were encountered, but the bottom is for the most part regular and suitable for the bed of a cable. The report of the return surveys of the Albatross has not been received at the Navy Depart ment, and as soon as the information is in hand, the results will be plotted.

STEAM STONE WORKS.

The illustrations of this subject are taken from the plant of Barr, Thaw \& Fraser, Hoboken, N. J. The elevated track is about 20 feet in height and 150 feet in length, and made mostly of 12 by 12 timber. The traveling crane is also made of 12 by 12 timber, and braced with heavy circular rods. It is 52 feet across from side to side and 12 feet in width. Connected to the end of crane are two 3 foot car wheels, which, when set in motion, run back and forth on steel rails. The crane is set in motion by means of an endless wire cable. The $3 / 4$ inch cable passes around a 6 foot sheave wheel, which is connected to the main shafting. The upper wire of cable runs up through the bottom of the building on the end of crane and around another 6 foot wheel, and down and out again to the 3 foot sheave wheel at the end of elevated track, where it passes back again to large wheel on the main shafting. The large sheave wheel in the crane building is connected to a piece of shafting, which, by means of belting, connects
of the upright shaft revolves around in a ball socket. The upper end is geared to the main shafting. The blocks of stone are placed on the bed by hand, or by a small derrick, until the surface of the stone is smooth. Water and sand is used for the rubbing. Hot wate is used when the weather is cold. The tools for moulding and grooving are of various shapes, generally chisel shaped, and are made of steel. They run from
8 to 12 inches in length.
The rough stone is first placed on the perforated iron table of the moulding machine and made perfectly fast by means of wooden wedges. The machinery is then started and the table and stone move forward, and the
chisels begin to cut out their work. As they cut, the stone crumbles up into powder and small chips. After the chisels have gone over the stone the table is run back, the chisels shifted, and the stone started again. The chisels can be regulated to cut shallow or deep. The face of the stone becomes perfectly smooth after
the chisels have gone over it. The stone blocks to be

The Deadly Alternating Current

A peculiar fatality at a fire in New Orleans is thus escribed: The wind was blowing hard and made fire ghting a hard task. Chief O'Connor was in charge nd was directing Matthew Hannon, a hoseman of Co umbia, No. 5 , who was playing a stream of water on the fire. The chief took the brass nozzle and continued pumping on the blazing debris, while Hannon went to recover his hat, which had blown off. About this time a telephone wire fell and hung down in the doorway The chief paid no attention to it and continued pumping. Suddenly he struck the wire with the stream. The water proved to be an excellent conductor, for a urrent of electricity ran down the stream and the brass nozzle and through the chief. The telephone wire was crossed with an electric light wire. The chief for a w seconds was stunned. Meantime Hannon had secured his hat, and came back to continue his fight on the fire. Unconscious of his danger he bounded to the chief's. side, and as he did so the swinging wire struck

ILLUSTRATIONS OF STONE CUTTING, SAWING, AND POLISHING.
with the car wheels. By drawing a lever back and sawed are first placed on a car and run under the sawforth, and the wire being continually in motion, the ing shed. The cars are about $11 / 2$ foot in height, about shifting of the belting caused by the moving of the 5 feet in width, and about 8 feet in length. They are lever causes the crane to move backward or forward. put into position and then blocked fast. An 8 by 13 The carriage and fall blocks run on 3 foot i cks across foot saw frame is then lowered so that the saws rest on the center of crane, and are moved back ard forth by wire cables also. These wires are aitarhed to two drums in the crane building. One of the drums is used for drawing the carriage block back and forth by means of a 3 foot sheave wheel on the end of crane. The other drum is used for hoisting the atone. The crane is made to run evenly by means of gearing wheels, one being attached to one of the forward car wheels, and th^ other to a piece of shafting which runs across the crane and connects with the machinery in the building. The crane is capable of carrying from 15 to 20 tons.
The rubbing bed is a circular sheet of castiron about $31 / 2$ inches in thickness and about 13 feet in diameter. It revolves 'around inside of a circular wooden fraine called a curve. The rubbing bed when put together is in two pieces. Cast to the bottom of the upright shaft are a number of flanged arms, which projo tout $71 / 2$ feet each way. The rubbing bed is laid on and bolted on the under side to these arms The on
foot saw frame is then lowered so that the saws rest on
the stone. The saws aremade of $1 / 4$ inch steel, and are 13 feet in length and about 6 inches in width. They have no teeth, being flat both top and bottom. Connected to the center of one end of the saw frame is a wooden connecting rod, with crank and fly wheels. This con nects with the main shafting by means of belting When the wheels revolve, the connecting rod draws the saw frame back and forth, and the weight of the frame causes the saws to cut, A little sand and shot crushed steel keeps the saw biting until the stones are sawed through. Water is kept constantly run ning on the stone by means of a perforated iron pipe placed about 4 feet above and across the stone. This pipe has the same motion as the saw frame when running, keeping the whole surface of the stone wet. When the stone is sawed through, the frame is raised by means of a belt chain. The stone is then washed clean, and the car drawn out to be replaced by another. The works are run by a 45 horse power engine
him on the shoulder. He cried, "Oh, my God !" and threw out his arms. The wire swung away from him, but rebounding came in contact with Hannon's left arm. The unfortunate man shrieked once more, and then, as if to throw the deadly wire from him, he grasped it with both hands, and without a moan fell face downward, dead. One thousand people saw Hannon die, and the ordeal was so terrible that the firemen were for a time demoralized.

Remedy for a cold.

In the Scientific American of December 2, 1876, we published the following remedy, which a correspondent, who has derived benefit from it, asks us to reprint :
The medical journals, last spring, published repeat edly the formula for Dr. Ferrier's new remedy for cold in the head. As the season for that distressing malady is at hand, we print the recipe, which is
Trinitrate of bismuth, 6 drachms; pulverized gum arabic, 2 drachms; and hydrochlorate of morphia, grains.
This is used as a snuff, creates no pain, and causes, says the London Lancet, the entire disappearance of the symptoms in a few hours.

The President on Car Couplers.
Railroad men of all shades of politics will find interest in the following extract from President Harrison's message:
"I have twice before urgently called the attention of Congress to the necessity of legislation for the protection of the lives of railroad employes, but nothing has yet been done. During the year ending June 30, 1890, 369 brakemen were killed and 7,841 maimed while engaged in coupling cars. The total number of railroad employes killed during the year was 2,451 and the number injured 22,390 . This is a cruel and largely a need less sacrifice. The government is spending nearly one million dollars annually to save the lives of shipwrecked seamen. Every steam vessel is rigidly inspectwrecked seamen. Every steam vessel is rigidy inspect to adopt the most approved safety appliances. All this is well, but how shall we excuse the lack of interest and effort in behalf of this army of brave young men who in our land commerce are being sacrified every year by the continued use of antiquated and dangerous appliances? A law requiring of every railroad engaged in interstate commerce the equipment each year of a given per cent of its freight cars with automatic couplers and air brakes would compel an agreement between the roads as to the kind of brakes and couplers to be used, and would very soon and very greatly reduce the present fearful death rate among railroad employes."
The American Journal of Railway Appliances dis cusses this proposition editorially, as also the bill which has been introduced by Senator Cullom, of Illinois, evidently with the purpose of carrying out the President's suggestions. This bill provides that all common car riers whose duties include the coupling of cars, and persons who are members of established organizations of railway employes, may within six months after the passage of this act vote upon the choice of an automatic car coupler. Such coupler may be of the vertical type but must be so devised as to couple by impact, and to
dispense with any person going between the cars to dispense with any person going between the cars to
couple or uncouple. Every common carrier is to be en titled to one vote for every freight car owned, leased or controlled, and the employes entitled in the aggregate to one-third as many votes as may be cast by all the common carriers, the Interstate Commerce Commission to have the power to decide upon the validity of the votes cast. If not less than 600,000 votes have been cast, and the entire vote for any particular coupler is not less than 500,000 , the commission shall certify these facts to the President, who shall issue a proclamation declaring the coupler chosen to be the standard safety car coupler for use in interstate commerce, and in case no choice is made the President shall appoint a com-
mission of five competent persons to determine the mission of five competent persons to determine the
coupler best to be used. The bill further provides that all carriers are to equip at least 10 per cent each yea of the number of freight cars used, and also to equip every engine with the lower brake known as the "driving wheel brake."
The bill provides further that a violation of the act shall be considered a misdemeanor, and punishable by a fine of $\$ 500$. The commission may extend the time to any particular company within which it shall be required to comply with the provisions of the bill, and
after the year 1900 any company may refuse to after the year 1900 any company may refuse to accept any car not equipped as required by the bill.

Infuenza a Hundred and Sixty Years Ago.
An Italian correspondent reminds us of the historic epidemic of influenza in Milan between the years 173033, described by the contemporary physicians, Drs Gagliardi, Bellegatta, and Crivelli. The last named, a Milanese practitioner in advance of his time, found in the air the "chief and efficient cause of the inflyenza visitation." In 1730 and 1733 the climatic conditions were as nearly as possible the same as those prevalent in the last two epidemics in Italy; that is to say, a mild temperature, the sirocco wind predominant, and much humidity, with fog and rainfall alternating. Dr. Cri velli's description of the symptoms of an influenza patient might (our correspondent says) be transcribed from the phenomena of to-day

Gravedo and coryza, general languor with indispo sition to exertion of any kind, loss of appetite even in presence of the daintiest viands, pain in the sinciput, giddiness, dimness of eyesight, high fever, with rigor and horripilatio extending over the whole body ; cough sometimes moist, sometimes dry enough to induce choking sensation."
These symptoms, not very grave in themselves, says Dr. Crivelli, are apt to reach an acute and even per nicious stage-"the patient finding himself suddenly oppressed with a suffocating catarrh (un catarro soffo cativo), or, in other cases, with a pleurisy, or a pleuro neumonia. One patient falls as by an apoplectic stroke, another complains of intolerable cephalalgia-
the old, the phthisical, the asthmatic, rarely outriding the old, the phthisical, the asthmatic, rarely outriding
the storm." It would be difficult to give a truer account of the course and issue of the influenza cases now occur ring at this hour in the Alta Italia. Dr. Crivelli further shows himself ahead of his age in his severe condemnaof diluents, and rests his system of treatment on vigi-
lantly regulated diet and the support of nature. Of course, he used heroic measures when time was pre-cious-even blood-letting when engorgement of the circulation was a distressing sympton-and he found great efficacy in the Hippocratic prescription: "Alvus curanda est per clysterem subducentem et frigefacien tem." Other less rational measures he also recommends,
taken from a pharmacopoeiahappily superseded. But, according to the lights available at the time, he seems to have been a thoughtful and ingenious clinician, and his treatise has a quite special interest for the studen of the history of medicine.-The Lancet.

Natural History Notes.

Animals and Steam.-In a German engineering jour nal a writer contrasts the behavior of different animals toward steam machinery thus : The ox, that proverbially stupid animal, stands composedly on the track of a railway without having any idea of the danger that threatens him ; dogs run among the wheels of a depart ing railway train without suffering any injury; and birds seem to take a particular delight in the steam en gine. Larks often build their nests and rear their young under the switches of a railway over which heavy trains are constantly rolling, and swallows make their home in engine houses. A pair of swallows have reared their young for a year in a mill where a noisy 300 horse power engine is working night and day, and another pair have built a nest in the paddle box of a steamer which plies during the season between Pest and Semlin.
Observations on the Camel.-In a recent paper on the camel, Herr Lehmann refers, among other things, to it relations to temperature and moisture. Neither the most broiling heat nor the most intense cold nor extreme daily or yearly variations hinder the distribution of the camel. It seems, indeed, that the dromedary of the Sahiara has better health there than in more equably warm regions; though, after a day of tropical heat, the thermometer sometimes goes down several degrees be low freezing point, and daily variations of 90 degrees occur. In Semipalatinsk again, where the camel is found, the annual variation of temperature sometimes reaches 187 degrees. In Eastern Asia, winter is the time the animals are made to work. In very intense cold, they are sewed up in felt covers. Of course each race of camel does best in the temperature conditions of its home; a Soudan camel would not flourish in Northeast Asia. Camels are very sensitive to moisture. In the region of tropical rains they are usually absent nd if they come into such with caravans, the results of he rainy season are greatly feared. This sensitivenes The finest, most noble-looking camels, with short silk like hair, are found in the interior of deserts, and the cannot be used for journeys to moist regions. Even in Fezzan (south of Tripoli) the animals are shorter and fatter, with long, coarse hair ; and in Nile lands and on coasts it is the same. These animals, too, are less ser viceable as regards speed and endurance.
Water Beetles Found in an Old Gasometer.-An in resting note is published in the Entomologist' Monthly Magazine for March, 1890, which indicate that Dytiscus marginalis may live under extraordinary conditions. A number of specimens were found living in rusty water at the bottom of a hole left when the iron casing of a gasometer had been removed, both water and mud being strongly impregnated with gas Mr. T. H. Hall, the writer of the note, who secured the specimens, states that they carried a strong odor of gas even after they had had two or three baths of fresh water. The old gas holder must have been their home or along period of beetle life,judging from the time of ear when they were found and from the number of both sexes seen. The water was partly inclosed and was
quite stagnant, being unconnected with any quite stagnant, being unconnected with any other
water. They could have migrated had they desired to do so. They were quite active, and seem undoubtedly o have remained entirely from choice.
Composition of Chlorophyl.-Mr. N. Monteverde has made a series of experiments for the purpose of deter mining the number of distinct pigments present in an alcoholic solution of chlorophyl. If an alcoholic ex tract of green leaves is treated with baryta water and the precipitate extracted with alcohol, the solution has yellow color. If this is again shaken with petroleum ether after the addition of a few drops of water, a sepa ration takes place of the yellow pigments, the petroleum ether having taken up the carotin, identical with the coloring matter of the carrot, together with the green pigment, while the alcohol contains the xanthophyl. The pigments contained in the petroleum ether are termed by the author "upper pigments," those contained in the alcohol "lower pigments." By careful manipulation the whole of the green pigment (upper green pigment) can be removed by treatment with alco hol from the petroleum extract, leaving behind a gold-en-yellow solution of carotin; this "upper green pig ment" is not capable of crystallizing. The alcoholic solu tion contains, in addition to xanthophyl, a "lower green pigment," which crystallizes in tetrahedra, hexagons, or stars, but most usually in irregular forms. The
alting from the tion of boiling water or of alcohol
Duration of Life of Various Animals.-Elephants, 00 years and upward ; rhinoceros, 20 ; camel, 100 ; lion, 25 to 70 : tigers. leopards, jaguars, and hyenas (in confinement), about 25 ; beaver, 50 ; deer, 20 ; wolf, 20 fox, 14 to 16; liamas, 15 ; chamois, 25 ; monkeys and baboons, 16 to 18: hare, 8; squirrel, 7; rabbit, 7; swine 25 ; stag, under 50 ; horse, 30 ; ass, 30 ; sheep, under 10 cow. 20 ; ox, 30 ; swans, parrots, and ravens, 200 ; eagle 100 ; geese, 80 ; hens and pigeons, 10 to 16 ; hawks, 30 to $40 ;$ crane, 24 ; blackbird, 10 to 12 ; peacock, 20 ; pelican, 40 to 50 ; thrush. 8 to 10 ; wren, 2 to 3 ; nightingale, 15 ; blackeap, 15 ; linnet, 14 to 23 ; goldfinch, 20 to 24 redbreast, 10 to 12 ; skylark, 10 to 30 ; titlark, 5 to 6 chaffinch, 20 to 24 ; starling, 10 to 12 ; carp, 70 to 150 ; pike, 30 to 40 ; salmon, 16 ; codfish, 14 to 17 ; eel, 10 rocodile, 100 ; tortoise, 100 to 200; whale, estimated, 1,000; queen bees live 4 years; drones, 4 months ; worker bees, 6 months.
The Bumble Bee in New Zealand.-The introduction of the bumble bee into New Zealand a few years ago to secure the fertilization of the red clover, and the remarkable success of this venture, are matters of record In a recent paper in the New Zealand Journal of Science, noticed in the Entomologist's Monthly Magazine or May, 1891, Mr. George M. Thomson, F.L.S., presents n interesting article on the introduced Bombi in New Zealand, giving also a list of the plants and flowers which are visited by these bees. He makes the interest ing statement that, with a few exceptions, he has never heard of these bees visiting the flowers of indigenous plants, but states that they have become so extraordinarily abundant that the question has even arisen in his mind as to whether they would not become as serious a pest to the apiarist as the rabbits have proved to the farmer and cultivator, on account of their absorbing so much of the nectar of the flowers. He also points out the remarkable fact in connection with the ife of the bumble bee in New Zealand, that in many parts of the colony it does not seem to hibernate at all but is to be seen daily on flowers all the year round.Insect Life.
Occasional Development of Wings in Normally Apterous Hemiptera.-Mr. J. W. Douglas, in a review heory of the origin recent work on the Darwinian Monthly Magazine, April, 1891, p. 109), calls attention to the statement that "some of our Hemiptera, Nabis, Pithanus, Pyrnhocoris, etc., क ordinarily-wingless, are sometimes found in hot summers to have well developed wings." As Mr. Douglas remarks, all these species normally have rudiments of elytra, but there are other species quite apterous in which at times macropterous individuals appear, in which case the respective forms are so divergent as to be considered distinct. But he does not believe that such dimorphism occurs only in hot summers, and mentions having observed it in cold seasons also, when there was nothing exceptional in the weather to favor such development. He believes that t present no satisfactory explanation can be given. May it not be that the development of wings is dependent somewhat on the food supply of the insects, and they are produced to enable a more extended mi-
gration, rendered necessary by a diminution of the food gration, rendered necessary by a diminution of the food supply or the overdevelopment of the species? The abnormal appearance, locally, of winged specimens of a wingless species cannot be satisfactorily explained by the theory of a reversion to a winged ancestral type, since this would account for isolated cases, but would hardly explain the general appearance of winged indi-viduals.-1nsect Life.
Preservation of Botanical Specimens.-Mr. Jules Poisson, of the Paris Museum of Natural History, recommends a solution of 30 grains of salicylic acid in 1 quart of water for the preservation of specimens of plants in their natural form and color.

Ether as an Assistant of Digestion

The effect of ether on the digestive processes in healthy subjects has been recently investigated by Dr. Gurieff, who gave thirty drops of sulphuric ether to six healthy persons during dinner, which consisted of about half a pint of soup, four ounces of meat, and six ounces of bread. It was found that the ether had the effect of stimulating the action of the gastric glands, increasing the free hydrochloric acid in the gastric juice, and causing the peristaltic movements of the stomach, together with its power of absorption, to increase; thus on the whole exercising a favorable effect upon the gastric digestion. The same result was obtained when the ether was administered by means of hypodermic injections. It would appear, therefore, that the effects must be ascribed to a general rather than to any merely local action on the mucous membrane of the stomach. Dr. Gurieff is disposed to think that there is a stimulation of the cephalic centers. This view is partly based on the observations of other
Russiqn observers-Bekhtereff and Miloslevski, and Russiqn observers-Bekhtereff and Miloslevski, and
Pavloff and Shumova-Simanovskaya-on the dependence of the gastric functions upon the centralnervous system $_{\text {a }}-$ Lancet.

What is Electricity?

The average man will be glad to know that such an authority as Prof. William Crookes, President of the Institution of Electrical Engineers, England, is yet in doubt as to the various theories advanced to explain the electric phenomena. He says: "We know little as yet concerning the mighty agency of electricity." In his recent presidential address there is much of interest to the engineer, and we quote the following from the Railroad Gazette
"We have happily outgrown the preposterous notion that research in any department of science is mere waste of time. It is now generally admitted that pure science, irrespective of practical applications, benefits both the investigator himself and greatly enriches the community. 'It blesseth him that gives and him that takes.' Between the frog's leg quivering on Galvani's work table and the successful telegraph or telephone there exists a direct affiliation. Without the one we could not have the other.
"We know little as yet concerning the mighty agency of electricity. 'Substantialists' tell us it is a kind of matter. Others view it, not as matter, but as a form of energy. Others, again, reject both these views. Prof. Lodge considers it 'a form or rather a mode of manifestation of the ether.' Prof. Nikola Tesla demurs to the view of Prof. Lodge, but thinks that 'nothing stands in the way of our calling electricity ether associated with matter, or bound ether.' High authorities cannot even yet agree whether we have one electricity or two opposite electricities. The only way to tackle the difficulty is to persevere in experiment and observation. If we never learn what electricity is, if, like life or like matter, it should remain an unknown quantity, we shall assuredly discover more about its attributes and its functions.
"Experimentalists are reducing the wave lengths of the electrical rays. With every diminution in size of the apparatus the wave lengths get shorter, and could we construct Leyden jars of molecular dimensions, the rays might fall within the narrow limits of visibility. We do not yet know how the molecule could be got to act as a Leyden jar, yet it is not improbable that the discontinuous phosphorescent light emitted from certain of the rare earths, when excited by a high tension current in a high vacuum, is really an artificial production of these electrical rays, sufficiently short to affect our organs of sight. If such a light could be produced more easily and more regularly, it would be far more economical than light from a flame or from the are, as Very litkle of the energy in play is expended in the form of heat rays. Of such production of light, nature supplies us with examples in the glow worms and the fireflies. Their light, through sufficiently energetic to be seen at a considerable distance, is accompanied by no liberation of heat capable of detection by our most deli, cate instruments.
"Alternating currents have at the best a rather doubtful reputation, but it follows from Tesla's researches that as the rapidity of the alteration increases they become not more dangerous, but less so. Itfurther appears that a true flame can now be produced without chemical aid-a flame which yields light and heat without the consumption of material and without any chemical process. To this end we require improved methods for producing excessively frequentalternations and enormous potentials. Shall we be able to obtain these by tapping the ether? If so, we may view the prospective exhaustion of our coal fields with indifference. We shall at once solve the smoke question, and thus dissolve all possible coal rings.

Electricity seems destined to annex the whole field, not merely of optics, but probably also of thermotics. of light will not pass through a wall, nor, •• Rays only too well, through a dense fog. But electrical rays of a foot or two wave length of which we have spoken will easily pierce such mediums, which for them will be transparent."

The Physiology of Tears.

This subject is considered in a bright and interesting paper recently published in the Asclepiad. The editor of the New York Medical Journal condenses from the lengthy article as follows:
Fear, grief, aml joy, to say nothing of pathos and anger, bring tears to the eyes. They are said to come from the Feart : and this is true, for no one cver reasoned himself into weeping without a first, appeal through the imagination to some emotion. Tears are tie natural outlet of emotional tension. They are the esult of a storm in the central nervous systent, giving rise to changes in the vascular terminals of the tear-secreting glands. These changes induce profuse excretion of water, and weeping results. In a mild degre some excretion is always in process, to bathe cyes an tclear it of foreign matters. The controlling center is at a distance, though the secretion may be kept up by the small trace of saline substance that is present in the tears themselves. The lachrymal glands lie between the nervous center and the mucous surface of the eyeball. 'ifears afford a good illustration of the way in which nervous fibers are capable of conveying to a secreting organ ex-
course. Afferent and efferent communications bring about a similar result. Internal nervous vibrations and external excitation or reflex action cause a flow of tears. In both instances the exciting impulse is a vibration. Niobe, "all tears," and the unfortunate pedestrian with a minute particle of steel from the rail of an elevated road in his eye, are unwilling exponents of a similar process. They weep the same kind of briny fluid, in exactly the same way, though from widely different causes. Imagination is at times sufficient to excite the nervous system into the production of tears without external aid or reflex. Writers and readers of good fiction weep over it alike, and the actor loses himself so entirely in the exigences of dramatic art that he sheds real tears and the audience shed tears with him. Of a truth, the man who never weeps has a hard heart, and the quality of his intellect may also be questioned.
Emotion, then, affection, grief, anxiety, incite to tears, not pain or discomfort. The pangs of maternity are tearless, though the influence of ether or chloroform may cause some emotional dream that results in weeping. In the earlier days of surgery patients might scream and utter such pitful cries as to sicken the bystanders, might even faint with pain, yet there were seldom any tears. These, being pure waves of emotion and a relief to the heart, are almost powerless to mitigate pain. Perhaps one who weeps from pain does so from unconscious though selfish pity-in other words, rom emotion.
For the tearful, change of scene, mental diversion, nd out-door life are the best remedies. ${ }^{\bullet}$ The autho quoted objects to alcohol as fearfully injurious. It dis turbs and unbalances the nervous system, keeps up a maudlin and pitiful sentimentality, and sustains the evil. Alcohol is the mother of sorrow. An opiate, however, prescribed at night, soothes and controls and really disciplines rebellious nerve centers. Sleep cures tears. And so does time, the restorer. Persons subjected to many and repeated griefs forget how to weep, and the old as compared to the young are almost tear less. Tears have their value in the life of humanity not as tears but as signs. They show that grief centers
are being relieved of their sensibility, and that the nervous organization is learning how to bear upagain sorrow.

Poisonous Metals in Preserved Moods.

The fact that the amount of lead in the tin coating of vessels for preserved foods, and that in the solder with which they are united, have been limited by law in Germany to 1 per cent and 10 per cent respectively, has caused the adoption of vessels closed without a soldered joint, a rubber ring being substituted instead. The author having observed that preserved foods contained in vessels of this description, which appeared unexceptionable, were often contaminated with lead, has examined into the cause of its presence, and finds it to be due to the rubber ring employed.
The following examples are chosen from among the figures quoted by him: (1) Indla rubber rings made in Paris and used by a large German firm, (a) average weight of ring, 0.5 grm ; ash 66.6 per cent, consisting almost wholly of red lead; no antimony sulphide was present. (b) An experiment was made by exposing a rubber 110° to under pressure at a time the ring was found to be softened and 0.0286 grm. red lead (misprinted $\mathrm{Mn}_{3} \mathrm{O}_{4}$ in original) was suspended in the water, which contained no lead in solution. (c) Another ring was similarly treated in the presence of 0.5 kilo. of asparagus. The solution gave an immediate precipitate of lead sulphate on the addition of sulphuric acid; the quantity of lead in solution corresponded to 60 per cent of the total amount in the ring. (2) India rubber rings taken from tins of Australian meat from a large English firm had the same composition as those mentioned under (1). (3) Redrubber rings from Vienna contained 63 per "cent of ash, the bulk of which was red lead. (4) Red rubber rings from a German factory gave similar results, save that a little antimony sulphide was present. (5) Numerous analyses of rings from other German firms gave similar figures.
In view of these facts the author is interesting himself in the manufacture and use of rings of a less poi sonous character.-W. Reuss, Chem. Zeit. ; Analyst.

American Salt

The total production of salt in the United States for the year 1891 was $10,229,691$ barrels, valued at $\$ 5,872,186$. The importations were about 800,000 barrels, chiefly from England.
The finest salt is made by the vacuum pan process. About four-tenths of the American production are due to Michigan, four-tenths to New York, not quite onetenth to Kansas, and the remainder to Ohio, West Vir ginia, Louisiana, California, Utah, Nevada, Texas. Perhaps the most wonderful deposit of salt in this country is at Petite Anse, La., where, at a depth of sixteen to twenty-five feet below the surface, a deposit markable purity.

The Census of 1891 in Canada.

According to the Canadian Census Department the population of Canada, by provinces, is as follows:
$\left.\begin{array}{ccc} & & \\ \text { Percentage } \\ \text { of Inc. }\end{array}\right\}$

There are 47 cities, their population varying from 216,650 at Montreal to 5,042 in Port Hope; 45 towns having from 4,940 (at Collingwood) to 3,061 (at Walkerton) ; 91 villages, headed by Picton, N. S., with 2,999 and Georgetown at the foot with 1,509 .

The Trust Fallacy.

Trusts are not a creation of modern times by any means. They have existed at least from the beginning of the present century, or, rather, they have attempted to exist during the period named, but, as a rule, signally failed. A partisan writer, in an article that recently appeared in one of the largest and most influentia newspapers in the country, attempted to show that trusts were a good thing for the pablic. At the outset he argued that trusts could by no means injure the small manufacturers, for the reason that they could dis pose of their plants and become shareholders in th trust. He therefore claimed to be puzzled to under stand why it was that the people protest so vigor ously against such combinations of capital. He further argued that the consumer was really benefited by the formation of a trust, and upon this point it is interesting to dwell, for the simple reason that it has never been made clear to the general public why the average trust reduces prices upon the production it has cornered, immediately upon its formation. In completing a great trust all of the stronger manufacturers are invited to join ; then the weaker ones are given an opportunity to sacrifice their property or to be driven out of business Self-preservation is the first law of nature, and it is the most natural thing in the world for these smalle manufacturers to fight back. The trust is all-power ful, with millions at its back, and in order to silence the weaker enemy's guns, prices are put at a figure below the cost of production, and the smaller manufacturers go to the wall. During the battle there is no question but what the public profit largely, or could profit largely, if it took advantage of existing prices and bought up all the products in sight. That is just what the public does not do, however, and when th trust has crushed all opposition out of sight, up go prices and the consumer finally pays back into the treasury of the trust the money it has expended in crushing those who dared to oppose it. There is really no argument that can be adduced favorable to a trust A trust is an entirely different thing than a combination of capital. It is the coming together of all the powerful wings of a certain industry, to crush out the weak, and monopolize certain productions in order that it may fix prices as it pleases. The proposition trusts are formed in order to benefit the consume is so ludicrous that it is scarcely worth considering The writer endeavored to make a point to the effect that a trust was not a profitable thing after all, by stating that Standard Oil paid but 6 per cent dividend. Now the fact of the matter is that in recent years the Standard Oil trust has paid not less than 10 per cent, and last year paid 12 per cent dividends upon the capr tal invested.-Stoves and Hardware Reporter.

Cork Pavement.

A new material for paving is now being introduced into London. It is composed of granulated cork and bitumen pressed into blocks, which are laid like bricks or wood paving. The special advantage of the material lies in its elasticity. When used for pavement it gives a soft tread which is exceedingly pleasant, recalling the feel of a carpet. In roadways it furnishes a splendid foothold for horses, and at the same time almost abolishes the noise which is such an unpleasant feature of city traffic. A short piece of pavement is to be seen in Liverpool Street, E. C. ; while the outlet to Pickford's yard in Gresham Street is laid with this material. It yet remains to be seen how it will bear the ordinary traffic of a London street, but there is evidence to show that in Australia short pieces of roadway have given good results.

RECENTLY PATENTED INVENTIONS.

Railway Appliances.

Car Seal.-Benjamin J. Sturtevant, St . Paul, Minn. This seal is formed of a flexible shackle to which is detachably secured a hook having a
spring-pressed arm, a locket made of earthenware, cement, glass, or similar substance, having on one side a shoulder to engage the arm of the hook. The devic affords an inexpensive seal, which must necessarily be
broken if the door is opened, thus indicating that the broken if the door is opened, thus indıcating that the
car has been tampered with, while it may easily be applied aud removed without the use of special tools but cannot be opened except by breaking the shackle of the locket.
Car Coupling.-Francis A. Johnson, Black Rock, Ark. The drawhead of this coupler has a transveree partition in the front end of its central
opening, spring-pressed plates sliding transversely in the rear of the partition, pivoted arms being connected with the plates and a cam actuating the arms to open the plates, while rods are pivotally connected with a to lock them in place. The device is an improvement on a former patented invention of the same inventor, and the essential working parts are inclosed in the drawhead, to be fully protected from rain, enow, ice,
dirt, etc., thus insuring the proper working of the device at all times.
Car Coupling. - Oliver M. Briming ham, Victoria, Texas. This invention provides a draw-
head to which is attached a guiding block in which works a vertically movable sliding frame, the pin being conuected with the frame and having a guiding tongu working in the guiding block. The improvement af coupling pin, while the drawhead is vertically adjustable in a convenient manner either before, during, or afte coupling. The device is designed to be arranged to be operated from either side of the car. [For information
relative to this patent address R. Brackin, Inez, Texas.]
Drill. - Wanton C. Barber, Villisca owa. This is a portable drill of simple and durable and rill, while capable of satisfactory use on man The bed has guides and a shiftung lever, a rame siding n the bed holding a mandrel carrying a drill, while riving mechanism and feed device are connected wit he drill mandrel. Arms extending from the bed have ooks adapted to clamp the tread of a rail, when the
web of the rail is to be drilled, and the frame is fed orward by manipulating a lever, and when the drill i operation it dis analically fed ford while bei

Mechanical Appliances.

Nail Machine. - Joseph S. Blackburn and Frank G. Bartholomew, Salem, Ohio. This machine has the usual fixed anvil or die, on which in the frame, but combined with the movable hamme is a spring-pressed arm rivoted on the machine and exending at its free end to the hammer, the latter actuat
ing the arm. With this improvement. after the nail formed with a head and cut by the knives, it is readily broken off the wire and discharged.
Core Saw. - Edwin B. Roberts, Emporia, Kansas. The body of this saw consists of a haft, the inner faces of the teeth being flush with the interior wall of the body, and each tooth being cut away beneath its gouge-like point from its outer face inward, an inner wall being formed to prevent chips entering the interior of the body, while there are spiral ribs or bands on the outer side of the body flush with of the body being beveled between the teeth. The saw is designed to be driven rapidly for any desired distance into the wood without clogging, the chips passing through recesses of the teeth and head and the
bands carrying them to the bottom of the saw.
Ore Crushing Mill. - William H. Coward, Bath, England. This invention provides imedge runner rolls within a revolving drum furnishe with cups, hy which the material is repeatedly brought under the action of the edge runner, the efficiency of mounting the drum, more effectually exposing the crushed material to the winnowing action of the air may de dispensed with over the exhaust aperture, the may de dispensed with over the exhaust aperture, the
sieves being liable to become clogged by light particles inoperating on micaceous ores.

Agricultural.

Cultivator. - Adam F. Rinehart, near Uniopolis, Auglaize County, Ohio. Pivotally concultivator is a swinging frame, with which is connected a lever imparting a lateral movement to the front portion of the frame, while a blade or tooth beam also has a pivotal connection with the swinging frame. Various
other novel features are embodied in the invention, forming an implement of simple, strong and inexpensive construction, and of light draught, which can be teeth or blades are under the complete control of the driver, and_may be adjusted both vertically and laterally as occasion may demand.
Cultivator.-Dillyard Hicks, Waldo, Fla. This implement is adapted to have attached thereto plows of any make, such as scooters, shovels,
sweeps etc., and is designed to be economically manufactured. Two parallel cross beams exterd diagonally across and are secured to the draught beam, one of them carrying cultivator blades, while from the rear one curved braces project forwardly and down-
wardly, engaging at their lower ends the supports of wardly, engaging at their lower ends the supports of
the cultivator blades. Vertical brace bars are provided whereby the cross beams [are sustained against lateral
strain and the main connections between the cross beams
Hay Loader. - Henry Briscoe, Morsonville, Ill. This machine, besides the carriage an raming, has an elevator with a rake frame held in in clined position, so that as the machine moves forwar
the teeth rake up the hay, which is delivered into an pper trough, from which it is discharged by means the machine. The rake teeth may be conveniently raised or lowered, and the carrier has a hinged out section which can be readily adjusted as desired

Miscellaneous.

Galvanic Battery.-Fernaud Gendon, Bordeaux, France. This is an improved primary battery, so formed that the output of the battery is
regulated automatically according to the work demand of it, to the greatest amount of work the battery will do. It consists of a series of cells containing exciting an epolarizing liquids in combination with an electric
motor actuated by a portion of the battery elements pumps driven by the motor producing a circulatio hrough the cells, while there is an automatic regulato of the number of cells in use. The battery is prefer dy formed in three tiers, comprising six tanks fo iquids and twenty-four elements, the nature of the elements having no bearing on the invention provided another in the cell
Cash Recorder. - Milo L. Morgan, New York City. This is a device for use in connectio ape from a roll of paper having a section exposed for writing upon each time the drawer is opened, so that entry may be made thereon each time a sale is effected The paper is held at all times stretched smooth in pos ion for use, there being a rigid connection between rip lever actuated by the drawer and the feed whee,
the device affording the means of readily making up ccounts at the end of a business day.
Spectacle Case Fastening. Fredric W. Steadley, Carthage, Mo. This device ormed with a plate having a central aperture in which is swiveled an eye with elongated bearings in which
urns and slides the rigid member of a safety pin, for fastening the device to the clothing. The fastening is designed to readily adjust itself to the body of the wearer when bending over, etooping, etc., the
pin having a free movement relative to the case.
Can Cover. - Orson D. Phillips and George H. Litllewood, Lisle, N. Y. This improvement provides a locking device, especially adapted for use
with milk cans, etc., and adapted as a fixture to the can body, which may be engaged with the lid to quickly and conveniently clamp the body of the lid to the body of the can, and hold them locked together. The device
is preferably made of spring wire, bent in essentially circular shape, but with a ccill, eyes, and loops, with which is connected a link, on which a lock may be ends of the device together and as a bolt to maintain

Load Binder. - Harry M. Bradley Canon City, Col. This device consists of a bar having teeth on its upper and lower edges and provided at on lotted lever receiving the ratchet bar being provided with a bolt extending through the slot to engage on of teeth, while a hook is provided to receive a cor wire, or cable. The device is designed to afford
imple, cheap, and efficient means by which a load of any kind may be tightly bound, while it is also well adapted for use as a wire tightener, post puller, lifting Vehicle Spring.-Thomas S. King, Cincinnati, Ohio. This spriug is made from a single
strip of metal, bent to the desired shape, and joined al its ends in the flat portion of the spring by riveting or other suitable fastening. The upper and lower sections re integral, but elongated bends at the end portions come together when the spring is much compressed whereby the spring is shortened and stiffened, although when a light load is on, the entire length of the sections
Stove Pipe Drum. - Moses P. Farnam, Germantown, Cal. This is an end-closed stove
or furnace pipe drum having upright partitions of diferent heights establishing flues between them, with a central through draught pipe having upper and lower
draught openings and an intermediate damper while the lower head of the drum has a soot or ash clearance hole exterior of one side of the through draught pipe, and a door is arranged to form a clearance outlet for two adjacent flues. The invention is an improvement on a former patented invention of the same inventor,
the drum being adapted to facilitate various heating Game Board.-Jacob M. Henriquez, Coro, Veneznela. This is a board adapted for playing
variety of games. The base of the board is divided a variety of games. The base of the board is divided
into compartments, and there is in it a tilting table which actuates a rocking slide board, there being a vertical tubular conduit on the base, with branch receiving lower end, and a central vertical diaphragm in the conduit at the junction of the delivcry pipes. Balls
dropped through the upper branch pipes are designed dropped through the upper branch pipes are ferg the
to tip the tilting table and dislodge a counter from then ide board.
Toy Puzzle. - Hans I. F. Schulze, New York City. This toy is designed to exemplify the egg-like hollow body formed in two sections, its chamber divided into two compartments by a horizonta partion in, there being another apertured horizonal par movable weight. By properly manipnlating the toy the weight or ball may be made to travel down inside to
the pointed lower end, when the egg-like body will be bor
NoTE.-Copies of any of the above patents be will
urnished by Munn $\&$ Co for 25 cents end name of the patentee, title of invention and date send name of
of this paper.

NEW BOOKS AND PUBLICATIONS.

The Lumberman's Handbook of In-
spection and Grading. By W. R. Judson. Chicago: The Lumberman 1891. Pp. 263

This excellent work covers the ground of quality and nspection of lumber in different parts of the United
States, with many useful notes on dimensions, cutting States, with many useful notes on dimensions, cutting sents the fourth edition. It will be very acceptable to 11 those concerned with wood and lumber.
The Phosphates of America. By Francis Nyat, York: The Scientific
Edition. New
Publishing Co. 1891. Pp. 187. IlPublishing Co. 1891
lustrated. Price $\$ 4$.
Much interest has been created in the subject of phosphates by the recent discoveries of the phosphate
beds of Florida. Dr. Wyatt, in this very elegantly made volume, treats of phosphates from the mine to the farm. Their extraction, chemical treatment, analysis and the allied industries recelve due consideration. The illuserations, many by process from original photograpal,
exceedingly attractive and add greatly to the value of the book. Curiously enough, although it is the second edition, it is destitute of a table of contents. It has, however, an excellent index.
Modern American Rifles. By A. C.
Gould ("Ralph Greenwood "). IllusGrould ("Ralph Greenwood"). Illus1892. Pp. xii, 338. Price $\$ 2$.

This excellent book goes over the whole range of rifle practice, hunting and target practice, both civilian ifle sighte, the general construction of the piece rifing, projectiles, cartridges, and ammunition, are all elaborately treated with many illustrations. Even to those who use the arm but little, the practical discus-
sion of its many points possesses much interest, and we sion of its many points possesses much interest, and
believe that this work will be widely appreciated.

SCIENTIFIC AMERICAN

BUILDINGEDITION. FEBRUARY NUMBER.-(No. 76.)

table of contents

1. Elegant plate in colors of a cottgge at Short Hills, tion, floor plans, etc.
2. Colored plate illustrating a cottage 'at Great Diamond Island, Me., erected at a cost of $\$ 900$, complete. Floor plans, elevations, etc
3. A residence at Portland, Me. Cost, $\$ 11,000$ complete
in every respect. Floor plans, perspective elevain every respect. Floor plans, perspective eleva-
4. The very attractive residence of E.T. Burrows, Esq. at Portland, Me. Cost, $\$ 9,500$ complete. Per spective elevation, flo
5. A dwelling at Augusta, Me., erected at a cost of $\$ 3,200$ com
elevation.
6. A handsome dwelling at Carthage, Ill., designed in the style of modern Roman
Perspective and floor plans.
A residence colonial in treatment and recently A residence colonial in treatment and recently
erected at Belle Haven, Greenwich. Conn., for Mr. erected at Belle Haven, Greenwich, Conn., for Mr
Chas. A. Moore, at a cost of $\$ 14,000$ complete. Two perspective elevations, floor plans, etc.

Mass., at a cost of $\$ 18,000$ complete. Wm. T Sears, architect, Boston, Mass. Perspective ele vation and floor plans.
9. An architect's home, with sketches showing the hall, drawing room, terrace, entrance front, dining room, together with ground plan. A
thoroughly cozy, comfortable, and complete thoroughly
dwelling.
10. Sketch for a suburban chapel. Submitted by 0 M. Hokanson in the St. Paul Architectural Sketch Club competition.
11. View of the Washington' Street tunnel at Chicago. Miscellaneous contents: Architecture and poetry.Waterproof wall coatings.-Colored woods.-houses.-Church spires.-Ownership of plans.Simplicity in furnishing and decorating.-Utility and art. Improved door hanger, illustrated.The Madison Square Garden weather vane, the
huntress Diana, illnstrated.-Schmidt's window frame, illustrated.-Sackett's wall and ceiling board.-An improved mitering machine, illus
trated.-A combination folding bath tub, illus-trated.-Japanese interiors.
The Scientific American Architects and Builder Edition is issued monthly. $\$ 2.50$ a year. Single copies
25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming, practi cally, a large and splendid MAg Azine or Architric TURE, richly adorned with elegant plates in colors and
with fine engravings, illinstrating the most interesting with fine engravings, illnstrating the most interesting examples of M
The Fullness, Richnese, Cheapness, and Convenience of any Architectural publication in the world. Sold by of newsdealers.
$\mathfrak{W u s i n e s s}$ and æersonal.

The charge for Insertion under this head is one Dollar a line
for each insertion; about eight words to a line for each insertion; about eight words to a line. Advertisements must be received nat pubicatiton offwe as early as
Thursday morning to appear in the following week's issue.

For Sale-One cupalo, one steel blower, one cast iron
attler. All in first class order and at low prices. W.P. Acme engine, 1 to 5 H. P. See adv. next issue.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. 6 Spindle Turret Drill Presses. A.D. Quint, Hartford,Ct. d hand drills and shapers, Amer. Tool $\mathrm{Co}_{\text {, }}$, $\mathrm{Clev}_{\text {, }} \mathrm{O}$

Patent Open-Side Planing and Shaping Machines.
Pedrick \& Ayer, Philadelphia, Pa
Wanted Cheap for Cash-Patent Office Gazette for last The Improved Hydraulic Jacks, Punches, and Tube Expanders. R. Dudgeon, 24 Columbia St., New York. Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps for paper and pulp mills. Irrigating and sand pumping plants. Irvin Van Wie, Syracuse, N. Y. The best book for electricians and beginners in electricity is "Experimental Science," by Geo. M. Hopkins. Electricity, the popalar elecrical journal. Mustrated. Published weekly. Subscription, $\$ 2.50$ a year. Times For the original Bogardus Universal Eccentric Mill,
Foot and Power Presses, Drills, Shears, etc., address J.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Patented Novelties Wanted.-Inventions of merit (onall wares preferred) manufactured and introduced
to the public by the Magic Introduction Co., 321 Broadway, New York.
Competent persons who desire agencies for a new popular book. of ready sale, with handsome proftit, may
apply to Munn \& Co., Scientific American office, 361 apply to Munn \& Co.
Broadway, New York.

Wanted, Steam Engineer-A large manufacturing gineer. Must be thoroughly posted theoretically and must have had a large experience. Address in own handwriting, stating age, experience, salary, wanted, and
giving references, "Asssistant Engineer," care of Scigiving references,
entific American.
are Send for new and complete catalogue of Scientific New York. Free on application.

\%andes (4) wrins

HINTS TO CORRESPONDENTS.
Namases and A ddress must accompany all letters,
or no attention will be paid thereto. This is for our or no attention will be paid thereto. This is for our
information and not for pubbication.
References to former articles or answers should References to former articles or answers should
give date of paper and page or number of question.
Inguiries not answered in reasonable time shonld
be repeated; correspondents will bear in mind that be repeated; correspondents will bear in mind that
some answers require not a little research, and,
though we endeavorto reply to all either by letter or in this department, ench must take his tarn.
special Writen Information on matters of
personal rather than general interest cannot be expected without remuneration.
Scienince American Supplements referred
to may be had art the office. Price 10 cents each.

Books referred to promptly supplied on receipt of | Drice. |
| :--- |
| $\begin{array}{c}\text { pinerals sent for examination should be distinctly } \\ \text { marked or labeled. }\end{array}$ |

(3987) C. W. L. writes: In your issue December 26 you give a translation of a method of
L cutting a five-pointed star, taken from Llustration. There is an error in the method as indicated which will cutting line should not run to point E , as there given, but to point, B falling on line C E The greatest economy of paper will result when the paper has the proportion of about one to two, and the point, B, is made to be on the upper edge, A , the other conditions remaining as
(3988) L. A. J. asks: Two bullets of same weight, fired with the same charge of powder out from, and in the direction of, a train moving at the rate of 40 miles an hour; the other from the rffle when stationary: 1. Will either bullet be carried further than
the other? A. Yes. 2. If so, which one? A. The one
(3989) H. M. C. asks : 1. Which one of the following batteries is the best for running small
motors-the Edison-Lalande, the Fuller, or the bi motors-the Edison-Lalande, the Fuller, or the bi-
chromate plunge? Is there any one better than these? chromate plunge? Is there any one better than these?
A. Where compactucos and portability are required, the A. Where compactucos and portability are required, the cells would be required to run a six volt one-sixth horse power motor to its full capacity? A. Four to six good sized cells. 3. Abont how fast would such a motor drive a sixteen foot boat, rather lightly built? What would be the proper size propeller? A. Probably three vo four miles per hour. 4. Is there any action in the
Fuller battery when the circuit is open? A. Practically none.
(3990) C. A. Z. says: 1. I have noticed that different coins have not the same initials inscribed on them. Some have the letter ρ, others the letters
C C, and again the letters S S are found on others Could you tell me to what cities these letters refer? A The coinage of the Philadelphia mint has no designat ing letter. O is New Orleans mint; C C, Carson City mint: S, San Francisco; C and D on old coingege is Could you tell me the value of a cent of 1802 and of
a dollar of 1804? Also, how many dollars were coined in the year 1804? A. Address Superintendent of th (3991) G. M. W. says: 1. I want metal that I can heat mercury or quicksilver in, to about 500° or $600^{\circ} \mathrm{F}$., that the mercury will not injure Or is there any way of preparing steel so it will do A. Steel or wrought iron tubing is the best to hold mercury, requiring no preparation. There is no re action by either metal on the other. 2. How much pressure would a flue about three-eighths inch inside and five-eighths inch outside stand before it would collapse The flue to be made of steel or whatever other meta you advise using. I want one that will stand the greatest possible pressure. A. Three-eighths inch gas pipe,
if properly welded, is good for pressures up to 3,000 pounds to the square inch, and three-eighths inch extr strong is good for $6,000 \mathrm{lb}$. per square inch. 3. How thick would I require the metal of a cylinder 6 inches diameter usside to be, to stand same pressure? A Six inch wrought irun pipe should be equal to a work ing pressure of $1,500 \mathrm{lb}$,, and extra strong 6 inch equal
to $3,000 \mathrm{lb}$. For these working pressures, the pipe o ,uld be tested to 50 per cent higher Please tell me how much mercury expands with heat Say 100 cubic inches at $0^{\circ} \mathrm{F}$. How much would there
be at $300^{\circ} \mathrm{F}$., also at $600^{\circ} \mathrm{F}$? A. One volume of mercury at zero becomes 1.0256 at $300^{\circ} \mathrm{F}$. and 1.0313 a
(3992) B. E. W., Antonio, Kans., writes I want to make for my own use a four or five inc then Have and close bench work; have as a mechanic on ery delicate sense of touch. If you think it possible for me to grind and polish the lens, would ask as fol解: Where can I get the roughly ground glas ens)? grinding and polishing, and at what price? 3. Would it be better to buy eyepieces (celestial and terrestria) hround mounted in cell, or coula I get separate read ground lens and make them? 4. What standard work
on the subject could I get that would aid me? A. There are large possibilities for amateurs with patience and perseverance. You can obtain the optical crow Street, New York, cost about $\$ 2.50$ per pound. Yo must make your own gauges and laps. You can bu lull instruct for to make the curves and kind of glass for telescope object glase llustrated in Scientipic A merican Supplement, Nos 581, 582. 583. Also illustrations and construction of ment, No. 399, 10 cents each mailed. Byrne's "Hand Book for the Mechanic and Artiean "contains muc information
mail, $\$ 5$.
(3993) S. E. asks: 1., Can you inform me what the capacity is of the largest air pumps, no fans, in actual operation, and where, and about the size
of their cylinders? A. The largest air pumps are the blowing engines of blast furnaces, with cylinders 6 to feet diameter and 10 feet stroke, used in Pennsylvania 2. Also have we any examples of suspension bridge piers; if not, what is the first most eerious objection (if any), or has this plan never been agitated? A. The sus pension aqueduct at Pittsburg has seven spans. The pending piers. We do not recall their names. The is no objection where it is necessary to have more tha two piers, if proper trussing is used to prevent undula
(3994) A. M. says: Assuming that the wood is steamed and bent when green, and allowed the bend, would it be inclined to lose the shape o curve if exposed to damp? Ir so, do you know of any ood tends to resume its orignal shape when ex ent it is to finish and oil or varnish the bent wood, sa to preant changes in its hygrometric condition,
(3995) J. H. G. asks what to use to wash brass or copper to give it a silver coating. I used and rain water, but have forgotten the proportions. A. The process is to dissolve a small quantity of mercury in a solution of one part nitric acid to four solution, and to an ounce of the solution add a few drops of hydrochloric acid diluted with four parts water until a bright piece of copper is whitened by being dipped. Then dip any article, or rub the solu(a99) D.
(3996) D. R. C. says: I wish to paint the brick walls of a composing room, used for setting
type, and also the rough hemlock joists under the roof with some white substance that will not scale off and fall into the type. Please state in the Scientific marricas whaud like somethina be best for thi purpose. Nould like something not very expensive
A. We can recommend a whitewash made in the proportion of one-half a bushel of best lime slaked in hot water, eighe gmorts salt dissolved in hot water, 2×1 mend white giue previouly to dissolved and one-hal pound clear whiting. Add the salt brine to th slaked lime and ther the other ingredients. Keep it hould be thorongluy cleaned from dust before apply ing this whitewash. It makes a bright surface like
(3997) W. P. asoks : How can I harden hore than are about. 4 ipehes in diameter by half inch wide (or thick). Thie material is crucible cast steel. A. We suges. placing the gear on a revolving spindle at the prover: ieat, and to quick'ty bring a jet of water to bear
ander 20 or 30 lb . pressure. This will harden the teeth
only. Steel should be as low in carbon as is com-
patible with hardening, to prevent cracking of the
(3998) Reader asks : 1. In what Supple EnTs are the directions for making dynamos, motor os telep 160 , We refer 767, 783, for motors; and to Nos. 142, 163,250, for tel hones. 2. What are the formulas (chemical) for cutting copper and zinc? A. Use nitric acid fo opper. Sulphuric, hydrocharic or nitric acid wil ssolve zinc. 3 . Is there any way I can get a cat directly? A. You might make known your wants by dvertisiug. 4. In wrapping an induction coil $31 / 2 \mathrm{inc}$ he primary layers are to the secondary as $3: 10$. What is the ratio for coils increasing an inch each time sing wire 18 and 32 ? A. The E.M.F. of the secondary to that of the primary as the number of turns in primary, while the amperage in the secondary is your medical query we advise you to consult
(3999) J. M. M. asks: How much does How much does nd how much space ought to be between the ends o joints? A. Rails vary in length by the extreme tem inch in 20 feet, and for 30 feet rails about $7-16$ of an ch, so that rails laid at time of mean temperature the Northern States should have half the above space Rail laid in summer in the Southern States may have an allowance of $1-16 \mathrm{inch}$ in 20 feet rails, and $3-16 \mathrm{inch}$
(4000) M. C. A. C. asks: 1. How t eep linoleum bright. A. Wash with equal quantitie nseed oil or a weak solution of beeswax in spirits o turpentine may be used. 2. How are face powders per amed. A. Use a few drops of some essential oil, (4001) F. E. W. asks: 1. Of what mate val are graphite bearings made, so that they require no wind engine (or mill) is the most serviceable-with or ithout cog gearing? A. Consult our advertisin
(4002) M. R. asks: Will you please tell a if a common battery of blue vitriol and water, with candescent lamp, and how many cells would it take nd where could I get the lamps, or what kind of a in electric lighting. It is sometimes employed for charging secondary batteries, and the latter are used or operating lamps. The seconary battery is the best (4003) F V
(4003) F. V. C. asks : 1. Is there any eries? A. Nothing very efficient. Try flower pots with the holes corked up. 2. What kind of batast for a motor? What for a storage bat tery? A. Storage battery for motors, and gravity bat-
teries for charging the storage batteries. 3. Tell how o make the principal parts of a storage battery, and its dimensions, when used for lighting. A. For this in4. Describe a small compressed air moti., page power of 30 lb . per square inch from a small water pipe. A. A small compressed air motor is substantially the same as a steam engine. 5. What acid is used to reduce soft wood to pulp? Can it then be brought back
to a hard substance? A. Nitric and sulphuric. By
and proper treatment the wood is converted into cellulose of alcoh is explosive. It can ether, and will solidify on drying.
(4004) W. T. says: Can you inform me about what per cent or heat contained in anthracite liberated into a room, or can you tell me whether there is necessarily a loss of 50 per cent or over, under the most favorable conditions? A. The loss of heat in the best stoves, provided with large absorbingand radiating surface, the loss should not be greater than 25 per cent, and much of this might be saved by extending the stovepipe, so as to utilize all the heat, save
enough to create draught. Much of the heat is also by opening stove doors for ventilation.
(4005) W. L. J. asks : Would a 500 lb . with a charge of powder sufficient to throw it vertically ay five miles, return to the earth with the same velocity with which it started? A. It would not. The friction (4006) H. H. S. says : 1. I have a 2 inch pipe, 1 foot under ground, 75 yards in length, which
drains a creamer; am bothered with it becoming filled with something that obstructs the flow of water. Give me a solution to clean it. A. If the pipe is foul from
the drainage matter, use a strong solution of caustic potash, not soda in boiling hot water. If necessary, stop he end of the pipe while the hot lye is running, fill the the proper side to run a leather belt, in regard to the splices, that is, ought the end of the splice or lap butt the face of the pulley? A. The belt ends should be butted together and laced to make a smooth surface. If put together with hooks, the butts should turn out. by a dynamo.

Replies to Enquiries.
The following replies relate to enquiries recently pub-
ished in SoIENTIFIC AMERICAN, and to the number therein given :
(3842) Referring to Scientific Ameribrass rifle or shot shells by immersing them in strong
$\stackrel{B}{8}$

cider vinegar, and heat to a boil. Then rinse them
thoroughly in clear cold water, and wipe dry with

M. T. D. asks how to pickle be
M. T.D. asks how to pickle beef, tongues, etc.-A C. A. W. asks for a corn salve.-W. H. E. asks for a harness grease.-E. S. S. asks for a shoe blacking or
polish.- R. W. S. asks how to make a hektograph or opying pad.-E. R. T. asks how to tin iron.-J.A. B. asks (1) for a receipt for making a cement which will
tick leather to metal. 2. How to estimate horse
2. of an engine-J. H. S. aeks how to remove tattooing - H. F. C. asks how to make birdlime.-Y. M.C. A. asks (1) how to etch
ments and metals.
Answers to all of the above queries will be found in he "Scientific American Cyclopedia of Receipts, Notes The advertisement of this book is printed in another Column. A new circular is now ready.

TO INVENTORS
An experience of forty years, and the preparation of more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the laws and practice on both, continents, and to possess un-
equaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all coregn countries may be had on application, and person abroad, are invited to write to this, office for prices,
which are low, in accordance with the times and our exwhich are low, in accordance with the times and our ex-
tensive facilities for conducting the business. Address MUNN \& CO., office SCIENTIFIC AMERICAN, 361 Broad-

INDEX OF INVENTIONS For which Letters Patent of t
United States were Granted January 26, 1892,

and EACH BEARING THAT DATE

 $\underset{\substack{\text { Bub } \\ \text { Aasian }}}{\text { Isee }}$

My
Are
Are
Baire
Bake

Findal
Finday
Finan,

考
Fin
$\substack{\text { For } \\ \text { For } \\ \text { For }}$

 $-$

\section*{Haa} | Ha |
| :--- |
| Ha |
| Ha |
| Hal |

\qquad

Bisiano

TRADE MARKS.

Canadin wark wats many yow be obtaine by the in-
ventors for any of the inventions named in the fore-

AWARDED THE FIRST PREMIUM AND GOLD MEDAL at the Augusta, Ga., Exposition,
Electric Coal Cutter, Electric Rock Drill, Electric Mining Pump and Electric Hoisting Machinery. THOMSON-VAN DEPOELE ELECTRIC MINING CO., 620 ATLANTIC AVE., BOSTON, MASS.

ƏโDvertisements.

1

SEBASTIAN LATHEE COMPANY,

CABINET WOODS AND VENEERS

 $\frac{\text { Mills, Cincinnati, Ohio. }}{\text { LITTLE HERCULES DRILL CHUCK }}$

 WATER FRONTS Near NEWVURYH-ON-

ROSE MUST WAIT."

A NEW LIGHT
SIPAM ROAD ROCLRR MEANDDEAGNTOMGTGENGINES. Manufactured by HARRISBURG FOUNDRY AND MACHINE WORKS, Harrisburg, Pa, U. S. A.

\section*{SPECIAL NOTICE!
 | |
| :---: |
| | |
| | |
| | |

THE ARMSTRONG MACHINE

STATIONARY and PORTABLE. All Sizes.

The Belknap Little Giant Water Motor

RALLWAY \& STEAM FITTERS SUPPLIES Rue's Little Giant Injector.

2nd REMMACHERY:

WATCHES-All kinds key winders changed to stem.
winders. Address W. F. A. Woodcock, Winona, Minn.

SYLPH CYCLES RUN EASY

NOW READY!
a NEW AND VaLJable book.

2,000 Receipts 680 Pares, Price in of the most useful Receipts and Replies given ished in the Scientrfic American during the
past fifty years; together with many valuable and mportan Twelve Thousand selected receipts are here collected; nearly every branch of the use-
ful arts being represente. It is by far the most
comprehensive volume of the kind ever placed before the public.
The work may be regarded as the product of the
studies and practical experience of the ablest chemists and workers in all parts of the world ; the in-
formation given being of the highest value ar-
ranged and condensed in concise form convenient, for ready use.
Almost every inquiry that can be thought of,
reatating to formulæ used in the various manufacrelating to formulw used in the various manufac-
turing industries, will here be found answered.
Instructions for working many different processes in the arts are given.
It it impossibe wittin the limits of a prospectus so extensive a work.
Under the head of Paper we have nearly 250 re-
ceipts, embracing how to make papier maché ; how ceipts, embracing how to make papier maché; how
to make paper water proof and fire proof; how to make sandpaper, emery paper, tracing paper,
transfer paper, carbon paper, parchment paper, transfer paper, carbon paper, parchment paper,
colored papers razor strop paper, paper for doing
up cutlery, silverware; how to make luminous paper, photograph papers, ete.
Under the head of Inks wee have nearly 450 re-
ceipts, including the finest and best writing inks ceipts, including the finest and best writing inks
of all colors, drawing inks, luminous inks, invisi-
ble inks, gold, silver and bronze inks, white inks; irections. . c rer removal of inks; restoration of
faded inks., etc.
Under the head of Alloss over 700 receiptsare given, covering a vast amount of valuable monfor-
mation.
Of Cements we have some 600 receipts, which include almost every nown adhesive preparation,
and the modes of use. How to make Rubber Stamps forms the subject
of a most valuable practical article, in which the of a most valuabse practical in such clear and ex-
plicite terms that any intelligent person may readily
lieat Fearn Lacart.
tars there are 122 receipts; Electro-Me-
tography and receipts; Bronzing, 127 receipts; Phoreceipts.
Under the head of Etching there are 55 receipts,
embracing practical directions for the production embracing practical directions for the production
of engravigs and printing plates of drawingg.
Paints. Pigments and Varnishes furnish over
800 receipts, and include everything worth knowing on those subjects.
Under the head of Cleansing over 500 recipes
are piven the scope being very are given, the scope being very broaa, embrachg
the removal of spots and stains from all sorts
of objects and materials, bleaching of fabrics, ceaning furniture, clothing, glass, leather, metals,
and the restoration and preservation of all kinds of objects and materials. In Cosmetics and Perfumery some 500 receipts Soaps have nearly 300 receipts. Those who are engaged in any branch of industry
probably will find in this book much that is of
practical value in their respective callings practical value in their respective callings.
Those who are in search of independent business
or cmployment, relating to the home manufacture or cmployment, relating to the home manufacture
of sample articles, will find in it hundreds of most
excellent suggestions.

MUNN \& CO., Publishers, SCIENTIFIC AMERICAN OFFICE,

61 Broadway, New York.

GEAR AND RACK CUTTING.
UNION MFG. Co., 17 Rose Street, Batcie Creefi, Mich

For intomation and ree randoob writ to
 Ścientific Somerician

A New and Valuable American Bookfor Prospectors

JUST READY.

 XI. Aluminum, Antimony, Manganese and orther Minn
rals
Weights and Measures, Prospector's Pointers, Index.

BY THE SAME A UTHOR.
A PRACTICAL MANUAL OF MINERALS MINES, AND MINING.
Comprising rugyestions as to the localities and associ
tions of all the Useful Minerals; full descriptions of then most effective methods of both the qualitative an
quantitative analyse of oech of these minerale, an
hints tuponthe various operations of mining, includin
 QW. Descriptive circullars giring the ful tables of con
tents of the aboue books sent free to any one who will send
hais address.
 Geology, etc., sent free to any one, in any part of the world,
who wull send his address.

 HENRY CAREY BAIRD \& CO.

CoIVE DRAUGHTSMEN

 THE MODERN ICE YACHT. - BY Geo. W. Polk. A new and valuable paper, containingfulipract:cal diretion and specifoation for the con-
struction of the fastest and teest kinds of Ice Yachts of

New Electric Light Support

free sites to substantial MANUFACTURING ENTERPRISES

WELL DRILLING MACHINERY.
wanoracturad by
WILLIAMS BROTHERS,
ITHACA, N. Y.,
Mounted and on Sills, for
deep or shallow wells,
with steam or horse

Perfect Newspaper File

 very one who wishes to preserve the paper. Address
M UNN \& CO., Publishers ScIENTIPIC AMERICAN.
PLAYS

1 am the owner of the polar lights, Of the constant star in the Northern heigh
Owner of husijandry, shipping and trade, Forestry, mining and all things made. My messengers, engines and vessels of st

The Great and Growing METROPOLIS at the Head of Lake Superior.

 For Manufacturing, For Merchandising, For Loaning Money, For Investments in Real Estate.
FOR EVERYTHING--the best place in america.

SPECIAL INDUCEMENTS TO INDUSTRIAL CONCERNS.

Land and River Improvement Co.,

WEST SUPERIOR,

WISCONSIN.

STEEL TYPE FOR TYPEWRITERS

EYESIGHT: ITS CARE DURING IN-

OIL WELL SUPPLY CO.

ARTESIAN

 ure and furnish everything re
quire to dill and compete
same. Portable Horse Power

ICE HOUSE AND REFRIGERATOR Directions and Dimension for Construction, with one
illustration of cold houe for preserving funit from
season to season. The air is kept dry and pure through

THE PENNA. DIAMOND DRILL \& MFG. CO.

FBOIIn]PRE

 4 specitity. ENGINES AND SAW MILLS. no FARQUHAR boiler ever EXPLODED.A. B. Farquhar Cor (umted), York, Pa.

A NEW CATALOGUE
Contained in Scirntigic American SUPPLEMENT, sent
tree of charge toany address.
MUNN \& CO., $\mathbf{3 6 1}$ Brondway, New York.
BIT

dRY air refrigerating machine.

CHUCKS. ※iwatiow

CTARTERE WARP DYEING AND SIZINGMAGHINES, POWER WRINGERS FOR HOSIERY AND DRYING AND VENTILATING FANS,
WOOL AND
Catoron
Catalogues free. CEO. Patalogues free. $\begin{gathered}\text { CLRK } \\ \text { WIndsor }\end{gathered}$

Windsor Locks, Conn.
INVENTIONS Practically DEVELOPED

ICE-HOUSE AND COLD ROOM.-BY K.

 SEWING MACHINE MOTOR FOR AMA-teurs.-By C.D. Parkhurst. Description of a a very sim-ple ano efiective motor, with lam nated armature. of
suffcient power to actuate

Cheap Prointingo R rles. send two stamps for Catalo
$\underset{\text { make. By }}{\text { EL.M. Hopkins.- Description of a small electro }}$
 amateurs to make a motor which might be driven with
advantage by a current erived from a batery. and
which would have suticlent power to operate a foot
 SUPPLLMENT. No. 641 . Trine 10 cen
this otice and from all newsdealers.
 OABTMINGB 8 and MATERIAILS for Simple and Parkibust Motors.
Large plunge batteries for run-
ning motor Zinc and Cing motors. Send stamp for Catalogue
PALMER BLIOS., Mianus, Conn 8MALL ELECTRIG MOTVOR FOR AM-

The most Succeafful Lubricat for Loose Pulleys in use.
VAN DUZEN's PATENT
OOSE PULLEYOILER

GATES ROCK \& ORE BREAKER
 Mnehinerv. Send for catalogues,
GATES IRON WORKS,
50 SO. Clinton St,, Chicayo
136 C. Wiberty Street, New York, BUSIN ESS END OF THE AMERICAN Newspaper. By A. H. Siegfried. An Anteresting pape
on the work of the publishers department of ane ne

1 EATNESS \& HEAD NOISES CURED

wwith Prewnatic Tires．Li ight，Strong，
Durable，and fully
guaranteced．

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March
7 th， 1876 ，No． 174,465 ，and January 30th， 1877．No．186．787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders eac individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use．and all the consequence thereof，and liable to suit therefor．

SMOKELESS GUNPOWDER．－AN IN teresting article by Hudson Maxim on the manufacture

THE SMITA PREMER TTPWWRIER

King of Kameras．
＊
The new model Folding Kodak，with glass plate attachment，Asbury Barker frictionless shutter． Greatest range of automatic exposure ever attained． No sticking on slow speeds．Accurate，reliable．
Best combined tripod and hand camera ever made．Best workman－ ship．Best Finish．Send for circulars．

THE EASTMAN COMPANY，
Rochester，n．Y．

HTHA LAUNCH IS Over 1,000 now in successful use． No Government Inspection．

No Licensed Engineer． The Simplest，Safest and Best Pleasure Boat．

Gas mingine and Powoer Company，
MORRIS HEIGHTS ON THE HARLEM，

VAN DUZENS SJumpuMP

MPS ANY KIND OF LIQ UID
es not clog，freeze or get out of order
ways ready．Allibrass．Every Pump
ways ready．All brarss．Every Pump
Guaranteed． 10 sizes．Capacity
－
100 to lr，000 galons per
hour．Prices $\$ 7$ and upwards．
For full information writ to
The VAN DUZEN \＆TIFTCO． （PUMP DEPARTMENT）
CINCINNATI，O．
NICKEL－IN－THE－SLOT MACHINES．

HIDISOIN
GENERAL ELECTRIC CO． INCANDESCENT AND ARC LICHT PLANTS．
Stationary and Railway Motors．－Lamps．－Cables．－Safety Devices．

TANITEEmery，
Emery Wheels，
Emery Emery Whetstones． Grinding Machines， Knife Sharpeners
Knife Grinders．
The Tanite Co．， Knife Sharpeners
Knife Grinders．
Stroudsbur
161 Washington St．，New York．

「エエコ

ESTABLISHED 1846.
The Most Popular Scientific Paper in the World
Only $\underset{\text { Weekly }}{\$ 3.00 \text { a }}$ Year，Including Pumbers a Year．

This widely circulated and splendidly illustrated
paper is published weekly．Every number contains six－ teen pages of useful information and a large number of
original engravings of new inventions and discoveries， original engravings of new inventions and discoveries，
representing Engineering Works，Steam Machinery， New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity，Telegraphy，Photography，Archi－
tecture Agriculture，Horticulture Natural History，
 Terms of subscription－One copy tific American will be sent for one year－52 numbers－ postage prepaid，to any subscriber in the United States， Canada，or Mexico，on receipt of three dollars by the
publishers；six months，$\$ 1.50$ ；three months，$\$ 1.00$ ． Clubs．－Special rates for several names，and to Post Masters．Write for particulars．
The safest way to remit is by Postal Order，Draft．ol
Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed seldom goes astray，but is at the sender＇s risk．Address all letters and make all orders，drafts，etc．，payable to MUNN \＆CO．， 361 Broadway，New York． §rientific Antrrical §upplement

This is a separate and distinct publication from Tre SCIENTIFIC AMERICAN，but is uniform therewith in size，
every number containing sixteen large pages full of en－ gravings，many of which are taken from forelgn papers
and accompanied with translated descriptions．THE SCIENTIFIC AMERICAN SUPPLEMENT is published Teek－ ly，and includes a very wide range of contents．It pre－
sents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts，embracing Biology，Geology，Mineralogy，Natural
History，Geography，Archæology，Astronomy Chem：－ Steam actricty，Zusit，Fieai，inechentcal kag＇w ring． Marine Fngineering，Photography，Thing，Ship Building， facturing Industries，Sanitary Engineering，Agriculture， Horticulture，Domestic Economy，Biography，Medicine， etc．A vast amount of fresh and valuable information The most important Engineering
and Manufactures at home and abroad are tlustrated and described in the SUPPLEMENT．
Price for the SUPPLEMENT for the United States and Canada， 85.00 a year；or one copy of the SCIENTIFTC AM－ for one year for $\$ 7.00$ ．Single copies， 10 cents．Address and remit by postal order，express money order，or check， MUNN \＆CO．， $\begin{gathered}361 \text { Bublishers ScIENTIFIC AMERICAN．}\end{gathered}$

Building EXitiont

The Scientific american architects＇and Single copies， 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages；forming a large and splendid Magazine of Architecture，ricbly adorned with elegant plates in colors，and with other flie of modern architectural construction and allied subjects．
A special feature is the presentation in each number A special feature is the presentation in each number
of a variety of the latest and best plans for private resi－ dences，city and country，including those of very mod－ erate cost as well as the more expensive．Drawings in
perspective and in color are given，together with full Plans，Specifteations，Sheets of Details，Estimates．etc． The elegance and cheapness of this magniflcent work
have won for it the Largest Circulation of any Architectural publication in theworld．Sold by all news－ dealers．\＄2．50 a year．Remit to

MUNN \boldsymbol{S} CO．，Publishers，

Steam！Steam！

Quality Higher，firice Lower． 2－Horse Eureka Eoiler and Engine，－\＄150 Other sizes at low prices．Before s，＂buy get our prices． B．W．PAYNE \＆SONs，

PRINTING INHES

