NEW LAKE STEAMERS

A view of the style of boat for which the Anchor line has let contracts with the Union Dry Dock Company, of Buffalo, Globe Iron Works Company, of Cleveland, and Detroit Dry Dock Company, of Detroit, is here presented. According to a late change in arrangements above deck, the forward house will be moved aft about 20 or 30 feet, leaving the space forward for anchors, capstan, etc.
A new feature in the boats, which are to be duplicates in all respects, with the exception of probably a slight difference in the proportion of engines, is the absence of sheer in their construction. They will be built without any sheer, that is, the 3 will be the same depth at ends as in the middle, and the gunwale will
latter fly having a double crank, and the arrangement being such that the incline or grade of the chute may be readily changed. The two vertically aligning flie are placed in such relation to the swinging branc chute that, if both are opened, the coal will drop direct ly through the two fly openings. At a point above these flies is hinged another inclined chute, adjustably supported by a cable from a winding drum, and at the upper end of this chute is a fly operated by a handle rod, leading to the top, there being just over this fy similar fly in the floor of the angular chute above, so that by opening both of these flies, and closing that of the first swinging branch chute, the coal may be delivered into another car, and, at the same time, be
properly screened. Still another fly is also provided

NEW LAKE STEAMERS.

be a bevel line. In this there is said to be a saving of $\$ 12,000$ to $\$ 15,000$ on boats of this class. The boats are to be 275 feet keel, 40 feet beam, and 26 feet depth from base line to top of spar deck beams at side. The boats to be built by the Globe Company, of Cleveland, and the Detroit Dry Dock Company will be engined by these companies, but H. G. Trout \& Co., of Buffalo, will build the engines for the steamer to be built by the Union Dry Dock Company, and the Lake Erie Boiler Works, also of Buffalo, will build the boilers. The engines to be built by Trout will be 20,33 , and 54 inches by 45 inches stroke. The two boilers will be 12 feet long and 14 feet diameter, to be allowed 160 pounds of steam. The boats will have steam capstans, windlasses, steerers, and line shafting for hoisting purposes, together with electric lighting plants and all modern arrangements for rapid work in port. They are expected to carry 2,700 tons of freight on $15!/ 2$ feet of water, and their cost is given out at $\$ 178,000$ each.-Marine $R e$ view.

A TIPPLE FOR SEPARATING AND DELIVERING COAL
The illustration represents an improved tipple for conveying nut or other fine coal to any desired car. It has been patented by Mr. Thomas B. Murphey, of West Elizabeth, Pa. The top chute, made in sections, is supported from a scale on top of the frame, and connected with a winding darum by a chain, the upper portion of the chute having screen bars. The chute below this has finer screen bars, and leading rearwardly from its upper portion is an angular chute, supported by a hanger, beneath which is another chute, with an extended end section, while opening from the latter chute is an adjustably supported branch chute. Opening from the upper portion of the angular chute is a swinging branch chute, at the upper end of which is a pivoted fly, controlled by a crank, from which a
at the upper end of the chute, below the angular chute, for diverting the passage of the coal as may be expedient, the improvement providing for the conve nient screening and sorting of the ordinary run of mine coal, and its delivery into different cars as desired.

Scientific Progress.

Intellect is the great factor in commercial success, whether of individuals or nations. Take the case of the skilled bricklayer and the hod carrier. The first is using brains on his work; the second is using brut force. When he goes up the ladder with his hod of bricks he has also to carry his own weight, thus waste fully expending force. Some one notices this, and sub stitutes for the brute force of the human that of the horse; then the horse is displaced by the mechanica force of the steam engine, which can do the work of 15 men or of 2 horses in the same time. Coal converted into heat is doing all the work. The coal mined each year in the United States represents in actual work more than the sum of the force of the total population of the globe, assuming all to be strong men. Thus the substitution of a natural force for human power vastly substitution of a natural force for human power vastly
increases the productive capacity of the human race. Guided by intellect, taught by science, the natura orces can do in a few hours what the unaided labor of many men could not do in a lifetime. It was not pro phecy, but a flash of genius, that drew from Stephenson the assertion that it is the sun that drives the locomotive engine by being liberated from the coal in which it has been stored for ages. But man can neither create force nor endow anything with properties. All that he can do is to convert and combine them into utilities. The man that does this with knowledge is spared the dis mal failures of ignorance, but he that tries to use pow ers without understanding them is inevitably punishe for his rash presumption. It is this presumption that causes the mor tality and disease that follow in the wake of civilization. Natural law like the civil, never admits ignor ance as an excuse.
In this century three scientists have revolutionized commercoOersted, of Copenhagen, and Fara day and Wheatstone, of London It was of Faraday that Huxley said in effect, that any nation would do well to spend $\$ 500,000$ in discovering such a man, and an equal amount in educating and setting him to work. Bessemer, studying away at steel, has revolutionized ship building. Dr. Joule's studies in the me chanical equivalent of heat produced the compound engine, by which the necessary amount of coal for carrying a given cargo has been reduced more than 40 times; that is, a steamship that in 1850 carried a cargo at an expenditure of 14,500
handle rod extends to the top of the frame. This branch chute delivers into the lower portion of the an gular chute, and facilitates the rapid handling of the fine coal or slack. Near the lower end of the main sec tion of the angular chute is a fly, having a crank connection with a rod leading to the top, and beneath this fly is anotherin the chute below, also having a crank connection with a rod leading to the top, the
pounds of coal to a ton now does pounds of coal to a ton now does the same work by burning about 350 pounds. Joule's that will pass through a ring the size of a twenty-fiv cent piece to drive one ton of cargo for two miles in one of the most improved steamships. In 1880 the rate of grain from New Yo k to Liverpool was $91 / 4$ pence in 1886 it was 1 penny a bushel. The reduction wa primarily due to the scientist.-Aluminum Age.
but the great majority, anxious to impress the drug man favorably toward their claims, invested in two for quarter. So great was the rush that the fortunate druggist had to order a fresh consignment of choice brands. None of the applicants ever applied for the nickel.

A TOOL FOR MINERS AND BLASTERS

The combination tool shown below has been patent ed by Mr. Richard A. McVitty, of Portland, Oregon, and is designed to embrace all the implements necessary for use in the treatment of fuses, or for the attachment of aps to fuses, or for inserting the capped fuse in a artridge. The small view shows a fuse provided with cap, and one end of a fuse compressed to onter a cap The handles of the tool are normally held apart by

MCVITTY'B MINERS' AND BLASTERS' TOOL
interlocked springs, one handle member havirs a screw-driver point while the other is formed as a taek puller, there being pivoted to the latter member a link adapted to be passed over the end of the other mem ber. Near the pivot of the tool, in the handle section are recesses in which are removably secured cutters, to be employed for trimming the ends of fuses, and at op posite sides of the pivotal connection in the outer edges are semicircular recesses, aligning when the handle sections are held apart, but having cutting edges for operating upon a fuse or for cutting wire when the handle sections are brought toward each other. In the upper face of the head section of one member is a horizontal recess, in which is pivoted a knife blade, held in position by a spring after the manner of an or dinary pocket knife. In the inner faces of both head sections are longitudinal semicircular grooves, in one of which a cutter is removably secured, the groove and the knife being adapted to cut the end of a fuse as shown in the small view, to facilitate lighting the fuse. Nearer the pivotal point, in the inner faces of the head sections of both members, are two transverse recesses, one of which is adapted for use in crimping ribs upon a cap, to fasten it on the fuse, while the other is for reducing, by compression, the end of a fuse to be inserted in a cap. Each head section also has a downwardly extending lug, capable of use as a hammer.

Chromic Acid an Antidote to snake Poison.
Prof. Kaufman, of the Veterinary College at Atfort, has discovered that chromic acid, used hypodermatically, will destroy the poison of snakes and other veno mous reptiles.
The treatment consists in the cautious employment of a one per cent solution by the ordinary hypodermatic syringe ; and, at the same time, where the bite happen to be at one of the extremities, the limb should be ligatured, in order that the medicament may have an opportunity of being diffused throughout the tissues.

