姩rientific ammericam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors,

 pUblished weekly atNo. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. B. BEACB.

TERMS FOR THE SCIENTIFIC ANERICAN

 One copy, one year, for the U. S. Sanada or Merico.
 The Scientific American supplement

Building Edition.

Spanish Edition of the Scien tific, 8 Ame a year

NEW YORE, SATURDAY, MAY 21, 1892.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT
NO. 855.

fast ships in prospect.

The thanks of the country are due to Mr. Bourk Cockran, of the House of Representatives, and to Mr. advocacy of the bill for the American registration of those two noble specimens of marine construction, the City of New York and the City of Paris. Both ships, although built and sailing under the British flag, are principally owned by American citizens. The shipping laws of this country are intended to promote and en-
courage American naval industry, and hence, except by special act of Congress, no foreign-built vessel allowed to carry our flag or engage in our coastwise commerce.
The necessity of providing the country with a fleet of superior ships of the highest speed and greatest coal endurance, for long voyages, has of late become extremely urgent. For years the Scientific American has advocated the construction of such ships as adjuncts for our navy in case of hostilities; and we are heartily gratified at the prospect which now presents itself o an early and ample realization of the project. It now looks as if the United States were about to enter upon a new era of maritime progress, which may ultimately merly enjoyed, before civil war made havoc with or sailing ships and foreign steamers grasped our trade The admission to registration of the two preat ship we have named is coupled with the condition that they are to be subject to the use of the Navy Department in case of emergency, and that the Inman Company to which they belong, shall immediately contrac for the construction, in this country, of two addi tional ships of at least equal speed and strength Our shipbuilding industry will thus at once receive a to render the new vessels superior in velocity and strength to any afloat, and this good beginning will doubtless lead to the permanent establishment of shipyards and appliances that will enable our workmen to compete with the world in every departmen of naval architecture. Since the passage of the act in favor of the two steamers mentioned, we notice that the Pacific Mail Steamship Company is about to apply for registration, on similar terms, for one of
their large ships, now carrying the English flag, the China, which plies between San Francisco and Japan The company agrees, in case registration is allowed to build in this country two new and splendid boats, which, like the registered vessels, are to be subject to the call of the Navy Department. We give herewith portraits of the City of New York and the City of Paris, which are twin ships, and subjoin the follow ing particulars.
The ships were built in $1887-88$ by Messrs. Thom son, Clydebank.

Length over all..	... 560	feet.
Breadth	6314	
Depth moulded.	42	"
Tonnage (gross).	.10,500	tons.
Displacement.	13,000	
Cylinders, two 45 in., two 71 in.0 two 113 in.		
Piston siroke	5	feet.
Boiler heating surfa	. 50,265	eq. ft.
Grate area.	1,293	feet.
Steam pressure...	100	lb.
Indicated horse power	18,350	

Of the speed to which they attain, it may not be uninteresting to show how their dimensions compare with those of other notable Atlantic steamers of the present and of bygone days, a comparison which give in tabular form

TABLE GIVING

 ATLANTIC LINERS.

The keel of the City of New York was laid in June 1887, and that of the companion ship, the City of Paris shortly afterward. The vessels are constructed of stee made at the works of the Steel Company of Scotland Newtown and Blochairn, and at the Mossend Stee Company's works. The material placed in position when the ships were almost ready for launching weighed, for each vessel, 7,000 tons, the heaviest casting for each ship being the stern post of 26 tons. Th heaviest casting for protected from shot. They are the only merchantmen eng we to meet all the abovedescribed im steel was thoroughly tested at the makers, under iportant qualifications as cruisers. They can escape by
Lloyds' supervision, and carefully treated by a special 'their speed any war vessel afloat to-day. They can
process to remove as much as possible the chance of corrosion. The vessels were built throughout on the most approved principles of modern ship construction and in many respects bold innovations, based on ex haustive scientific experiments, were introduced. The hull of each vessel is divided by transverse bulkhead into fifteen watertight compartments, including three for boilers and two for machinery, the latter being separated by a longitudinal bulkhead. The vessel have two bottoms, the space between them being 4 ft .
The vessels have each five decks. The total numbe square feet on each deck is 27,000 , so that, including the bottom of the hold, the vessels have each a floor ing of over 150,000 square feet. The saloon is on the main deck, and forms a principal feature in the inter nal arrangements. A condition was that the vessels ere to partake more of the arrangement of large firs class hotels than of steamers. Eight feet is the usual pae between two decks, and even the most skillful architect would find it difficult, if not impossible, to produce a saloon commensurate, either in size or artis ic treatment, with the proportions and general design of such large vessels. Messrs. Thomson, however solved this problem in the national liner America, and as the experiment in her case was most successful in every way, they have repeated the same arrangement greatly improved, making the roof of the saloon in the form of a large dome or arch. In the case of the new Inman, the saloon dome is level with the top of the houses on the upper deck, thus giving a height of 2 feet. The dome is 53 feet long and 25 feet wide It is supported by heavy steel stanchions, the arch itself being formed of strong yet light framework o steel.
In designing the steering arrangements for these vessels, it was considered desirable to make them tho roughly efficient for war purposes in the event of the ships being used as armed cruisers, a condition which is not by any means fulfilled by the steering gear fitted to ordinary merchant steamers. The gear is powerfu nough to put the rudder hard over when the ship is going full speed ahead, each hydraulic ram being cap ble of exerting a thrust of 80 tons, which is increased by the nature of the mechanism to 140 tons on th connecting rod, which is a shaft of steel 12 inches in diameter. The hydraulic pressure by which the ram are actuated is taken from the pressure main, whic extends to the different parts of the ship, and th valves which admit pressure to one or other of the wo rams are controlled by the quarter-master on the bridge by the motion of a small tiller, which takes he place of the usual wheel, and is said to admit of reater accuracy in keeping a given course. The posi tion of the rudder is indicated on the bridge by a imple arrangement
The ships are propelled bytwin screws. The Inman Company was the first to adopt both the single and the twin screws in the Atlantic trade. The propeller are supported by two massive steel stays, each of which is a casting of steel weighing 26 tons and made by th Steel Company of Scotland.
The machinery consists in each vessel of two sets of engines of the three-crank triple expansion type, hav ing piston valves throughout. Each set of the engine s capable of exerting sufficient power to propel the vessel at four-fifths of her maximum speed, so that should one set break down no serious delay will take place, for the vessel will go at a speed, say, of 16 knot nstead of 19 knots per hour.
The auxiliary engines of each of the vessels number thirty-seven, the majority of which are driven by hy draulic power.
The average Atlantic passage of these boats is 6 days hours, and the averace speed of the voyapes 19.20 nots, or a little over 22 miles per hour
Senator Frye in advocating the bill to register these hips said:
"They have been specially designed and built to be not only the finest passenger ships afloat, and the safest, but also the most efficient commerce destroyer and cruisers. They have frequently crossed the At lantic exceeding a speed of 20 knots for the whole distance, taking good and bad weather together.

They have a remarkable coal endurance, capable of keeping at sea for seventy-two days, and steaming 10 knots, which is a valuable qualification as a cruiser They are already fitted for sixteen rifled cannon. They were built under the inspection and according to the design of the British Admiralty, to the end that they might be efficient cruisers. Their boilers and en gines are divided into separate compartments, so tha the steamer could never be disabled by the floating or flooding of one or more compartments. Their boil ers are protected from ramming or from shot by the coal bunkers on either side in water-tight compart ments. Their engines are protected in the same man ner by water-tight compartments, which can be fill (
overtake and destroy any merchantman that sails on the ocean.
"They were built at Thomson's yard, on the Clyde. They cost about $\$ 2,000,000$ each. The vessels which the bill provides shall be built here will cost about $\$ 2,225,000$ each."
Secretary of the Navy Tracy in a recent letter to Mr. Frye says:
"It is difficult to imagine a more effective commerce destroyer than the steamship City of Paris, armed with a battery of rapid-firing guns. She can steam over 21 knots an hour, and can average 19.9 knots from land to land across the Atlantic. No man-ofwar could overtake her; no merchantman could escape her. A fleet of such cruisers would sweep an enemy's commerce from the ocean. This fact is well understood in Europe, and states that are unprovided with a convertible merchant fleet are preparing to meet the possible emergency by partly protected cruisers that are substantially as fast as the City of Paris.
"The steamship City of Paris, referred to above in my annual report for 1889 , and her sister ship the City of New York, are among the vessels that the United States might acquire by the passage of this bill. When it is considered that these two extraordinary ships will, by this legislation, be virtually added to the navy of the United States without cost ; that the passage of the act is a guaranty that other ships equally fast and powerful will be built, which the government may likewise take advantage of in emergencies, the great importance of the measure in connection with the problem of naval defense in the United States cannot be overestimated, and I think it proper to state that although this bill involves the expenditure of no money in the 'Treasury, I consider it as second in im portance only to the naval appropriation bill."
Mr. Frye continues: "These two ships were built under the inspection and direction of the British Admiralty; and that Admiralty, knowing that they were built by American capital, demanded much more of these two ships than they did of any others built in England and subvented. The Majestic and Teutonic have none of the requirements, and none were made of them that were made of these two ships. They have not the coal bunker protections, and the engines and machinery are not below the water line, as they are in these two ships.
" Mr. President, I have a right to say that a ship will be built it this bill becomes a law, not of 10,000 tons, but of over 12,000 , with a speed, not of 20 knots, but of 23 knots. The Cunard line now is building on the Clyde two vessels for the main purpose of surpassing these two, and the purpose of this company is to make one of these vessels a vessel that will be superior in every respect to the two Cunarders, so that one of these ships will be over 12,000 tons.
"I have a right to say further-I believe it fullythat another line of three of these great ships will be provided for, if this bill becomes a law, between New

THE CITY OF PARIS ates in a solution of one part of po and crippled the postal subsidy bill, so that there was tassium bichromate, twenty-five parts of water, and as no inducement left for capital to build these first-class much caustic ammonium as will make the bath yellow. ships and put them on to these lines. Shortiy after I The sheet is then spread upon a sheet of glass which spent a week in Philadelphia and New York, using all has been covered with a film of wax in the same way as the powers of persuasion I was possessed of to induce is done in the preparation of the so-called "pigment capital to put these lines on, and it was a complete papers." The gelatine must then be dried in the dark failure.
"I am authorized to say that some leading men and manufacturing and shipyard establishments in the United States have sent here their approval of this bill, and the names I shall read are a few of those I have received. I read them because they represent the leading friends heretofore for the rehabilitation of the merchant marine of the United States : Morris, Wheeler \& Co., manufacturers of iron and steel plate, very prominent men in the Shipping League; the Phonix ron Company; the Pingree Iron Works; Morris, Tasker \& Co.; the Cramps, shipbuilders; I. P. Morris Company, shipbuilders; James M. Swank, general
manager of the American Iron and Steel Association; Penn Steel Company, shipbuilders at Sparrow Point; Handren \& Robins, shipbuilders; Arthur Sewall, of the State of Maine, one of our largest shipbuilders, kerchief, tied without folding over the face, is a com who just at this moment is putting in a plant to build free breathingans steel sailing ships, the first in the country, I believe; smoke from the lungs.

THE CITY OF NEW YORK.

The Virginia Dismal swamp.

The name of the Dismal Swamp, as well as its natural curiosities, has given it a weird interest. It is a little and curious world in itself, having its own vegetable and animal life. J. Ralph, in the American Agricul turist, gives the following description :
The Dismal Swamp in Virginia, one of the largest of the swampy tracts in America, is also one of the most promising areas for reclamation. It contains fully 1,500 square miles, and is at present of little value, except for a supply of timber, which is constantly diminishing. The swamp is situated on an inclined plane, gently undulating, and is really nothing but a continuation of the low, swampy, coastal plain which extends from Texas northward. It is an old sea bottom, and the western boundary of the swamp is a sea cliff and beach. Owing to the original deficiency of slope, it is swampy because the water cannot run off, and its swampy nature is increased by the growth of vegetation, which acts like a sponge in retaining water.
Near the center of the swamp is the famous Lake Drummond, about which so much has been written, and the origin of which is still an unsettled question. It has been supposed that during some time of drought a fire, burning the peat, has produced a large depres sion in which the waters of the lake have gathered Prof. Shaler, of the United States Geological Survey, considers this explanation to be improbable, although smaller pools have been produced in this way. He offers as a theory that as the vegetation grew upon the old sea bottom, which had been raised to dry land, it began to grow first on the margin, and gradually to extend over the entire area, Lake Drummond being the last place to be filled. One of the most interesting features connected with the Dismal Swamp is its peculiar vegetation. Trees generally cannot grow in very swampy tracts, for their roots need to have access to the air during the growing season. The bald cypress (Taxodium distichum) under ordinary conditions differs in no way from an ordinary tree with respect to its roots; but in swamps such as the Dismal Swamp, where the roots are beneath water all the year, it has formed the habit of sending a knee-like protuberance from the roots up above the water into the air-breathing holes one might say, for the roots. In this way the cypress can live in very wet swamps. The black gum of the Dismal Swamp accomplishes the same end by arching its roots so as to raise portions of them above water.

As would be expected, the animal life of this great swamp is also peculiar. No squirrels exist because there are no nuts; ground-loving animals are also absent because of the extreme wetness, so that there are no mice, moles, squirrels, or other animals of this class. Birds which build on the ground cannot live here, and the chief animal population of the higher classes consists of water birds and snakes. Of the larger animals, bears are abundant, and there is a peculiar and very ferocious species of wild horned cattle. These animals, probably the descendants of former domesticated cattle, are now thoroughly wild and very dangerous. The fights of the wild bulls are said to be very exciting by those who have seen them, and in the contests between the bears and bulls both are sometimes killed It is said the bears, in order to escape the danger from the horns of the cattle, have the habit of springing upon their backs and rending the muscles supporting the head of their prey.

This region is in part a wil derness. but some efforts hav been made to drain it, though these have been in the main un systematic and unscientific, and have produced little result of value. Prof. Shaler estimates that by a proper system of draining this great swamp, fully 160 ,000 acres of land can be reclaimed at a cost of $\$ 4,000,000$, making the land worth some $\$ 16,000,000$ The region is very favorably situated for cultivating and mar keting garden crops. Experi ments already made prove the soil and climate to be admira bly adapted to the cultivation of vegetables. The Norfolk district, where a costly system of fertilizing is necessary, now fur nishes a large part of the supply of such crops to from four or five million people along the northern coast, and the de mand is certain to increase. The drainage channels could furnish water transportation to within a mile o every part of the tilled area and thence to the sea.

An alloy of gold and aluminum has recently been made. Its color is a most beautiful purple, and it will be valuable in making jewelry.

MORRIS' RAILWAY SIGNAL

The lower projecting ends of the slides are formed with stops adapted to be engaged by spring-pressed hori zontal bolts, sliding in brackets, the outer end of one o the bolts being connected by cable or wire with a tripping lever located on the rail at some distance from the signal. These levers are so inclined that the wheels of a passing train, approaching the signal in one direction, will press the lever down and thus draw upon the wire or cable to withdraw the bolt, releasing the slide, and permitting the spring to force it up, thereby operating the clock mechanism to sound the alarm. As the train reaches the signal, a similar trip ping lever on the rail is operated to draw down the slide, a wire extending from this.lever to the bottom of the slide, which is now engaged and locked by the horizontal bolt, the device being then in readiness for the following train, the signal having been sounded from the time the first tripping lever was moved until the second one was reached. To prevent unauthorized persons or animals from operating the signals, C -spring of sufficient strength are placed under the tripping levers.

A Great Tableland 17,000 Feet High

Captain Bower, of the Indian Staff Corps, has ar rived at Simla from China, after a very remarkable journey across the Tibet tableland. He had with him says Nature, Dr. Thorold, a sub-surveyor, one Pathan orderly, a Hindostani cook, six caravan drivers, and forty-seven ponies and mules. The Calcutta corre forty-seven ponies and mules. The Calcutta corre
spondent of the Times, who gives an account of the spondent of the Times, who gives an account of the
journey, says that Captain Bower, leaving Leh on journey, says that Captain Bower, leaving Leh on
June 14, crossed the Lanakma Pass on July 3, avoid ing the Tibetan outpost placed further south. Jour neying due east, he passed a chain of salt lakes, one o which, called Hor-Ba-Too, is probably the highes lake in the world, being 17,930 feet above the sea Gradually working to the southeast, the explorer saw to the north a magnificent snowy range, with a lofty peak in longitude 83° and latitude 35°. After many weeks' travel over uplands exceeding 15,000 feet in weeks' travel over uplands exceeding 15,000 feet in were to be seen, the party on September 3 reached Gya-Kin-Linchin, on the northern shore of Tengri Nor Lake, in longitude 91° and latitude 31°. This is within a few marches of Lhassa, and two officials from the Devi Jong, or temporal governor of Lhassa, met him here and peremptorily ordered him to go back. But he refused to return, and a compromise was effected, guides and ponies being provided on his agreeing to make a detour to the north in order to reach the fron tier of Western China. He reached Chiamdo on De tier of Western China. He reached Chiamdo on De cember 31, only just succeeding in getting off the table
land before winter set in. He struck Bonvalot's route for a few miles when marching to Chiamdo. The country about this town is very fertile and wel wooded. Three thousand of the monks of Chiamdo who lived in fine monasteries, threatened to attack the party, but were deterred on learning that they carried breechloaders. Captain Bower arrived at Tar chindo, an outpost on the Chinese frontier, on Feb ruary 10. The distance covered from Lanakma to Tarchindo was over 2,000 miles, all of which, save a few miles, has now been explored for the first time The route for thirteen conse cutive days lay over a tableland 17,000 feet high. Captain Bowe is engaged in writing a repor and completing his maps.

The Condensers of the
Baltimore.
Recently on removing the tubes there was nothing in their appearance to indicate anything wrong, but it was found that a very light blow would break them across. The fracture show ed a complete change in the material. A thin ring on the in side had the color and appear ance of the brass of which the tubes were originally composed, but outside of this the rest of the tube was of a dull copper colo without metallic luster. The whole phenomenon was so en tirely different from the usua experience with condenser tubes, which have generally been con sidered indestructible when in telligently treated, that an ex planation seems impossible. As
wheels are mounted being rigidly connected at their outer ends with crank arms, pivotally connected with links extending to the upperends of vertically movable slides in a casing which is shown partially broken away. Sleeved on the slides are spiral springs, whose their ends abut against the lower end of the frame and the latter are drawn down, the springs are compressed.
far as can be learned, there has been trouble on
nearly all the new ships with the copper pipes, and it nearly all the new ships with the copper pipes, and it
is not confined to the American navy, but the English have had the same trouble. A correct explanation will be of great interest to all mechanical engineers. A chemical analysis of some of the defective tubes of the Baltimore is now in progress, and when it is com pleted it may throw some light on the subject.

