PROGRESS OF THE WORLD'S FAIR BUILDINGS,

The site of the Columbian Exhibition at Chicag has been for some time a scene of the most stirring life and energy, and the grounds are rapidly taking on the appearance the architects and managers have designed they shall present before the opening of the great fair. The rate of progress being made cannot be fully appreciated on the mere understanding that some four thou sand men are now regularly at work on the fair grounds, for with the generous scale on which the grounds, for, with the generous scale on which the expenditures are being made, and the careful elaboration
of the plans before the work was commenced, it is ap-

Transportation Building, although not quite so far advanced, is being energetically pushed forward. The mild weather through most of December afforded opportunities for pressing the outside work which had tage of permitted of almost continuous operations bein carried on in the docking of the interior wis nd the landse to keep about four hundred men employed in grading filling, and tree planting
power each. The plant for this lighting is to be put in position and operated by contractors during the time of the exhibition, and it is estimated that the amount of electric lighting will be ten times as much as was employed at the Paris Exposition. A temporary plant for electric lighting and power now supplies all the saw mills and hoisting machinery on the grounds.
The Woman's Building, now so nearly completed, was happily designed by a woman, Miss Sophia G. Hayden, of Boston, who received a prize of $\$ 1,000$ for the best of Boston, who received a prize of $\$ 1,000$ for the best
design furnished. It is 200 by 400 feet in size, and has
 gressing under the direction of numerous mechanical, electrical, sanitary, railroad, and municipal engineers. The engines, boilers, and belting to form the power plant will be obtained mostly free of cost from exhibitors, by whom they will be in stalled as exhibits, and it is said that in this way the necessary plant for 16,000 horse power of the 25,000 to be provided, is already secured. Negotiations have also been closed with Henry S. Worthington for a pumping plant free of cost for service on the grounds, with a capacity of $40,000,000$ gallons per day. A triple expansion engine to be furnished by a Mil waukee firm has cylinders 30, 58, and 88 inches in diameter, with a 60 inch stroke. Another firm is to furnish six large engines developing an aggregate of 3,000 horse power, ope rating also compound air compressors, the feed pumps, heaters, condensers, and other appliances needed for the entire plant having been secured without cost as exhibits. So many of the belting manufacturers have of fered to run belting as exhibits that it is not doubted all the supplies desired in this line will be obtained free of cost. A temporary power plant of 700 horse power
parent that another and a greater army of co-laborers is at work getting ready and forwarding to the site the materials to be used, such materials being furnished as far as possible, in a state which calls for comparatively little work to fix in completed condition.
Our first page illustrations represent the present appearance of three of the important buildings of the fair which are now nearing completion, the work on these structures being further advanced than that on any of the others, although a great deal has been done on each of the main buildings. The Woman's Building is entirely inclosed and the oilers and painters are putting on the outside finish, while the plastering and completion of the inside is in progress. The roofing of the Mines Building is being rapidly completed, and that of the
corner and center pavilions connected in the first story by an open arcade, surmounted by classic vases. The first story is Doric and the second Ionic, the cente pavilion containing the main entrance, and being treat ed as a triple open archway of the story above, with row of free-standing Corinthian columns. The main gallery of the building will be 60 by 240 ft ., and ther will be one room 80 by 200 ft . in which will be shown matters connected with woman's work from the earli est ages of history to the present time.
The Transportation Building, between the Horti cultural and Mines Buildings, is very refined and simple architecturally. The main building is 960 ft . front and 256 ft . deep, and it will have a triangular annex of one story buildings covering nine acres. Its cupola will be reached by eight elevators, and from it a mos beautiful view will be obtained of the entire exhibition Its main entrance will be a magnificent single arch enriched to an extraordinary. degree with carvings, reliefs, and paintings. The display here of locomotives, cars, and everything belonging to the department of transportation will, without doubt, far surpass any thing ever before planned anywhere.
The Mines and Mining Building is 700 by 350 ft . in size, and the height to the main cornice is 65 ft . The rand entrances are at the north and south ends, and are 110 ft . high and 32 ft . wide, each opening into a vesti bule 88 ft . high and elaborately decorated. At each corner of the building is a pavilion 68 ft . square and 90 ft . high, surmounted by a dome. The roof is of glass, 100 ft . from the floor, and a balcony 60 ft . wide and 25 ft . high encircles the building, eight stairway leading to this balcony
The appearance of the staff ornamentation, as wel as the manner in which it is produced, is well brought out in our illustration of the clay model for a portion of the arch of one of the doors in the Mines Building. The section shown embraces five or six different pieces, all so nicely joined on board backing that it is impossible to tell where the pieces come together, and yet readily separable to make the gelatine moulds there rom, in which the staff is cast in sections of convenient size to be easily handled. These gelatine moulds are bout an inch thick in substance, and bring out all the ne lines of the mod with great distinctness the ta en in the of the most delicate designs. The staff is a composition of plaster of Paris and tow or other fiber, with a varying amount of alumina, glycerine, dextrine, etc. according to the special casting to be made. Almost any color desired may be readily produced upon it by simple external washes. There are now three considerable establishments on the fair grounds, employing altogether about 400 hands in the manufacture of this style of exterior ornamentation for the Exposition Buildings.

Prof. Dr. Kobert has proved experimentally that hydrogen peroxide is a valuable antidote for hydrocy anic acid poisoning. It is to be given internally as wel as subcutaneously until the odor of the acid can no longer be recognized in the exhalations and the symp toms subside. He found that lethal or even larger doses could be given to animals daily for several weeks, if hydrogen peroxide be injected in one cubic centimeter doses when the symptoms of poisoning appear. The on tide by ntidote acts by changing hydrocyanic acid into oxa Imide.-Pharm. Centralhalle, 1891, 570.

Cotton Oll Soap.
In the Queen's Bench Division Mr. Justice Charles ately gave judgwent in the case of Wilson v. Union Oil Mills Cowpany and Pearson. The action was brought by Mr. John Hazelgrave Wilson, chemist and patentee of process for bleaching soap, against the Union Oil Mills Company, of South Sea House, Threadneedle Street, London, and Mr. Isaac Pearson, chairwan of the company, and an oil refiner, carrying on business at the Rock Villa Oil Mills, Glasgow.
The plaintiff claimed a royalty of $2 l$. per ton on all The plaintiff claimed a royalty of $2 l$. per ton on all
soap manufactured by his process, or, alternatively, soap manufactured by his process, or, alternatively,
dawages for alleged infringement of his patent, and an injunction to restrain the defendants' further infringman
The defendants denied having agreed to pay a plaintiff's patent, and alleged that the patent was invalid.
The plaintiff's patent was taken in 1883, and aimed to utilize, for the purpose of manufacturing a good to utilize, for the purpose of manufacturing a good
commercial soap, the mucilage, or "cotton oil foots," which was a waste product in the preparation of refined cotton seed oil. The oil, when first expressed from the cotton seed, is of a dark port wine color, and contains suspended in it particles of the husk of the seed which had passed into it during the extraction of the oil by hydraulic pressure. The dark oil is treated with a solution of caustic soda, which partly saponifies the oil, and carries to the bottom of the vessel in which the oil is placed the coloring matter and the portions of the husk remaining in the liquid, leaving the oil of the color of an intermediate sherry. The wucilage or watter which falls to the bottom of the oil consists of partially saponitied matter mixed with portions of free oil, caustic soda, and the resinous and albuiminous compounds obtained from the husk of the cotton seed. Sowe thousands of tons of this mucilage are produced from the various factories every year, and the plaintiff claimed that his process not only produced a good commercial soap, which it was not diff oult to do, but yielded this in a bleached condition, so that it could be used for washing materials without staining thew. The bleaching was accomplished by means of hypochlorite of sodium, and he alleged that
the defendants had adopted the main features of his patent.
The defendant Pearson and Mr. Tatlock, the public analyst of the city of Glasgow, proved that the pro cess as described by the plaintiff in his specification was unworkable, and that it was impossible to separat the coloring matter frow the soap by the use of hypo chlorite of soda in the manner directed by the plaintiff
by reason that the resinous and albuminous coloring watter absorbed any amount of the bleaching agent employed without any appreciable alteration in the color, and that the common salt produced by the de composition of the hypochlorite of soda under the action of heat was detrimental to the process, as it threw up the coloring matter in : fine state of division and mixed it with the soap, so that the soap produced
was useless. The witnesses further proved that in the process used by the defendant Pearson, which he had patented, and which was the result of a large number of experiments after the failure of the plaintiff's process, the defendant saponified the mucilage with an excess of very strong caustic soda, which not only pro duced soap but also dissolved out the coloring matter The defendant then passed open steam into the boil ing mass and produced a violent mechanical agitation of the liquid, and a complete separation of the soap from the colored solution took place, and the soap could be at once run or skimmed off, and after the soap had been washed with dilute alkali a good marketable soap was produced, which caused no discoloration in any fabric washed with it. The soap was somewhat dark in color, and as at first there was some prejudice in the trade, the defendant bleached the soap by boiling it with hypochlorite of soda, and this was the infringement complained of. The defendant had not, however, bleached more than about 400 tons of the soap, and was now producing a soap about the color of Pears' soap without the use of any bleaching agents.
A large body of evidence was called to prove the failure of the plaintiff's process, and several soap makers qave evidence of the use by theru of hypochlorite of sodium for bleaching soap long prior to the date of the plaintiff's patent, and various specitications of Longmore, Watt, Briqueler, and others were put forward as anticipating the plaintiff's patent.
Judgment was given in favor of the defendant.
Ir urifying Carbon Bisulphide without Distillation.
One liter of the carbon bisulphide is treated with 0.5 c. c. of bromine and allowed to stand for three to four hours. The excess of browine is removed by agitation with caustic potash or copper turnings. Any remain ing cloudiness may then be removed by agitation with a little dry calcium chloride, with subsequent filtration The carbon bisulphide treated in this way is colorless of pleasant smell, and evaporates without residue.A. Chenevier.

For Orange Luminous Paint, 46 parts varnish are mixed with 17.5 parts prepared barium sulphate, 1 part prepared India yellow, 15 parts prepared mad der lake, and 38 parts luminous calcium sulphide.
For Yellow Lominous Paint, 48 parts varnish are
ixed with 10 parts prepared barium sulphate, 8 parts barium chromate, and 34 parts luminous calcium sulphide.
For Green Luminous Paint, 48 parts varnish are mixed with 10 parts prepared barium sulphate, 8 parts chromium oxide green, and 34 parts luminous calcium sulphide.
a Blue Luminous Paint is prepared from 42 parts varnish, 10.2 parts prepared barium sulphate, 6.4 parts ultramarine blue, 5.4 parts cobalt blue, and 46 parts uminous calcium sulphide.
A Violet Luminous Paint is made from 42 parts varnish, 10.2 parts prepared barium sulphate, 2.8 parts ultramarine violet, 9 parts cobalt arsenate, and 36 part uminous calcium sulphide.
For Gray Luminous Paint, 45 parts of the varnish are mixed with 6 parts prepared barium sulphate, 6 parts prepared calcium carbonate, 0.5 part ultrama rine blue, 6.5 parts gray zinc sulphide.
a Yellowish-Brown Luminous Paint is obtained from 48 parts varnish, 10 parts precipitated barium sulphate, 8 parts auripigment, and 34 parts luminous calcium sulphide.
Luminous Colors for Artists' use are prepared by using pure East India poppy oil in the same quantity instead of the varnish, and taking particular pains to grind the materials as fine as possible.
For Luminous Oil Color Paints, equal quanti ties of pure linseed are used in the place of the varnish. The linseed oil must be cold-pressed and thickened by heat.
All the above luminous paints can be used in the manufacture of colored papers, etc., if the varnish is to a paste with water.
The luminous paints can also be used as Wax Colors for Painting on Glass and similar objects, by adding, instead of the varnish, 10 per cent more of Japanese wax and one-fourth the quantity of the latter of olive oil. The wax colors prepared in this way may also be used for painting upon porcelain, and are then carefully burned without access of air. Paint ings of this kind can also be treated with water glass -Ztschr. Oest. Ap. Ver.

Magnetism.
In tools it is due to a combination of position and vibration.
It is well known that vibration greatly assists change in the magnetic state of a piece of iron placed n a magnetic field, and Ewing has shown this quantitatively by a series of curves derived from actual ex periment.
The phenomenon of hysteresis, or the lagging of a magnetic effect behind its cause, which is existent in all qualities of iron and steel, in soft annealed iron least and in hardened steel the most, is almost entirely obliterated in the former, and greatly lessened in the latter, when the bar is subjected to vibration.
A simple experiment, within the reach of nearl every one, to show this effect, is the following
If an ordinary wrought
If an ordinary wrought iron poker be held in a ver tical north and south plane and one end be dealt a sharp blow, it will be found to have assumed polarity, which may be proved by presenting the ends in turn to the north-seeking end of a compass. One end of the poker will attract and the other repel. If now the poker be reversed in position and the otherend tapped the polarity will be changed, and the end which for be found to repel it.
The maximum effect is produced when the bar is held parallel with the dipping needle, and it gradually disappears as this angle is departed from, until, when held at right angles to the dipping needle, no polarity is developed by the blow, and if the bar already have polarity, it may be completely removed by striking the bar when in this latter position.
Since a dipping needle may not be accessible, this latter effect may be easily produced by striking the bar when held horizontally in an east and west position. It will then be at right angles to any vertical angle in a north and south plane. As before stated, the bar will acquire no polarity if struck when in this position. This is not strictly true, however, as it would be magnetized transversely, but its dimensions in this direction being so small compared with its length, the magnetism wo
detected in the ordinary way.
In the example given, the magnetic field is due to the earth's magnetism, whose lines of force take a nearly north and south direction and tend to thread
an iron bar held parallel to them. The magnetic eluctance of the bar, or the resistance which its molecules or molecular inagnets offers to an arrangement in
conformity with these lines, is overcome or lessened by
any means of molecular vibration. In some cases the mere trewor of the earth is sufficient in this magnetic field to permit of this rearrangement. In others it requires a wore violent vibration, such as may be caused by heat, by friction, or by a blow, and it not infrequently happens that these agencies wust be ong continued to produce appreciable results.
The magnetic reluctance of different samples of iron or steel varies not only with their quality and temper, being least with soft annealed iron and greatest with hardened steel, but also with the past history of the bar in question.
It is found that a bar which has once been mag etized in a given direction and demagnetized will more readily again take magnetism in the original direction than in the opposite one, and although two bars may be of identically the same composition and hardness, they will vary in their susceptibility as the stages through which they have passed in the course of manufacture have varied. So that it has been well said that the susceptibility to magnetism of a given bar is the resultant of all the influences to which it has been exposed in and since its manufac ture.-Electricity.

Improved Storage Cells.

This is the storage battery of the Societe Anonyme pour le Travail Electrique des Métaux, the output of whose works at Saint-Ouen, Paris, is at the rate of five tons a day, with a capacity for ten tons. Cells with a total storage capacity for 70,000 lamps are now in use at Paris. The working capacity and durability of these accumulators are sought to be increased without increase of weight or cost. For this purpose the plates are made of grid pattern, with square holes filled in with reduced lead of great porosity. Chloride of lead and chloride of zinc are melted together and the fused salts moulded in cakes of 2 inches square, of desired thickness. The cakes are formed with cross grooves on both sides and a swall hole through the center. When cool they are removed from the mould, laid in batches between perforated iron plates and placed in a bath of hydrochloric acid for 15 days. The chloride of zinc is thus dissolved out. The cakes ar fterward dried, placed in moulds, and molten lead poured in, forming a framing, the lead also running into grooves on the faces of the blocks and into the small hole-a self-supporting plate of good conductivity being thus produced. The plates are trimmed up and placed with zinc plates between them in a solution of chloride of zinc, which reduces the chloride of lead squares to pure porous metallic lead, the last traces of chloride of zinc being removed by a bath of dilute hydrochloric acid. They are afterward washed several drochloric acid. They are afterward washed several
times in alternate pure and acidulated water. The processes of reduction and cleansing are now complete an examination of the interior of the squares showing the pores of regular structure at right angles to the surface of the plate. The plates are then formed i the usual way by passing currents of electricity, the efficiency of the resuitant cells being remarkably high The ordinary plates made by the Societe have a ca pacity of 10 ampere-hours per kilo. ($4 \cdot 5$ per pound). Cells of special type for traction purposes possess the high rate of 19 ampere-hours per kilo. (8 per pound). A remarkable feature is the high rates of charge and discharge. An installation at the Hotel Continental having 55 half-ton cells has an ordinary output of 600 amperes, and on an emergency of 1,200 amperes, at 110 volts, without noticeable fall in voltage, and without detriment to the plates. The largest installation wher they are used is that of M. Popp, where 25,000 16-can dle power lamps are supplied. There are no less than sixteen sub-stations, all charged from one central generating station. The engines cease running at $4 \mathrm{P} . \mathrm{M}$. the batteries carrying the entire load till next morn ing. These accumulators have been adopted by the French government after severe tests, and, it would seem, constitute a most important advance in this de partment of electrical practice.

The Meat Diet.

The attention of the French Society for the Advance went of Science has recently been directed by certain physicians to the evil effects of an excessive meat diet, or of raw, overkept, or bad meat. The ptomaines thus produced introduce poisonous principles in the system, which the kidneys cannot throw off. Inhabitants of cities indulge far too freely in meat, of ten badly cooked and kept too long; the poor and country population do not often get their meat fresh. Professor Verneuil considers something should be done to remedy this state of things. He points out that Reclus, the French geographer, has proved that cancer is most frequent among those branches of the human race where carnivorous habits prevail.

cocoanut Butter.

This comparatively new product was at first said to be prepared from the milk of the cocoanuts, but as a matter of fact it is produced from the cocoanut oil, by treatment with alcohol and animal charcoal, which removes the rancid flavor and makes the butter white.

An Edison Fatent for Connecting "Tenalon Beducing" Devices in Hultiple Arc.

On llec. 8, 1891, a patent was issued to Mr. T. A.
dison, entitled "Syten of Distribution" No 464,822 Edison, entitled "Sytem of Distribution," No. 464, 822, which will attract considerable attention, owing to the broadmess of the clains embodied in it. The patent was filed 'I une 26,1882 , and describes the method of employing a high tension main circuit extending to a distant point and "tension reducers" looated at a distance from the point of supply and connested with the high tension circuit in multiple are so as to be independent of one another, the lamps or motors on the derived low tension circuit also being conneated in multiple are
One mothod of acoomplishing this objeect is deseribed, consisting of secondary batteries or condensers which are charged in series from the ligh tension circuit and diseharged in multiple into the low tension circuit, this being acomplished by means of a revolving commututor.
The patent was the subject of prolonged interference procedings. Its chaims are as follows:

1. In a system of electrical distribution, the combina tion of a nain cireuit extending to a distance fron the source of electrical energy and having a current of high tension, a constantly acting tension reducer eommected with such main circuit by a multiple are or cosos cir cuit, so as to be independent of other similarly connected tension reduecers, and a translation circuit supplied by such tension reducer with a current of lower tension, substantially as set forth.
2. In a system of electrical distribution, the combina tion of a main circuit extending to a distance from the souree of electrical energy and having a current of high tension, a translation circuit, translating devices arranged in multiple are in such translation cireuit and a constantly acting tension reducer conneded
with sueh main cirenit by a multiple are oreross eircuit and also oonmected with said translation circuit. said tension reducer being eharged from such main cir cuit and discharging a current of lower tension in said translation circuit substantially as set forth.
3. In a system of electrical distribution, the combination of a main circuit extending to a distance from the source of electrical energy and having a current of high tension and a translation circuit with an interme cliate seondary battery or condenser, and a continu ously working eommutator throwing all the elemients
of such secondary battery or eondenser together and at the same time rapidly forming a series connection with the hain circuit to multiple arc comection with the translation circuit, and back again, substantially a set forth.
4. In a system of electrical distribution, the combina tion of a main circuit extending to a distance from the source of electrical energy and having a courrent of high tension, and a translation circuit with an intermediate secondary battery or eondenser, a commutator throw ing all the elements of such secondary battery or con demser together and at the same time rapidly forming a series connection with the main circuit to a multiple are connection with the translation cirenit, and anelectric motor working such oommutator, substantially as set forth.
The Elextrical Enginetr adds, the Edison Company dains that the patent covers the placing of converters or transformers in multiple are.

Small wire Manufacture.

Says the Providence Jounat: In Providence diamond dies are made and used at the American Electrical Works. Lintil means for drilling holes through diamonds were devised, wire was drawn through steel plates, which, however, failed to give satisfactory results. The slightest wear in the hole spoiled the wire, Which was made larger at one end of the conl than the with great care, and whenever the slightest wear was detected, it was necessary to pound the die and ream the hole out to the size required
The wire makers of Europe discarded steel dies when they learned how to drill rubies and sapphires. These dies were superior to steel dies, but they lacked the hardness necessury to the most perfect dies. Then diamonds were drilled, and better results were obtained, but the production of perfect wire was not possible until after the imported diamond dies wer reamed out. The wire as drawn through them
smooth.
The American Electrical Works enjoys the distinction of having manufuctured the only perfect diamond dies used in the Enited States. About twelve years ago, W. H. Sawyer, who has been connected with the company since 1878, made a number of experiments in drilling the jewels. Trial after trial was made, but the diamond was too hard to be pierced by any of the orceeded in drilling the diamond, and it is believed that he is the only man in the country who has been able to produce a perfect diamond die for drawing wire finer than a hair pulled from one's head.
These fine wires are used in making the receiving instruments of ocean cables, the galvanometers used in
testing cables, ote. The finest wires in the world are made at the factory, at the corner of Stewart and Conduit streets. The smallest size is two-thousand the of an inch in diameter, but the diameter mostly called for is three-thousandths of an inch. An idea of the fineness of the two-thousandths wire is afforded by the number of miles there are in a pound. One pound of this size if unwound would reach from Providence to Woonsocket nearly sixteen miles, and a pound of the three-thousandths would streteh from the City Hall to the chim ney of one of the mills at Lonsdale.
The magnet wires are covered with silk thread, which is even finer than the wire, and is wound with two layers, a process requiring the greatest delicacy, as frequently the tendency is to cover the thread with wire instead of wire with thread. The wires are made of eopper and German silver, and are unsurpassed for uniformity of diameter and regularity of size.
The diamonds are set in brass dies without cutting. The foreign wire makers wasted their time and money in cutting the corners of the diamond chips in order that the jewels might be set in a socket; but at the American Electrical Works the fragnent is placed in the center of the dic, and held in position by an alloy melted and poured around the dianond. This saves time and expense in preparing the dianond for use in
wire drawing, and the die is as neat in appearance as wire drawing, and the die is as neat in appearan
if the stone had been cut into ornamental shape.
It is diflicult to seenre the diamond chips of which the dies are made. The pieces in demand are knooked off the large jewels by the lapidaries and are often used for rose diamonds, that is, diamouds with flat surfaces. A few years ago the supply was abundant but since the diseovery of the process of drilling holes but since the discovery of the process of driling holes
so small that they can searely be seen without a microsope, the quantity in the market has been limited.

Electric Lifhtin for Kome, Italy

A notable example in Europe of water power utiliza tion in connection with electric lighting is afforded by the new electric station now being established at Tivoli, near Rome. There is at this place a large and valuable water power, a portion of which has recently been utilized in the extablishment of a large alternat ing current station of a capacity of $2,000 \mathrm{~h}$. p., in tended to supply a portion of the city of Rome with electric light. Water is taken from the Falls of Tivol by an aqueduct from which there is a pipe line 62 nches in diameter to the wheel station. The entire all is 166 feet, and the water supply 106 cubic feet per seond. The power station consists of three 100 h . p . Pelton wheels which operate direct current dynamos used as exciters. Also six l'elton wheels couple direct o the same number of 3.50 h . p. alternators which run at 170 revolutions per minute Each alternator is designed to furnish current at 5,000 volts pressure and 45 amperes. The wheels are governed by hydraulic inlet valves, are worked by a sensitive hydranlic relay which is set in operation by a centrifugal governor. By thi means the speed is automatically kept constant, inde pendent of the working of the machine.
The alternating curront so generated is to be transmitted to Rome, a distance of $15 \frac{1}{2}$ miles, by means of four stranded eopper cables, each being 000 square nch in cross section, and capable of carrying 120 amperes carried overhead on iron poles placed 114 feet apart, and about 30 feet high, insulated by means of double-shed oil insulators, specially designed for this work by Prof. Merigarini.
A drop of 1,000 volts, or 90 per cent, is to be allowed in these lines. At the far end of the trunk mains the pressure will be reduced by step-down transformers to 2,000 volts, and distributed uuderground by Siemens ables to secondary conters, at whioh it will be again reduced to 1,000 volts.
The six machines are all capable of being worked together in parallel, the maximum -number of five being used together, and one machine being always in reserve. Two of the exriters are sufficient to supply exiting current to the whole of the dynamos, the third being a reserve.

The Deadily Cold Bed,

If trustworthy statistics could be had of the number persons who die every year or become permanently diseased from sleeping in damp or cold beds, they would probably be astonishing and appalling. It is a peril that constantly besets traveling men, and if they are wise they will invariably insist on having their beds ired and dried, even at the risk of causing much trouble to their landlords. But, according to Good Housekeequing, it is a peril that resides also in the home, and the cold "spare room" has slain its thoustands of hapless guests, and will go on with its slaughter till people carn wisdom. Not only the guest, but the family, often suffer the penalty of sleeping in cold rooms and chilling their bodies, at a time when they need all their bodily heat, by getting between cold sheets, Even in warm summer weather a cold, damp bed will get in its deadly work. It is a needless peril, and the neglect to provide dry rooms and beds has in it the elements of
murder and suicide.

Mr. Khignerto ship Rallway.
Mr. Ketehum, chief promoter of the Chipnecto Harine Railway, has notified the Dominion government that an application will shortly be made to the govern ment for some of the subsidy to be payable as interest on the bonds whish are to be issued. This, Mr. Ketchum says, would be practically a guarantee that the interest on the bonds will be paid, and would not involve any more expenditure on the behalf of the government than if the work had been completed last year aceording to contract and the subsidy paid agreed upon. The subsidy to be given by the government is $\$ 170,000$ a year, payable after the completion of the work in half yearly installments of $\$ 85,000$ each for 20 years. The work of building the ship meneed in Oetober, 1888 , and another
would finish it. The mont diffieult and the work is accomplished, according to He says that nearly all the earthwork leted, the roadbed has been graded, the e been cooris and foundations made solid, the harbordantients' pouches constructed the masoury built firm ary alo, and 12 miles of single track laid. About $33,500,000$ has and 12 miles of single track laid. About $\$ 3,500,000$ has already been expended and about sing the work. This is an interesting and import-
to finish finish the work. This is an interesting und import-
ant project. It is to be hoped the necessary money for ant project. It is to be hoped the net
its ompletion will be soon provided.

Freatment of Loconotive Holler Waters
At a recent meeting of the Western Railway Chb, the subject of discussion was the treatment of locomotive boiler water. The purge which seems to be the wost successinlly used to remove and prevent scale is composed of caustio soda and soda ash. About one quart, costing one cent, is used in the loomotive boiler for every twelve miles of distance traveled. Mr. Lewis said he had for the last year or more made a practice of using coal oil. When a boiler is washed out, and before it is filled with water, I have a gallon of coal oil poured into it, and as the water rises in the boiler, the coal oil floating on the surface deposits itself on the surface of the iron. There is no ehemical action; we surface of the iron. is vere is no chennicalaction; we
know that coal oil is ver ; that you can know that cod oil is very penetrating, that you can
take a block of cast iron of reasonable size and pour a little coal oil on it and it will permeate throngh that little coal oil on it and it will permeate through that
block. My idea about the coal oil is that it will permeate the seale, or go between the scale and the iron, lifting it from the iron, and then the expansion of the boiler, due to heat, will crack off the seale, and it can be removed when the boiler is washed.
Mr. Quayle said he had recently used potatoes. We are uning one peck of potatoes, and we find that the impurities of the water seem to come out every time the boiler is washed, in the form of a mushy substance, about the ennsistency of eream and about that eolor, only a little dirtier. I have learnt that worghum is successfully used in stationary boilers as a water purifier. Mr. (iibbs said: Any vegetable substance can be nued in a boiler and it will break up the scale, owing to the decomposition of the vegetable matter. The action of every vegetable substance is the same.

Life Naving at sea.

The reeent heavy gales, and some of the catastrophes that have resulted from them at various points along our coasts, should again direct public attention to the burions ineffeciency of the applianees which are at present in common use for saving the lives of the erews of vessels that are cast ashore in storms. It need earcely be pointed ont that, where a wind blows violently off the shore, ships, thongh they way suffer in other ways, do not often come to grief by rumning aground. That danger is, of course, most threatening when the wind blows strongly from the sea. Yetgreat part of our arrangenents for saving the lives of wrecked crews seem to be based upon the assmmption that the dangerous gales ome from the land and not from the sea. If not, why do we provide the coast brigade serviee with the rocket apparatns, and omit to insist that ships shall carry something similar? Pren better than the rocket apparatus for this service is a small linethrowing gun. An ordinary brass signal gun, which can be adapted at very small cost for the purpose, will can be adapted at very small cost for the purpose, win of a mile.-Loudon Graphic:

The 100 Puzzle.

We have recesved a number of ingenious solutions to he above-to so place the ten digits that their sum hall be 100. We subnit a number of the same.

(6) $0+97-1+\frac{2}{3}+\frac{5}{8}+\frac{1}{8}=100 .-B y$ II. 太.

It is to be said, however, that the use of fractions in volving division, or of exponents involving multiplicahardly fair.

