The construction for navigating the air represented in the illustration is designed to be readily guided and controlled in its travel, irrespective of the direction of the wind. It has been patented by Mr. William N. Riddle, of Crowley, Texas. Its main body is substantially of an upright cylindrical form, and is divided horizontally into two compartments, the lower one for freight and the operative mechanism and the upper one for passengers. The body is centrally pivoted at its upper end to a main frame piece above, the lower end of the body also being centrally pivoted in the horizontal member of a yoke, in which the body is suspended from the frame piece, cords serving as braces. A circular rack, controlled by a spring catch upon controlled by a spring catch upon
the upper end of the body, holds the upper end of the body, holds the latter stationary in any required
position in traveling around its verposition in traveling around its ver-
tical axis. Connected with the yoke and the stay cord at one side is a stationary rudder, and a laterally projecting second rudder is pivoted to one end of the main frame piece above, this rudder being capable of adjustment up or down, and being locked in position by a leverhandle engaging a rack on the frame piece. Attached by cords to the latter is an upper gas receptacle divided in to compartments, one above the other, united to form but a single buoyant chamber, but so connect ed with one another by central up right tubes that if one compartment collapses or bursts the others will hold up the ship. To propel the vessel, a horizontal shaft projects from each side, each carrying two upright partly circular tracks, one below and the other above, between which an upright propelling wheel is arranged to rotate upon the shaft. Each wheel is driven or rotated by gearing actuated by any suitable prime mover or motor within the body of the vessel, and the construction of the wheel is such that the paddles will have a feathering action, striking the air on their flat side during half of the revolution of the wheel and presenting their edge surface to the air during the other half of the wheel's rotation. The construction is such that the position of the wheels may be changed to give their paddles a flat or edge presentation to the air as desired, and to move the vessel upward or down ward as desired, and to
when necessary, it being designed that in lowering the ship it will not be necessary to permit the escape of the gas in the buoyant chamber.

Gold Alloys.

Prof. RobertsAusten hasdrawn attention to the fact that the properties of gold are changed in a most remarkable manner by alloying it with small percentages of other metals, and he lately exhibited a new series of alloys of this metal with aluminum. One of these alloys, containing 20 per cent of aluminum, forms an exception to the usual rule that usual rule that the melting point ot an alloy is lowthan that of
ither of its contither of its con-

- jituents. This ailoy has a fusing point above that of gold, the most infusible of its constituents. Curiously enough, the alloy with 10 per cent of aluminum follows the ordinary rule. These alloys have the most brilliant colors The 20 per cent alloy is a brilliant ruby in tint, while those containing greater percentages of aluminum are purple in hue.

INGLETON'S IMPROVED STEAM PLOW.

 admitted that in dry summer weather, when the and is hard and traveling good, a traction engine will aul quite a large gang of plows; but it is different with anything in the nature of a steam plow.In the Ingleton system the resistance of the plows is against the side of the engine, and does not, therefore hinder the forward move of the latter. This is the secret of its successful working; for, no matter what the condition of the land, so long as it is fit for plowhowever, under certain conditions of soil is another question.
The main propelling wheels of the Ingleton engine are 7 feet diameter and 30 inches wide, which gives ample "grip" for propelling itself over any con lition of land, while, owing to the width of the frame containing the plows (thirty-three feet), the engine moves forward at the rate of about half a mile per hour only, or one-sixth of the speed required by direct haviage with a corresponding saving in power, fuel and wate a gang of plows. mum movement of engine.
ander, and the average of a day's work may be set own at 20 ac

nts per acre

As will be seen from the engraving, this plow is an seam cuparture from everything yet attempted in perate across the track of and at right as the plow travel of the track of and at right angles to the tion ha the engine. By this means a serious objec steam in overcome. In nearly all the attempt of direct haulage by traction engines has been adopt ed. It may be stated, however, that so long as the propelling wheels of a traction engine have to depend pon the loose and ever pon the loose and ever-changing surface of the soil pon the loose and ever-changing surface for a sufficient "grip" to haul a gang of plows, so long

It is stated that wasps' nests often take fire, sup posed to be caused by the chemical action of the wax upon the paper material of the nest itself. This fact may account for many mysterious flres,
be made to travel light. To haul a weight behind it and wear and tear. Besides these advantages, it must not be forgotten that, owing to this saving of powe in propelling the engine, a snalle engine will suffice to do the same amount of work than when hauling direct, for there will be found some conditions of land that it would take as much power to propel the engine over at the rate of three miles per hour as it would require to hau

In the Ingleton system the plows travel through the soil eight times faster than the engine, i. e., while the engine is traveling half a mile in one direction, the plows are moving at the rate of four miles per hour at right angles thereto, giving a maximum of work done to a mini-

The width of the plow frame may be doubled if necessary ; in fact, it is recommended for large opera tions. This will further the advan
tages of this system. There is practi
cally no fixed limit to the width of the plow frame, a each plow is mounted upon a small carriage with fou ach plow is mod upon a small carriage, with fou flanged wheels traveling on rails, and is independ ent to rise or fall, so as to follow all uneven surfaces of
the land. By means of a lever placed within reach of the fireman, the main frame can be raised, and all plows taken clear of the land, with the power of the engine, and without stopping the machinery. The plows are fitted with an automatic apparatus for raio ing them clear of stones or roots, thus saving all dam age from this source
The main frame can be fitted with a seeder box, and ngleton's patent harrow, so that the three operation flowing seeding and harrowing can be carried on at one time. The time is at hand when a good steam plow is required It is surprising how little has been done in this direction, when we take into aocount the elaborate steam thrashing machine, which only deals with two or three tons weight per acre, while to plow an acre of land six inches deep one thousand tons have to be stirred, and that in a very short space of time.

A Great Bridge or York.

 Modified plans have been prepar ed by T. C. Clarke for the North River bridge, proposed by the New York and New Jersey Bridge Company. The original plans provided for a center pier in the river but this has been abandoned. The present design provides for acombined cantilever and suspension bridge. The river span will be 3,200 feet. The New Jersey end of the bridge will be at Miles Avenue, the New York City end at a point between the lines of Seventieth and Seventy-first Streets. A viaduct 100 feet wide, with four main tracks and three lines of sidings, will run through private property to a point between Eleventh and Twelfth Avenues, thence to a point above Thirty-eighth and Thirty-ninth Streets. A large union station will be built on the blocks between Thirty-seventh and Thirty-

Progress of Hippophagy.

Contrary to what is commonly supposed, a very respectable number of French men and women have for a long time been eating a large quantity of horse meat, because this food agrees with their stomach as well as their purse.
In our day, the consumers of solipeds have so increased that in many places, it appears, horse meat is sold at a much higher price than it was fifteen or twenty years ago, without, however, having reached such a figure as in Denmark for a few years past, and recently in Germany. In France, hippophagy, while remaining within reach of modest purses, has made surprising progress. In several localities ordinary butchery has been seriously affected by the competition of this new trade. For example, at Toulouse, the city of France in which the largest number of horses are consumed proportionally to the number of inhabitants, the butchery syndicate has formed itself into a sort of committee against the sale of horse meat.
At Paris, the first horse butchery was opened on the 9th of July, 1866. The number of solipeds slaughtered from that epoch up to the 31st of December of the same year was only 902 . It rose to 2,758 in 1869 , to 65,000 during the siege and the commune, to 5,732 in 1872, and to 10,619 in 1877. The horse butcheries num bered 48 on the 1st of January, 1874, and 132 on the 1st of January, 1889. At present, the price of horse meat is nearly half that of beef for corresponding cuts. Thus a fillet of beef is sold at $21 / 2$ francs per 500 grammes, and a fillet of horse meat at $11 / 4$ francs. The inferior cuts, which are from 40 to 60 centimes for beef, are from 20 to 30 for those of horse meat. The solipeds seized after being slaughtered, as unfit for consumption, numbered 3,583 from 1868 to 1884, that is to say for 203,537 consumed in 17 years; 304 in 1886, for 18,435 consumed ; and 245 in 1887, for 16,446 consumed.
At Lyons, Bordeaux, Orleans, and Troyes and other cities the output of the horse butcheries is enormous.
According to Prof. Thomassen, of the Veterinary School of Utrecht, hippophagy is in great favor at Rotterdam. Horse meat is used there as human food to an extent that is unknown in Denmark, Sweden, and Switzerland, as well as in several parts of Italy, such as Lombardy, Piedmont, Venetia, etc.
It is extensively used in Milan, while it is scorned in Turin. In the latter city, only 55 horses were slaughtered at the abattoir in 1888. The flesh of all of these animals was used exclusively for feeding the animals of a menagerie. Mr. Manuel Prieto regrets that hippophagy is not adopted in Spain, where it would benefit numerous poor laborers, to whom ordinary meat is an article of luxury on account of its high price.
The Annual Agricultural Statistics published by the Minister of Agriculture give the number of horses asses, and mules slaughtered for human food at Paris and in the suburbs.-La Nature.

Improved Propulsion and Ship Design.
Professor J. Harvard Biles, of Glasgow University, addressed the members of the Rutland Place (Glasgow) Marine Institute recently on "The Effect on Ship Design of Improvement in Means of Propulsion." Professor Biles, in the course of his lecture, compared the old time propulsion by manual power with the methods in vogue at the present time. One man, he said, on board a modern st`amer with all the latest appli ances at command, could produce fifteen hundred times as much work as was possible when the power was applied direct. After describing the changes which had been effected in means of propulsion, and pointing out their effect upon ship design, the lecturer pro ceeded to consider the possibility of propelling ship by lighter machinery and boilers of the tubular type whose weight would be one-fifth less than at pres ent, and in which oil would replace coal as fuel. Even with such improvements, however, it would take a vesse 1,000 feet in length and 109 feet beam, with engines of 100,000 to 120,000 indicated horse power, to cross from Queenstown to New York in four days. But remem bering that in the last fifteen years the propelling power of steamers had been multiplied by six, and that in the present day 30,000 horse power was not unknown it was not unreasonable to assume that in the nex fifteen years the maximum horse power would be quadrupled.

The Magnetic Properties of oxygen
Commenting on Professor Dewar's recent experimental verification of the magnetic properties possessed by liquid oxygen, M. Guillaume points out, in L'Indus trie Electrique, that if we accept the values found by Edmond Becquerel for the magnetic constant of oxygen, it ought, when in the liquid state, and in a field of medium strength, to possess a magnetic moment per cubic centimeter one-third that of iron, and a mag netic moment per gramme twice as great as that of iron; so that the strange conclusion is forced upon us that oxygen is the most magnetic of substances. M. Guillaume also points out that liquid oxygen might be made to give a faithful and delicate representation of the distribution of the lines of force in a magneti field, the liquid being heaped up in the strong places.

A BED SPRING AND SUPPORT.

The simple and inexpensive device shown in the illustration is adapted for attachment to any ordinary bedstead rail to support the slats and form a cheap simple and easy spring bed. It

has been patented by Mr. Wilbur L. Gillette of Yalesville, Conn. The base or support of the spring consists of a bracket, A, the wall plate of which rest against and is secured to the inner side of the rail, or the bracket may be secured in the notches where the slats are usually inserted. The main bracket arm B, has a hole at its outer end and a notch at its inner end in which the bed spring wire is se-
GILLETTE'S BED SPRING. $\begin{gathered}\text { bed spring wire is se- } \\ \text { cured, the upper free }\end{gathered}$
and of the spring being doubled to form a keeper, C ,
shaped to easily receive a slat of the bed.

NOVEL TOYS.

The elasticity of torsion and tension, the storage of nergy, centrifugal force, momentum and friction, are all concerned in the movement of the simple toy illus trated in Fig. 1, and yet, perhaps, not one in a thousand of the people who see the toy realizes the composite nature of its action. Barring the well known return ball, nothing can be simpler than this toy, which consists of two wooden balls of the same diame ter connected by a slender elastic rubber band at tached by staples, as shown in the lower figure.
To prepare the toy for operation, it is only necessary to twist the rubber band by holding one of the balls in the hand and rolling the other round in a circular

Fig. 1.-GYRATING BALLS

path upon the floor by giving to the hand a gyratory motion. As soon as the band is twisted, the free bal is grasped in the hand, then both are released at once. The untwisting of the rubber band causes the balls to roll in opposite directions in a circular path, and centrifugal force causes the balls to fly outwardly. By virtue of the acquired momentum, the balls continue o rotate after the rubber band is untwisted, so that the band is again twisted, but in the opposite direc ion. As soon as the resistance of the band overcome the momentum of the balls, the rotation ceases for an
instant, when the band again untwisting revolves the balls in the opposite direction, and the operation is re peated until the stored energy is exhausted.
In Fig. 2 is illustrated another ball in which the enter of gravity is located near the periphery. The ball, which is hollow, is made of paper. To the inner

Fig. 2.-UNBALANCED BALL.
surface of the wall of the ball is attached a weight which is secured in place by a piece of cloth glued over it. When this ball is thrown through the air with a whirl ing motion, it describes a curve like that indicated in dotted lines in the upper part of the engraving, so that t is difficult, if not impossible, to catch it. When the ball is rolled on a plane surface, it does not take a straightforward course, as would be expected from a well-balanced ball, but its course is very erratic as indicated in dotted lines in the lower part of the figure.

The differences anatomically and physiologically between the cattle tribe (Bos) and the horse family Equus) is an interesting study. In parallel tables, as given in the Maryland Farmer, these can be seen at a glance:

Have two Horned.
 Have no mane.

Long hair in a tuft at end of tail.
Pawing with fore feet denoter
Pawing wither
anger.
eize forage with the tongue.
Lips slightly movable.
Have no upper incisor teeth
Rise on hind lege first.
Short mouth. No space betwe
incisor and molar teeth.
our stomachs.
They chew the cud.
Have gall bladder.
Have gall bladd
May vomit.
May vomit.
May breathe
gh the mouth.

ried.

Defense by goring.
Bellow or moo.
Do not sweat.
Have dewlap.
Have dewlap.
No warts on inside of hind legs,
Do not retract the ears.
Very rough tongue.
Short, broad head.
Wide, drooping ears.
Limbs formed for strength. Live twelve or eighteen
Do not roll in the dust. Sleep with both earst. Lie down to sleep. Eat and lie down to
Shoulders straight

Have one toe. ${ }^{\text {Hor }}$
 Have one toe. Without horns.
 Have flowing mane.
 Tail covered with long hair.

ger.
Gather food with the lips.
Gather food with th
Lips very movable.
Lips very movable.
Have npper and lower incisors.
Lie down hind parts first.
Rise on fore legs first.
Mouth long. Space between front
and back teeth.
One stomach.
Do not chew th
Do not chew the cud.
Intestines largc-60 feet long
Have nc gall b
Do not vomit.
Don't breathe through the mouth. Touth never open from exhaus. tion.
Defense Defense by kicking.
Neigh or whinny
Perspire easily.
Have no dowlap.
Have no dowlap.
Hard, oval wartsinsidc hind legs.
Hee the teeth in fighting. Retract the ears when angry. Soft, smooth tongue. Long, narrow head. Erect, narrow ears. Limbs formed for speed.
Live thirty or forty years Do roll in dust. Do roll in dust.
Sleep with one e Often sleep standirg Often sleep standirg.
Ncver ruminate. Eat little and
often. often.
Shoulders sloping.

The Iron Industries thinks men who attend to the lubrication of moving machinery ought to make a study of the action of various oils upon metals more than they do. Recent experiments show the following interesting results: Iron is least affectod by seal oil and most by tallow oil. Lead is least affected by olive oil and most by whale oil ; whale, lard and sperm oils act to very near the same extent on lead. Brass is not affected by rape oil, least by seal oil, and most by olive oil. Tin is not affected by rape oil, least by oliv oil and most by cotton seed oil. Zinc seems not to be acted upon by mineral lubricating oils, least by lard oil and most by sperm oil. Copper is not affceted by mineral lubricating oils, least ly lard oil and most by tallow oil. Mineral lubricating oil has no action on zinc and copper, and acts the least on brass and most on lead. Olive oil acts least on tin and most on copper Rape oil has no action on brass and tin, acts least on Rape oil has no action on brass and tin, acts least on
iron and most on copper. Tallow oil act. least on iron and most on copper. Tallow oil act least on zinc tin and most on copper. Lard oil acts least on zinc
and most on copper. Cotton seed oil acts least on lead and most on copper. Cotton seed oil acts least on lead
and most on tin. Sperm oil ncts least on brass and most on zinc. Whale oil has no action on tin and acts least on brass and most on lead. Seal oil acts least on brass and most on copper. From these results it will be seen that mineral lubricating oil has, on the whole, the least action on the metals employed in the experiment, and sperm oil the most. For lubricating the journals of heavy machinery, either rape oil or sperm oil is the best to use in mixture with mineral oil as they have the least effect on brass and iron, which two metals generally constitute the bearingsurfaces of an engine. Tallow oil should be used as little as possible, as it has a bad effect on iron.

The Transformations of the Digger Wasps.
At a recent meeting of the Entomological Society, of Washington, Professor Riley gave a detailed description of the larva of our larger digger wasp (Sphecius speciosus), and drew attention to a remarkable peculiarity of the cocoon of this insect. This peculiarity consists in the presence of certain very anomalous pores which occur about the center of the cocoon and extend nearly around it. These, Professor Riley stated, must be intended for some special purpose, and probably for ventilation or respiration.
The occurrence of these pores, he stated, brings up the interesting question of the need of ventilation in the cocoons of hibernating insects, and he believed, in general, that in proportion to the imperviousness of the cocoon to air, some provision for its admission would be found.

Ticking of the Death watch.

Mr. C. J. Gahan, at the meeting of the Entomological Society, of London, for December 2, 1891, exhibited specimens of the common book louse (Atropos pulsatorius Fabr.), which he had heard making a ticking noise similar to that made by the "death watch" (Anobium). We put this on record as corroborative evidence of the power of making such noises possessed by atropos, which many have felt doubtful of on account of its minute size and soft body covering.

